首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Approximately 60,000 patients in the United States are waiting for a kidney transplant due to genetic, immunologic and environmentally caused kidney failure. Adult human renal stem cells could offer opportunities for autologous transplant and repair of damaged organs. Current data suggest that there are multiple progenitor types in the kidney with distinct localizations. In the present study, we characterize cells derived from human kidney papilla and show their capacity for tubulogenesis. In situ, nestin+ and CD133/1+ cells were found extensively intercalated between tubular epithelia in the loops of Henle of renal papilla, but not of the cortex. Populations of primary cells from the renal cortex and renal papilla were isolated by enzymatic digestion from human kidneys unsuited for transplant and immuno-enriched for CD133/1+ cells. Isolated CD133/1+ papillary cells were positive for nestin, as well as several human embryonic stem cell markers (SSEA4, Nanog, SOX2, and OCT4/POU5F1) and could be triggered to adopt tubular epithelial and neuronal-like phenotypes. Isolated papillary cells exhibited morphologic plasticity upon modulation of culture conditions and inhibition of asymmetric cell division. Labeled papillary cells readily associated with cortical tubular epithelia in co-culture and 3-dimensional collagen gel cultures. Heterologous organ culture demonstrated that CD133/1+ progenitors from the papilla and cortex became integrated into developing kidney tubules. Tubular epithelia did not participate in tubulogenesis. Human renal papilla harbor cells with the hallmarks of adult kidney stem/progenitor cells that can be amplified and phenotypically modulated in culture while retaining the capacity to form new kidney tubules. This article is part of a Special Issue entitled: Polycystic Kidney Disease.  相似文献   

2.
Bone morphogenic protein (BMP)-7 is a 35-kDa homodimeric protein and a member of the transforming growth factor (TGF)-beta superfamily. BMP-7 expression is highest in the kidney, and its genetic deletion in mice leads to severe impairment of eye, skeletal and kidney development. Here we report that BMP-7 reverses TGF-beta1-induced epithelial-to-mesenchymal transition (EMT) by reinduction of E-cadherin, a key epithelial cell adhesion molecule. Additionally, we provide molecular evidence for Smad-dependent reversal of TGF-beta1-induced EMT by BMP-7 in renal tubular epithelial cells and mammary ductal epithelial cells. In the kidney, EMT-induced accumulation of myofibroblasts and subsequent tubular atrophy are considered key determinants of renal fibrosis during chronic renal injury. We therefore tested the potential of BMP-7 to reverse TGF-beta1-induced de novo EMT in a mouse model of chronic renal injury. Our results show that systemic administration of recombinant human BMP-7 leads to repair of severely damaged renal tubular epithelial cells, in association with reversal of chronic renal injury. Collectively, these results provide evidence of cross talk between BMP-7 and TGF-beta1 in the regulation of EMT in health and disease.  相似文献   

3.
Tubules injury and immune cell activation are the common pathogenic mechanisms in acute kidney injury (AKI). However, the exact modes of immune cell activation following tubule damage are not fully understood. Here we uncovered that the release of cytoplasmic spliceosome associated protein 130 (SAP130) from the damaged tubular cells mediated necroinflammation by triggering macrophage activation via miRNA-219c(miR-219c)/Mincle-dependent mechanism in unilateral ureteral obstruction (UUO) and cisplatin-induced AKI mouse models, and in patients with acute tubule necrosis (ATN). In the AKI kidneys, we found that Mincle expression was tightly correlated to the necrotic tubular epithelial cells (TECs) with higher expression of SAP130, a damaged associated molecule pattern (DAMP), suggesting that SAP130 released from damaged tubular cells may trigger macrophage activation and necroinflammation. This was confirmed in vivo in which administration of SAP130-rich supernatant from dead TECs or recombinant SAP130 promoted Mincle expression and macrophage accumulation which became worsen with profound tubulointerstitial inflammation in LPS-primed Mincle WT mice but not in Mincle deficient mice. Further studies identified that Mincle was negatively regulated via miR-219c-3p in macrophages as miR-219c-3p bound Mincle 3′-UTR to inhibit Mincle translation. Besides, lentivirus-mediated renal miR-219c-3p overexpression blunted Mincle and proinflammatory cytokine expression as well as macrophage infiltration in the inflamed kidney of UUO mice. In conclusion, SAP130 is released by damaged tubules which elicit Mincle activation on macrophages and renal necroinflammation via the miR-219c-3p-dependent mechanism. Results from this study suggest that targeting miR-219c-3p/Mincle signaling may represent a novel therapy for AKI.Subject terms: Cell death and immune response, Acute kidney injury  相似文献   

