首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To the surprise of many, studies of molecular mechanisms of touch transduction and analyses of epithelial Na+ transport have converged to define a new class of ion channel subunits. Based on the names of the first two identified subfamilies, the Caenorhabditis elegans degenerins and the vertebrate epithelial amiloride-sensitive Na+ channel, this ion channel class is called the DEG/ENaC superfamily. Members of the DEG/ENaC superfamily have been found in nematodes, flies, snails, and vertebrates. Family members share common topology, such that they span the membrane twice and have intracellular N- and C-termini; a large extracellular loop includes a conserved cysteine-rich region. DEG/ENaC channels have been implicated a broad spectrum of cellular functions, including mechanosensation, proprioception, pain sensation, gametogenesis, and epithelial Na+ transport. These channels exhibit diverse gating properties, ranging from near constitutive opening to rapid inactivation. We discuss working understanding of DEG/ENaC functions, channel properties, structure/activity correlations and possible evolutionary relationship to other channel classes. BioEssays 21:568–578, 1999. © 1999 John Wiley & Sons, Inc.  相似文献   

2.
3.
Degenerin/epithelial Na+ channels (DEG/ENaCs) are Na+ channels that are blocked by the diuretic amiloride. In general, they are impermeable for Ca2+ or have a very low permeability for Ca2+. We describe here, however, that a DEG/ENaC from the cnidarian Hydra magnipapillata, the Hydra Na+ channel (HyNaC), is highly permeable for Ca2+ (PCa/PNa = 3.8). HyNaC is directly gated by Hydra neuropeptides, and in Xenopus laevis oocytes expressing HyNaCs, RFamides elicit currents with biphasic kinetics, with a fast transient component and a slower sustained component. Although it was previously reported that the sustained component is unselective for monovalent cations, the selectivity of the transient component had remained unknown. Here, we show that the transient current component arises from secondary activation of the Ca2+-activated Cl channel (CaCC) of Xenopus oocytes. Inhibiting the activation of the CaCC leads to a simple on–off response of peptide-activated currents with no apparent desensitization. In addition, we identify a conserved ring of negative charges at the outer entrance of the HyNaC pore that is crucial for the high Ca2+ permeability, presumably by attracting divalent cations to the pore. At more positive membrane potentials, the binding of Ca2+ to the ring of negative charges increasingly blocks HyNaC currents. Thus, HyNaC is the first member of the DEG/ENaC gene family with a high Ca2+ permeability.  相似文献   

4.
The voltage-gated K+ (Kv) channel blocker 4-aminopyridine (4-AP) is used to target symptoms of the neuroinflammatory disease multiple sclerosis (MS). By blocking Kv channels, 4-AP facilitates action potential conduction and neurotransmitter release in presynaptic neurons, lessening the effects of demyelination. Because they conduct inward Na+ and Ca2+ currents that contribute to axonal degeneration in response to inflammatory conditions, acid-sensing ion channels (ASICs) contribute to the pathology of MS. Consequently, ASICs are emerging as disease-modifying targets in MS. Surprisingly, as first demonstrated here, 4-AP inhibits neuronal degenerin/epithelial Na+ (Deg/ENaC) channels, including ASIC and BLINaC. This effect is specific for 4-AP compared with its heterocyclic base, pyridine, and the related derivative, 4-methylpyridine; and akin to the actions of 4-AP on the structurally unrelated Kv channels, dose- and voltage-dependent. 4-AP has differential actions on distinct ASICs, strongly inhibiting ASIC1a channels expressed in central neurons but being without effect on ASIC3, which is enriched in peripheral sensory neurons. The voltage dependence of the 4-AP block and the single binding site for this inhibitor are consistent with 4-AP binding in the pore of Deg/ENaC channels as it does Kv channels, suggesting a similar mechanism of inhibition in these two classes of channels. These findings argue that effects on both Kv and Deg/ENaC channels should be considered when evaluating the actions of 4-AP. Importantly, the current results are consistent with 4-AP influencing the symptoms of MS as well as the course of the disease because of inhibitory actions on Kv and ASIC channels, respectively.  相似文献   

