首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From 2R to 3R: evidence for a fish-specific genome duplication (FSGD)   总被引:20,自引:0,他引:20  
An important mechanism for the evolution of phenotypic complexity, diversity and innovation, and the origin of novel gene functions is the duplication of genes and entire genomes. Recent phylogenomic studies suggest that, during the evolution of vertebrates, the entire genome was duplicated in two rounds (2R) of duplication. Later, approximately 350 mya, in the stem lineage of ray-finned (actinopterygian) fishes, but not in that of the land vertebrates, a third genome duplication occurred-the fish-specific genome duplication (FSGD or 3R), leading, at least initially, to up to eight copies of the ancestral deuterostome genome. Therefore, the sarcopterygian (lobe-finned fishes and tetrapods) genome possessed originally only half as many genes compared to the derived fishes, just like the most-basal and species-poor lineages of extant fishes that diverged from the fish stem lineage before the 3R duplication. Most duplicated genes were secondarily lost, yet some evolved new functions. The genomic complexity of the teleosts might be the reason for their evolutionary success and astounding biological diversity.  相似文献   

2.
The widely popular hypothesis that there were two rounds of genome duplication by polyploidization early in vertebrate history (the 2R hypothesis) has been difficult to test until recently. Among the lines of evidence adduced in support of this hypothesis are relative genome size, relative gene number, and the existence of genomic regions putatively duplicated during polyploidization. The availability of sequence for a substantial portion of the human genome makes possible the first rigorous tests of this hypothesis. Comparison of gene family size in the human genome and in invertebrate genomes shows no evidence of a 4:1 ratio between vertebrates and invertebrates. Furthermore, explicit phylogenetic tests for the topology expected from two rounds of polyploidization have revealed alternative topologies in a substantial majority of human gene families. Likewise, phylogenetic analyses have shown that putatively duplicated genomic regions often include genes duplicated at widely different times over the evolution of life. The 2R hypothesis thus can be decisively rejected. Rather, current evidence favors a model of genome evolution in which tandem duplication, whether of genomic segments or of individual genes, predominates.  相似文献   

3.

Background  

Based on the observation of an increased number of paralogous genes in teleost fishes compared with other vertebrates and on the conserved synteny between duplicated copies, it has been shown that a whole genome duplication (WGD) occurred during the evolution of Actinopterygian fish. Comparative phylogenetic dating of this duplication event suggests that it occurred early on, specifically in teleosts. It has been proposed that this event might have facilitated the evolutionary radiation and the phenotypic diversification of the teleost fish, notably by allowing the sub- or neo-functionalization of many duplicated genes.  相似文献   

4.
5.
With about 24,000 extant species, teleosts are the largest group of vertebrates. They constitute more than 99% of the ray-finned fishes (Actinopterygii) that diverged from the lobe-finned fish lineage (Sarcopterygii) about 450 MYA. Although the role of genome duplication in the evolution of vertebrates is now established, its role in structuring the teleost genomes has been controversial. At least two hypotheses have been proposed: a whole-genome duplication in an ancient ray-finned fish and independent gene duplications in different lineages. These hypotheses are, however, based on small data sets and lack adequate statistical and phylogenetic support. In this study, we have made a systematic comparison of the draft genome sequences of Fugu and humans to identify paralogous chromosomal regions ("paralogons") in the Fugu that arose in the ray-finned fish lineage ("fish-specific"). We identified duplicate genes in the Fugu by phylogenetic analyses of the Fugu, human, and invertebrate sequences. Our analyses provide evidence for 425 fish-specific duplicate genes in the Fugu and show that at least 6.6% of the genome is represented by fish-specific paralogons. We estimated the ages of Fugu duplicate genes and paralogons using the molecular clock. Remarkably, the ages of duplicate genes and paralogons are clustered, with a peak around 350 MYA. These data strongly suggest a whole-genome duplication event early during the evolution of ray-finned fishes, probably before the origin of teleosts.  相似文献   

6.

Background  

Evolution of the deuterostome lineage was accompanied by an increase in systematic complexity especially with regard to highly specialized tissues and organs. Based on the observation of an increased number of paralogous genes in vertebrates compared with invertebrates, two entire genome duplications (2R) were proposed during the early evolution of vertebrates. Most glycolytic enzymes occur as several copies in vertebrate genomes, which are specifically expressed in certain tissues. Therefore, the glycolytic pathway is particularly suitable for testing theories of the involvement of gene/genome duplications in enzyme evolution.  相似文献   