4.
In the kidney, a unique plasticity exists between epithelial and mesenchymal cells. During kidney development, the metanephric mesenchyme contributes to emerging epithelium of the nephron via mesenchymal to epithelial transition (MET). In the injured adult kidney, renal epithelia contribute to the generation of fibroblasts via epithelial-mesenchymal transition, facilitating renal fibrosis. Recombinant human bone morphogenic protein (BMP)-7, a morphogen that is essential for the conversion of epithelia from condensing mesenchyme during kidney development, enhances the repair of tubular structures in the kidney. In this setting, BMP-7 inhibits epithelial-mesenchymal transition involving adult renal epithelial tubular cells and decreases secretion of type I collagen by adult renal fibroblasts. In search of a mechanism behind the ability of BMP-7 to repair damaged renal tubules, we hypothesized that systemic treatment with BMP-7 might induce MET involving adult renal fibroblasts in the injured kidney, generating functional epithelial cells. Here we report that BMP-7 induces formation of epithelial cell aggregates in adult renal fibroblasts associated with reacquisition of E-cadherin expression and decreased motility, mimicking the effect of BMP-7 on embryonic metanephric mesenchyme to generate epithelium. In addition, we provide evidence that BMP-7-mediated repair of renal injury is associated with MET involving adult renal interstitial fibroblasts in mouse models for renal fibrosis. Collectively, these findings suggest that adult renal fibroblasts might retain parts of their original embryonic imprint and plasticity, which can be re-engaged by systemic administration of BMP-7 to mediate repair of tubular injury in a fibrotic kidney.  相似文献   

5.
Acute kidney injury, often caused by an ischemic insult, is associated with significant short-term morbidity and mortality, and increased risk of chronic kidney disease. The factors affecting the renal response to injury following ischemia and reperfusion remain to be clarified. We found that the Stem cell antigen-1 (Sca-1), commonly used as a stem cell marker, is heavily expressed in renal tubules of the adult mouse kidney. We evaluated its potential role in the kidney using Sca-1 knockout mice submitted to acute ischemia reperfusion injury (IRI), as well as cultured renal proximal tubular cells in which Sca-1 was stably silenced with shRNA. IRI induced more severe injury in Sca-1 null kidneys, as assessed by increased expression of Kim-1 and Ngal, rise in serum creatinine, abnormal pathology, and increased apoptosis of tubular epithelium, and persistent significant renal injury at day 7 post IRI, when recovery of renal function in control animals was nearly complete. Serum creatinine, Kim-1 and Ngal were slightly but significantly elevated even in uninjured Sca-1-/- kidneys. Sca-1 constitutively bound both TGFβ receptors I and II in cultured normal proximal tubular epithelial cells. Its genetic loss or silencing lead to constitutive TGFβ receptor—mediated activation of canonical Smad signaling even in the absence of ligand and to KIM-1 expression in the silenced cells. These studies demonstrate that by normally repressing TGFβ-mediated canonical Smad signaling, Sca-1 plays an important in renal epithelial cell homeostasis and in recovery of renal function following ischemic acute kidney injury.  相似文献   