5.
The DEG/ENaC gene family of ion channels is characterized by a high degree of structural similarity and an equally high degree of diversity concerning the physiological function. In humans and rodents, the DEG/ENaC family comprises 2 main subgroups: the subunits of the epithelial Na+ channel (ENaC) and the subunits of the acid sensing ion channels (ASICs). The bile acid-sensitive channel (BASIC), previously known as BLINaC or INaC, represents a third subgroup within the DEG/ENaC family. Although BASIC was identified more than a decade ago, very little is known about its physiological function. Recent progress in the characterization of this neglected member of the DEG/ENaC family, which is summarized in this focused review, includes the discovery of surprising species differences, its pharmacological characterization, and the identification of bile acids as putative natural activators.  相似文献   

6.
The DEG/ENaC gene family of ion channels is characterized by a high degree of structural similarity and an equally high degree of diversity concerning the physiological function. In humans and rodents, the DEG/ENaC family comprises 2 main subgroups: the subunits of the epithelial Na+ channel (ENaC) and the subunits of the acid sensing ion channels (ASICs). The bile acid-sensitive channel (BASIC), previously known as BLINaC or INaC, represents a third subgroup within the DEG/ENaC family. Although BASIC was identified more than a decade ago, very little is known about its physiological function. Recent progress in the characterization of this neglected member of the DEG/ENaC family, which is summarized in this focused review, includes the discovery of surprising species differences, its pharmacological characterization, and the identification of bile acids as putative natural activators.  相似文献   

7.
Activation of the CFTR Cl channel inhibits epithelial Na+ channels (ENaC), according to studies on epithelial cells and overexpressing recombinant cells. Here we demonstrate that ENaC is inhibited during stimulation of the cystic fibrosis transmembrance conductance regulator (CFTR) in Xenopus oocytes, independent of the experimental set-up and the magnitude of the whole-cell current. Inhibition of ENaC is augmented at higher CFTR Cl currents. Similar to CFTR, ClC-0 Cl currents also inhibit ENaC, as well as high extracellular Na+ and Cl in partially permeabilized oocytes. Thus, inhibition of ENaC is not specific to CFTR and seems to be mediated by Cl.  相似文献   

8.
Epithelial Na+ channel (ENaC) function is regulated by the intracellular Na+ concentration ([Na+]i) through a process known as Na+ feedback inhibition. Although this process is known to decrease the expression of proteolytically processed active channels on the cell surface, it is unknown how [Na+]i alters ENaC cleavage. We show here that [Na+]i regulates the posttranslational processing of ENaC subunits during channel biogenesis. At times when [Na+]i is low, ENaC subunits develop mature N-glycans and are processed by proteases. Conversely, glycan maturation and sensitivity to proteolysis are reduced when [Na+]i is relatively high. Surface channels with immature N-glycans were not processed by endogenous channel activating proteases, nor were they sensitive to cleavage by exogenous trypsin. Biotin chase experiments revealed that the immature surface channels were not converted into mature cleaved channels following a reduction in [Na+]i. The hypothesis that [Na+]i regulates ENaC maturation within the biosynthetic pathways is further supported by the finding that Brefeldin A prevented the accumulation of processed surface channels following a reduction in [Na+]i. Therefore, increased [Na+]i interferes with ENaC N-glycan maturation and prevents the channel from entering a state that allows proteolytic processing.  相似文献   

9.
The regulation of the epithelial Na+ channel (ENaC) during cell swelling is relevant in cellular processes in which cell volume changes occur, i.e., migration, proliferation and cell absorption. Its sensitivity to hypotonically induced swelling was investigated in the Xenopus oocyte expression system with the injection of the three subunits of mouse ENaC. We used voltage-clamp techniques to study the amiloride-sensitive Na+ currents (INa(amil)) and video microscopic methodologies to assess oocyte volume changes. Under conditions of mild swelling (25 % reduced hypotonicity) inward current amplitude decreased rapidly over 1.5 min. In contrast, there was no change in current amplitude of H2O-injected oocytes to the osmotic insult. INa(amil) kinetics analysis revealed a decrease in the slower inactivation time constant during the hypotonic stimuli. Currents from ENaC-injected oocytes were not sensitive to external Cl? reduction. Neither short- nor long-term cytochalasin D treatment affected the observed response. Oocytes expressing a DEG mutant β-ENaC subunit (β-S518K) with an open probability of 1 had reduced INa(amil) hypotonic response compared to oocytes injected with wild-type ENaC subunits. Finally, during the hypotonic response ENaC-injected oocytes did not show a cell volume difference compared with water-injected oocytes. On this basis we suggest that hypotonicity-dependent ENaC inhibition is principally mediated through an effect on open probability of channels in the membrane.  相似文献   

10.
The degenerin channels, epithelial sodium channels, and acid-sensing ion channels (DEG/ENaC/ASICs) play important roles in sensing mechanical stimuli, regulating salt homeostasis, and responding to acidification in the nervous system. They have two transmembrane domains separated by a large extracellular domain and are believed to assemble as homomeric or heteromeric trimers. Based on studies of selected family members, these channels are assumed to form nonvoltage-gated and sodium-selective channels sensitive to the anti-hypertensive drug amiloride. They are also emerging as a target of nonsteroidal anti-inflammatory drugs (NSAIDs). Caenorhabditis elegans has more than two dozen genes encoding DEG/ENaC/ASIC subunits, providing an excellent opportunity to examine variations in drug sensitivity. Here, we analyze a subset of the C. elegans DEG/ENaC/ASIC proteins to test the hypothesis that individual family members vary not only in their ability to form homomeric channels but also in their drug sensitivity. We selected a panel of C. elegans DEG/ENaC/ASICs that are coexpressed in mechanosensory neurons and expressed gain-of-function or d mutants in Xenopus laevis oocytes. We found that only DEGT‑1d, UNC‑8d, and MEC‑4d formed homomeric channels and that, unlike MEC‑4d and UNC‑8d, DEGT‑1d channels were insensitive to amiloride and its analogues. As reported for rat ASIC1a, NSAIDs inhibit DEGT‑1d and UNC‑8d channels. Unexpectedly, MEC‑4d was strongly potentiated by NSAIDs, an effect that was decreased by mutations in the putative NSAID-binding site in the extracellular domain. Collectively, these findings reveal that not all DEG/ENaC/ASIC channels are amiloride-sensitive and that NSAIDs can both inhibit and potentiate these channels.  相似文献   

11.
12.
Ion channels of the DEG/ENaC family can induce neurodegeneration under conditions in which they become hyperactivated. The Caenorhabditis elegans DEG/ENaC channel MEC-4(d) encodes a mutant channel with a substitution in the pore domain that causes swelling and death of the six touch neurons in which it is expressed. Dominant mutations in the C. elegans DEG/ENaC channel subunit UNC-8 result in uncoordinated movement. Here we show that this unc-8 movement defect is correlated with the selective death of cholinergic motor neurons in the ventral nerve cord. Experiments in Xenopus laevis ooctyes confirm that these mutant proteins, UNC-8(G387E) and UNC-8(A586T), encode hyperactivated channels that are strongly inhibited by extracellular calcium and magnesium. Reduction of extracellular divalent cations exacerbates UNC-8(G387E) toxicity in oocytes. We suggest that inhibition by extracellular divalent cations limits UNC-8 toxicity and may contribute to the selective death of neurons that express UNC-8 in vivo.  相似文献   