6.
Approximately 60,000 patients in the United States are waiting for a kidney transplant due to genetic, immunologic and environmentally caused kidney failure. Adult human renal stem cells could offer opportunities for autologous transplant and repair of damaged organs. Current data suggest that there are multiple progenitor types in the kidney with distinct localizations. In the present study, we characterize cells derived from human kidney papilla and show their capacity for tubulogenesis. In situ, nestin(+) and CD133/1(+) cells were found extensively intercalated between tubular epithelia in the loops of Henle of renal papilla, but not of the cortex. Populations of primary cells from the renal cortex and renal papilla were isolated by enzymatic digestion from human kidneys unsuited for transplant and immuno-enriched for CD133/1(+) cells. Isolated CD133/1(+) papillary cells were positive for nestin, as well as several human embryonic stem cell markers (SSEA4, Nanog, SOX2, and OCT4/POU5F1) and could be triggered to adopt tubular epithelial and neuronal-like phenotypes. Isolated papillary cells exhibited morphologic plasticity upon modulation of culture conditions and inhibition of asymmetric cell division. Labeled papillary cells readily associated with cortical tubular epithelia in co-culture and 3-dimensional collagen gel cultures. Heterologous organ culture demonstrated that CD133/1(+) progenitors from the papilla and cortex became integrated into developing kidney tubules. Tubular epithelia did not participate in tubulogenesis. Human renal papilla harbor cells with the hallmarks of adult kidney stem/progenitor cells that can be amplified and phenotypically modulated in culture while retaining the capacity to form new kidney tubules. This article is part of a Special Issue entitled: Polycystic Kidney Disease.  相似文献   

7.
Although renal transplantation has proved a successful treatment for the patients with end-stage renal failure, the therapy is hampered by the problem of serious shortage of donor organs. Regenerative medicine using stem cells, including cell transplantation therapy, needs to be developed to solve the problem. We previously identified the multipotent progenitor cells in the embryonic mouse kidney that can give rise to several kinds of epithelial cells found in adult kidney, such as glomerular podocytes and renal tubular epithelia. Establishing the method to generate the progenitors from human pluripotent stem cells that have the capacity to indefinitely proliferate in vitro is required for the development of kidney regeneration strategy. We review the current status of the research on the differentiation of pluripotent stem cells into renal lineages and describe cues to promote this research field.  相似文献   

8.
目的 观察人脐带间充质干细胞在家犬急性肾小管坏死模型的体内分布及归巢.方法 健康家犬18 只随机分为3 组.模型1 组:肌注新鲜配制的0.2﹪二氯化汞溶液7 ml/kg建立急性肾小管坏死模型,采用经外周静脉注射法输注体外分离培养并用4',6- 二脒基-2- 苯基吲哚(DAPI)标记的人脐带间充质干细胞.模型2 组:造模...  相似文献   

9.
Experiments in IL-15?/? and IL-15Rα?/? mice show that intra-renal IL-15, through IL-15Rα behaves as an epithelial survival factor. Recent data highlight new functions of IL-15 in renal homeostasis mediated by IL-15Rγ (CD132). Indeed, in CD132+ renal epithelial tubular cells IL-15 preserves E-cadherin expression inhibiting epithelial-mesenchymal transition (EMT). By contrast, during allograft rejection, the increased intra-graft IL-15 expression favors tubular destruction facilitating the intraepithelial recruitment of CD8 T cells expressing the E-cadherin ligand CD103. In renal cancer, loss of CD132 by epithelial cells defines a tumoral microenvironment where IL-15 triggers E-cadherin down-regulation and EMT. Finally, in CD132+ renal cancer stem cells IL-15 induces the generation of non-tumorigenic epithelial cells sensitive to cytotoxic drugs. These findings are discussed in the light of IL-15-based immunotherapy for renal cancer.  相似文献   