13.
Modulations of ion channel activity underlie rapid changes in membrane transport of cations in various nonexcitable cells. Previously, in smooth muscle cells, macrophages, lymphocytes, carcinoma and leukemia cell lines, non-voltage-gated sodium (NVGS) channels have been found. The activity of NVGS channels was shown to be critically dependent on the organization of actin cytoskeleton. The molecular identity of NVGS channels remains unclear. The present work is focused on molecular and functional identification of NVGS channels in human myeloid leukemia K562 cells. Degenerin/epithelial Na+ channels (DEG/ENaC) can be considered as possible molecular correlates. By using RT-PCR, expression of ??-, ??-, and ??-hENaC subunits in the K562 cells was detected. Various modes of the patch-clamp method were used to examine functional properties of sodium channels??specifically, to test the effect of amiloride on single channel and integral currents. The biophysical characteristics of the NVSG channels were close to those of ENaC; the channels have unitary conductance of 12 pS (145 mM Na+) and were impermeable to divalent cations (Ca2+ and Mg2+). We found that amiloride did not inhibit NVGS channels. Importantly, no amiloride-blockable sodium current was detected in the plasma membrane of K562 cells. Taken together, our observations suggest that amiloride-insensitive sodium channels in the K562 cells belong to the ENaC family.  相似文献   

14.
The genetic disease cystic fibrosis is caused by mutation of the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR). Controversial studies reported regulation of the epithelial sodium channel (ENaC) by CFTR. We found that uptake of 22Na+ through ENaC is modulated by activation of CFTR in oocytes, coexpressing CFTR and ENaC, depending on extracellular chloride concentration. Furthermore we found that the effect of CFTR activation could be mimicked by other chloride channels. Voltage– and patch–clamp measurements, however, showed neither stimulation nor inhibition of ENaC-mediated conductance by activated CFTR. We conclude that the observed modulation of 22Na+ uptake by activated CFTR is due to the effect of CFTR-mediated chloride conductance on the membrane potential. These findings argue against the notion of a specific influence of CFTR on ENaC and emphasize the chloride channel function of CFTR.  相似文献   

15.
Studies aiming at the elucidation of the genetic basis of rare monogenic forms of hypertension have identified mutations in genes coding for the epithelial sodium channel ENaC, for the mineralocorticoid receptor, or for enzymes crucial for the synthesis of aldosterone. These genetic studies clearly demonstrate the importance of the regulation of Na+ absorption in the aldosterone-sensitive distal nephron (ASDN), for the maintenance of the extracellular fluid volume and blood pressure.Recent studies aiming at a better understanding of the cellular and molecular basis of ENaC-mediated Na+ absorption in the distal part of nephron, have essentially focused on the regulation ENaC activity and on the aldosterone-signaling cascade. ENaC is a constitutively open channel, and factors controlling the number of active channels at the cell surface are likely to have profound effects on Na+ absorption in the ASDN, and in the amount of Na+ that is excreted in the final urine.A number of membrane-bound proteases, kinases, have recently been identified that increase ENaC activity at the cell surface in heterologous expressions systems. Ubiquitylation is a general process that regulates the stability of a variety of target proteins that include ENaC. Recently, deubiquitylating enzymes have been shown to increase ENaC activity in heterologous expressions systems.These regulatory mechanisms are likely to be nephron specific, since in vivo studies indicate that the adaptation of the renal excretion of Na+ in response to Na+ diet occurs predominantly in the early part (the connecting tubule) of the ASDN.An important work is presently done to determine in vivo the physiological relevance of these cellular and molecular mechanisms in regulation of ENaC activity. The contribution of the protease-dependent ENaC regulation in mediating Na+ absorption in the ASDN is still not clearly understood. The signaling pathway that involves ubiquitylation of ENaC does not seem to be absolutely required for the aldosterone-mediated control of ENaC. These in vivo physiological studies presently constitute a major challenge for our understanding of the regulation of ENaC to maintain the Na+ balance.  相似文献   