10.
Background aimsThe engraftment of mesenchymal stem cells (MSCs) is reported to promote recovery of renal function in animal models of acute kidney injury (AKI). However, it is unknown whether mesenchymal-like progenitors (MPs) derived from human embryonic stem cells (hESCs) can mediate similar therapeutic effects. We investigated the responses of recipient renal tissue to engraftment of hESC-MPs and underlying mechanisms of these effects.MethodsWe measured blood urea nitrogen and creatinine levels of AKI mice with hESC-MPs transplantation and control mice. We performed renal morphology analysis by immunohistochemistry and electron microscopy to confirm the renoprotective effects of engrafted hESC-MPs. Proliferation, apoptosis and gene expression of tubular cells were also monitored by immunohistochemistry and real-time quantitative polymerase chain reaction to investigate the mechanisms that occurred.ResultsAfter transplantation of hESC-MPs into mice with cisplatin-induced AKI, improvements in renal function and recovery from tubular epithelial cell injury were observed. Engrafted hESC-MPs were localized to areas of injured kidney 5 days after cisplatin induction, where they promoted tubular cell proliferation and decreased kidney cell apoptosis. The beneficial effect was further confirmed by the capability of the engrafted cells to up-regulate renal gene expression of anti-inflammatory cytokines and pro-survival cytokines. Meanwhile, infusion of these cells reduced renal gene expression of pro-inflammatory cytokines and monocyte chemotactic protein-1, a chemokine that stimulates monocyte and macrophage infiltration.ConclusionsOur results show that infused hESC-MPs may promote recovery from AKI by regulating related cytokines.  相似文献   

11.
New and effective treatment for acute kidney injury remains a challenge. Here, we induced mouse hematopoietic stem and progenitor cells (HSPC) to differentiate into cells that partially resemble a renal cell phenotype and tested their therapeutic potential. We sequentially treated HSPC with a combination of protein factors for 1 wk to generate a large number of cells that expressed renal developmentally regulated genes and protein. Cell fate conversion was associated with increased histone acetylation on promoters of renal-related genes. Further treatment of the cells with a histone deacetylase inhibitor improved the efficiency of cell conversion by sixfold. Treated cells formed tubular structures in three-dimensional cultures and were integrated into tubules of embryonic kidney organ cultures. When injected under the renal capsule, they integrated into renal tubules of postischemic kidneys and expressed the epithelial marker E-cadherin. No teratoma formation was detected 2 and 6 mo after cell injection, supporting the safety of using these cells. Furthermore, intravenous injection of the cells into mice with renal ischemic injury improved kidney function and morphology by increasing endogenous renal repair and decreasing tubular cell death. The cells produced biologically effective concentrations of renotrophic factors including VEGF, IGF-1, and HGF to stimulate epithelial proliferation and tubular repair. Our study indicates that hematopoietic stem and progenitor cells can be converted to a large number of renal-like cells within a short period for potential treatment of acute kidney injury.  相似文献   

12.
Little MH 《Cell Stem Cell》2008,2(3):191-192
Renal pathology suggests that tubular repair results from tubular proliferation. In contrast, recent studies propose that postnatal kidney repair may involve renal stem cells. In this issue of Cell Stem Cell, Humphreys et al. (2008) use lineage tracing to genetically assess contribution of adult nontubular cells (potentially stem cells) to repair of damaged renal tubules.  相似文献   

13.
14.
New intervention tools for severely damaged kidneys are in great demand to provide patients with a valid alternative to whole organ replacement. For repairing or replacing injured tissues, emerging approaches focus on using stem and progenitor cells. Embryonic kidneys represent an interesting option because, when transplanted to sites such as the renal capsule of healthy animals, they originate new renal structures. Here, we studied whether metanephroi possess developmental capacity when transplanted under the kidney capsule of MWF male rats, a model of spontaneous nephropathy. We found that six weeks post-transplantation, renal primordia developed glomeruli and tubuli able to filter blood and to produce urine in cyst-like structures. Newly developed metanephroi were able to initiate a regenerative-like process in host renal tissues adjacent to the graft in MWF male rats as indicated by an increase in cell proliferation and vascular density, accompanied by mRNA and protein upregulation of VEGF, FGF2, HGF, IGF-1 and Pax-2. The expression of SMP30 and NCAM was induced in tubular cells. Oxidative stress and apoptosis markedly decreased. Our study shows that embryonic kidneys generate functional nephrons when transplanted into animals with severe renal disease and at the same time activate events at least partly mimicking those observed in kidney tissues during renal regeneration.  相似文献   

15.
Polycystic kidney disease (PKD) and other renal ciliopathies are characterized by cysts, inflammation, and fibrosis. Cilia function as signaling centers, but a molecular link to inflammation in the kidney has not been established. Here, we show that cilia in renal epithelia activate chemokine signaling to recruit inflammatory cells. We identify a complex of the ciliary kinase LKB1 and several ciliopathy‐related proteins including NPHP1 and PKD1. At homeostasis, this ciliary module suppresses expression of the chemokine CCL2 in tubular epithelial cells. Deletion of LKB1 or PKD1 in mouse renal tubules elevates CCL2 expression in a cell‐autonomous manner and results in peritubular accumulation of CCR2+ mononuclear phagocytes, promoting a ciliopathy phenotype. Our findings establish an epithelial organelle, the cilium, as a gatekeeper of tissue immune cell numbers. This represents an unexpected disease mechanism for renal ciliopathies and establishes a new model for how epithelial cells regulate immune cells to affect tissue homeostasis.  相似文献   

16.
The implantation of mesenchymal stem cells (MSC) has been reported as a new technique to restore renal tubular structure and improve renal function in acute kidney injury (AKI). Vascular endothelial growth factor (VEGF) plays an important role in the renoprotective function of MSC. Whether upregulation of VEGF by a combination of MSC and VEGF gene transfer could enhance the protective effect of MSC in AKI is not clear. We investigated the effects of VEGF-modified human embryonic MSC (VEGF-hMSC) in healing cisplatin-injured renal tubular epithelial cells (TCMK-1) with a coculture system. We found that TCMK-1 viability declined 3 days after cisplatin pretreatment and that coculture with VEGF-hMSC enhanced cell protection via mitogenic and antiapoptotic actions. In addition, administration of VEGF-hMSC in a nude mouse model of cisplatin-induced kidney injury offered better protective effects on renal function, tubular structure, and survival as represented by increased cell proliferation, decreased cellular apoptosis, and improved peritubular capillary density. These data suggest that VEGF-modified hMSC implantation could provide advanced benefits in the protection against AKI by increasing antiapoptosis effects and improving microcirculation and cell proliferation.  相似文献   

17.
Although diabetic nephropathy (DN) is a major cause of end-stage renal disease, the mechanism of dysfunction has not yet been clarified. We previously reported that in diabetes proinsulin-producing bone marrow-derived cells (BMDCs) fuse with hepatocytes and neurons. Fusion cells are polyploidy and produce tumor necrosis factor (TNF)-α, ultimately causing diabetic complications. In this study, we assessed whether the same mechanism is involved in DN. We performed bone marrow transplantation from male GFP-Tg mice to female C57BL/6J mice and produced diabetes by streptozotocin (STZ) or a high-fat diet. In diabetic kidneys, massive infiltration of BMDCs and tubulointerstitial injury were prominent. BMDCs and damaged tubular epithelial cells were positively stained with proinsulin and TNF-α. Cell fusion between BMDCs and renal tubules was confirmed by the presence of Y chromosome. Of tubular epithelial cells, 15.4% contain Y chromosomes in STZ-diabetic mice, 8.6% in HFD-diabetic mice, but only 1.5% in nondiabetic mice. Fusion cells primarily expressed TNF-α and caspase-3 in diabetic kidney. These in vivo findings were confirmed by in vitro coculture experiments between isolated renal tubular cells and BMDCs. It was concluded that cell fusion between BMDCs and renal tubular epithelial cells plays a crucial role in DN.  相似文献   