16.
Epithelial Na+ channels facilitate the transport of Na+ across high resistance epithelia. Proteolytic cleavage has an important role in regulating the activity of these channels by increasing their open probability. Specific proteases have been shown to activate epithelial Na+ channels by cleaving channel subunits at defined sites within their extracellular domains. This minireview addresses the mechanisms by which proteases activate this channel and the question of why proteolysis has evolved as a mechanism of channel activation.Many ion channels are silent at rest and are activated in response to a variety of factors, including membrane potential, external ligands, and intracellular signaling processes. The ENaC2 has evolved as a channel that is thought to reside primarily in an active state, facilitating the bulk movement of Na+ out of renal tubular or airway lumens. The regulated insertion and retrieval of channels at the plasma membrane have important roles in modulating ENaC-dependent Na+ transport (1). A number of factors also have a role in regulating ENaC activity via changes in channel Po or gating. In this regard, it has become increasingly apparent that proteolysis of ENaC subunits has a key role in this process (2). This minireview addresses several questions regarding the role of ENaC subunit proteolysis in regulating channel gating. (i) Where are ENaC subunits cleaved? (ii) Which proteases mediate ENaC cleavage? (iii) Why are channels activated by proteolysis? (iv) Is proteolysis responsible, in part, for the highly variable channel Po that has been noted for ENaC? (v) Why have ENaCs evolved as channels that require proteolysis for activation?  相似文献   

17.
Mechanosensitive channels play important roles in the physiology of many organisms, and their dysfunction can affect cell survival. This suggests that they might be therapeutic targets in pathogenic organisms. Pathogenic protozoa lead to diseases such as malaria, dysentery, leishmaniasis and trypanosomiasis that are responsible for millions of deaths each year worldwide. We analyzed the genomes of pathogenic protozoa and show the existence within them of genes encoding putative homologues of mechanosensitive channels. Entamoeba histolytica, Leishmania spp., Trypanosoma cruzi and Trichomonas vaginalis have genes encoding homologues of Piezo channels, while most pathogenic protozoa have genes encoding homologues of mechanosensitive small-conductance (MscS) and K+-dependent (MscK) channels. In contrast, all parasites examined lack genes encoding mechanosensitive large-conductance (MscL), mini-conductance (MscM) and degenerin/epithelial Na+ (DEG/ENaC) channels. Multiple sequence alignments of evolutionarily distant protozoan, amoeban, plant, insect and vertebrate Piezo channel subunits define an absolutely conserved motif that may be involved in channel conductance or gating. MscS channels are not present in humans, and the sequences of protozoan and human homologues of Piezo channels differ substantially. This suggests the possibility for specific targeting of mechanosensitive channels of pathogens by therapeutic drugs.  相似文献   

18.
The epithelial Na+ channel (ENaC) has a key role in the regulation of extracellular fluid volume and blood pressure. ENaC belongs to a family of ion channels that sense the external environment. These channels have large extracellular regions that are thought to interact with environmental cues, such as Na+, Cl, protons, proteases, and shear stress, which modulate gating behavior. We sought to determine the molecular mechanism by which ENaC senses high external Na+ concentrations, resulting in an inhibition of channel activity. Both our structural model of an ENaC α subunit and the resolved structure of an acid-sensing ion channel (ASIC1) have conserved acidic pockets in the periphery of the extracellular region of the channel. We hypothesized that these acidic pockets host inhibitory allosteric Na+ binding sites. Through site-directed mutagenesis targeting the acidic pocket, we modified the inhibitory response to external Na+. Mutations at selected sites altered the cation inhibitory preference to favor Li+ or K+ rather than Na+. Channel activity was reduced in response to restraining movement within this region by cross-linking structures across the acidic pocket. Our results suggest that residues within the acidic pocket form an allosteric effector binding site for Na+. Our study supports the hypothesis that an acidic cleft is a key ligand binding locus for ENaC and perhaps other members of the ENaC/degenerin family.  相似文献   