18.
Regenerative medicine based on the transplantation of stem or progenitor cells into damaged tissues has the potential to treat a wide range of chronic diseases1. However, most organs are not easily accessible, necessitating the need to develop surgical methods to gain access to these structures. In this video article, we describe a method for transplanting cells directly into the kidney of adult zebrafish, a popular model to study regeneration and disease2. Recipient fish are pre-conditioned by irradiation to suppress the immune rejection of the injected cells3. We demonstrate how the head kidney can be exposed by a lateral incision in the flank of the fish, followed by the injection of cells directly in to the organ. Using fluorescently labeled whole kidney marrow cells comprising a mixed population of renal and hematopoietic precursors, we show that nephron progenitors can engraft and differentiate into new renal tissue - the gold standard of any cell-based regenerative therapy. This technique can be adapted to deliver purified stem or progenitor cells and/or small molecules to the kidney as well as other internal organs and further enhances the zebrafish as a versatile model to study regenerative medicine.  相似文献   

19.
Extracellular signal-regulated kinase (ERK) signals play important roles in cell death and survival. However, the role of ERK in the repair process after injury remains to be defined in the kidney. Here, we investigated the role of ERK in proliferation and differentiation of tubular epithelial cells, and proliferation of interstitial cells following ischemia/reperfusion (I/R) injury in the mouse kidney. Mice were subjected to 30 min of renal ischemia. Some mice were administered with U0126, a specific upstream inhibitor of ERK, daily during the recovery phase, beginning at 1 day after ischemia until sacrifice. I/R caused severe tubular cell damage and functional loss in the kidney. Nine days after ischemia, the kidney was restored functionally with a partial restoration of damaged tubules and expansion of fibrotic lesions. ERK was activated by I/R and the activated ERK was sustained for 9 days. U0126 inhibited the proliferation, basolateral relocalization of Na,K-ATPase and lengthening of primary cilia in tubular epithelial cells, whereas it enhanced the proliferation of interstitial cells and accumulation of extracellular matrix. Furthermore, U0126 elevated the expression of cell cycle arrest-related proteins, p21 and phospholylated-chk2 in the post-ischemic kidney. U0126 mitigated the post-I/R increase of Sec10 which is a crucial component of exocyst complex and an important factor in ciliogenesis and tubulogenesis. U0126 also enhanced the expression of fibrosis-related proteins, TGF-β1 and phosphorylated NF-κB after ischemia. Our findings demonstrate that activation of ERK is required for both the restoration of damaged tubular epithelial cells and the inhibition of fibrosis progression following injury.  相似文献   

20.
Chemokine receptor 5 (CCR5) is a pivotal regulator of macrophage trafficking in the kidneys in response to an inflammatory cascade. We investigated the role of CCR5 in experimental ischaemic-reperfusion injury (IRI) pathogenesis. To establish IRI, we clamped the bilateral renal artery pedicle for 30 min and then reperfused the kidney. We performed adoptive transfer of lipopolysaccharide (LPS)-treated RAW 264.7 macrophages following macrophage depletion in mice. B6.CCR5−/− mice showed less severe IRI based on tubular epithelial cell apoptosis than did wild-type mice. CXCR3 expression in CD11b+ cells and inducible nitric oxide synthase levels were more attenuated in B6.CCR5−/− mice. B6.CCR5−/− mice showed increased arginase-1 and CD206 expression. Macrophage-depleted wild-type mice showed more injury than B6.CCR5−/− mice after M1 macrophage transfer. Adoptive transfer of LPS-treated RAW 264.7 macrophages reversed the protection against IRI in wild-type, but not B6.CCR5−/− mice. Upon knocking out CCR5 in macrophages, migration of bone marrow-derived macrophages from wild-type mice towards primary tubular epithelial cells with recombinant CCR5 increased. Phospho-CCR5 expression in renal tissues of patients with acute tubular necrosis was increased, showing a positive correlation with tubular inflammation. In conclusion, CCR5 deficiency favours M2 macrophage activation, and blocking CCR5 might aid in treating acute kidney injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号