19.
Among the compensatory mechanisms restoring circulating blood volume after severe haemorrhage, increased vasopressin secretion enhances water permeability of distal nephron segments and stimulates Na+ reabsorption in cortical collecting tubules via epithelial sodium channels (ENaC). The ability of vasopressin to upregulate ENaC via a cAMP-dependent mechanism in the medium to long term is well established. This study addressed the acute regulatory effect of cAMP on human ENaC (hENaC) and thus the potential role of vasopressin in the initial compensatory responses to haemorrhagic shock. The effects of raising intracellular cAMP (using 5 mmol/L isobutylmethylxanthine (IBMX) and 50 μmol/L forskolin) on wild-type and Liddle-mutated hENaC activity expressed in Xenopus oocytes and hENaC localisation in oocyte membranes were evaluated by dual-electrode voltage clamping and immunohistochemistry, respectively. After 30 min, IBMX + forskolin had stimulated amiloride-sensitive Na+ current by 52 % and increased the membrane density of Na+ channels in oocytes expressing wild-type hENaC. These responses were prevented by 5 μmol/L brefeldin A, which blocks antegrade vesicular transport. By contrast, IBMX + forskolin had no effects in oocytes expressing Liddle-mutated hENaC. cAMP stimulated rapid, exocytotic recruitment of wild-type hENaC into Xenopus oocyte membranes, but had no effect on constitutively over-expressed Liddle-mutated hENaC. Extrapolating these findings to the early cAMP-mediated effect of vasopressin on cortical collecting tubule cells, they suggest that vasopressin rapidly mobilises ENaC to the apical membrane of cortical collecting tubule cells, but does not enhance ENaC activity once inserted into the membrane. We speculate that this stimulatory effect on Na+ reabsorption (and hence water absorption) may contribute to the early restoration of extracellular fluid volume following severe haemorrhage.  相似文献   

20.
Li P  Zhu S 《PloS one》2012,7(2):e31830

Background

DrTx(1-42) (a carboxyl-terminally truncated version of drosotoxin) is a potent and selective blocker of tetrodotoxin-resistant (TTX-R) Na+ channels in rat dorsal root ganglion neurons with analgesic activity. This purpose is to identify key amino acids which are responsible for both blocking and analgesic effects of DrTx(1-42).

Methods

On the basis of previous study, we designed five mutants of DrTx(1-42) (delN, D8A, D8K, G9A, and G9R) in the amino-terminal turn (N-turn) region, a proposed functional region located in the amino-terminus of the molecule. All these mutants were expressed in E.coli and purified by RP-HPLC. Electrophysiological properties of these analogues were examined by whole-cell patch-clamp recordings and their antinociceptive effects were investigated by the formalin test and acetic acid induced writhing test.

Results

All the mutants except for G9A possess a similar secondary structure to that of DrTx(1-42), as identified by circular dichroism analysis. Three mutants (delN, D8A and G9A) were found almost inactive to TTX-R Na+ channels, whereas D8K retains similar activity and G9R showed decreased potency when compared with the wild-type molecule. Consistent with the electrophysiological observations, D8K and G9R exhibited antinociceptive effects in the second phase (inflammatory pain) of the formalin test and the acetic acid induced writhing test, while delN, D8A and G9A lack such effects.

Conclusions

Our results show that the N-turn is closely related to function of DrTx(1-42). The mutant (D8A) as a control peptide further reveals that a charged residue at site 8 of the N-terminus is important for channel blockade and analgesic activity. This study indicates that blocking of voltage-gated TTX-R Na+ channel in DRG neurons contributes to analgesic effect in rat inflammatory pain. Structural and functional data described here offers support for the development of novel analgesic drugs through targeting TTX-R Na+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号