7.
The early origin of four vertebrate Hox gene clusters duringthe evolution of gnathostomes was likely caused by two consecutiveduplications of the entire genome and the subsequent loss ofindividual genes. The presumed conserved and important rolesof these genes in tetrapods during development led to the generalassumption that Hox cluster architecture had remained unchangedsince the last common ancestor of all jawed vertebrates. Butrecent data from teleost fishes reveals that this is not thecase. Here, we present an analysis of the evolution of vertebrateHox genes and clusters, with emphasis on the differences betweenthe Hox A clusters of fish (actinopterygian) and tetrapod (sarcopterygian)lineages. In contrast to the general conservation of genomicarchitecture and gene sequence observed in sarcopterygians,the evolutionary history of actinopterygian Hox clusters likelyincludes an additional (third) genome duplication that initiallyincreased the number of clusters from four to eight. We document,for the first time, higher rates of gene loss and gene sequenceevolution in the Hox genes of fishes compared to those of landvertebrates. These two observations might suggest that two differentmolecular evolutionary strategies exist in the two major vertebratelineages. Preliminary data from the African cichlid fish Oreochromisniloticus compared to those of the pufferfish and zebrafishreveal important differences in Hox cluster architecture amongfishes and, together with genetic mapping data from Medaka,indicate that the third genome duplication was not zebrafish-specific,but probably occurred early in the history of fishes. Each descendingfish lineage that has been characterized so far, distinctivelymodified its Hox cluster architecture through independent secondarylosses. This variation is related to the large body plan differencesobserved among fishes, such as the loss of entire sets of appendagesand ribs in some lineages.  相似文献   

8.
Vertebrates originated in the lower Cambrian. Their diversification and morphological innovations have been attributed to large-scale gene or genome duplications at the origin of the group. These duplications are predicted to have occurred in two rounds, the "2R" hypothesis, or they may have occurred in one genome duplication plus many segmental duplications, although these hypotheses are disputed. Under such models, most genes that are duplicated in all vertebrates should have originated during the same period. Previous work has shown that indeed duplications started after the speciation between vertebrates and the closest invertebrate, amphioxus, but have not set a clear ending. Consideration of chordate phylogeny immediately shows the key position of cartilaginous vertebrates (Chondrichthyes) to answer this question. Did gene duplications occur as frequently during the 45 Myr between the cartilaginous/bony vertebrate split and the fish/tetrapode split as in the previous approximately 100 Myr? Although the time interval is relatively short, it is crucial to understanding the events at the origin of vertebrates. By a systematic appraisal of gene phylogenies, we show that significantly more duplications occurred before than after the cartilaginous/bony vertebrate split. Our results support rounds of gene or genome duplications during a limited period of early vertebrate evolution and allow a better characterization of these events.  相似文献   

9.
基因倍增研究进展   总被引:2,自引:0,他引:2  
李鸿健  谭军 《生命科学》2006,18(2):150-154
基因倍增是指DNA片段在基因组中复制出一个或更多的拷贝,这种DNA片段可以是一小段基因组序列、整条染色体,甚至是整个基因组。基因倍增是基因组进化最主要的驱动力之一,是产生具有新功能的基因和进化出新物种的主要原因之一。本文综述了脊椎动物、模式植物和酵母在进化过程中基因倍增研究领域的最新进展,并讨论了基因倍增研究的发展方向。  相似文献   

10.
Gene duplication and the uniqueness of vertebrate genomes circa 1970-1999   总被引:6,自引:0,他引:6  
In this article I review research undertaken over the past 30 years into the role that gene duplication played in shaping vertebrate genomes. I discuss early karyotype studies that pointed to a relative stability of mammalian and avian genomes, the discovery and possible evolutionary significance of enormous genomes in urodele amphibians and lungfish, genome compaction in certain specialised bony fish, evidence for two rounds of total genome doubling in early vertebrate evolution and the fate of duplicated genes in polyploid fish.  相似文献   

11.
鱼类特异的基因组复制   总被引:2,自引:0,他引:2  
周莉  汪洋  桂建芳 《动物学研究》2006,27(5):525-532
辐鳍鱼类是脊椎动物中种类最多、分布最广的类群,其基因组大小不等。过去的观点认为,在脊椎动物进化历程中曾发生了两次基因组复制。近期的系统基因组学研究资料进一步提出,在大约350百万年,辐鳍鱼还发生了第三次基因组复制,即鱼类特异的基因组复制(fish-specificgenomeduplication,FSGD),且发生的时间正处在“物种极度丰富”的硬骨鱼谱系(真骨总目)和“物种贫乏”的谱系(辐鳍鱼纲基部的类群)出现分歧的时间点,表明FSGD与硬骨鱼物种和生物多样性的增加有关。进一步开展鱼类比较基因组学和功能基因组学研究将进一步验证FSGD这一假说。  相似文献   

12.
For many genes, ray-finned fish (Actinopterygii) have two paralogous copies, where only one ortholog is present in tetrapods. The discovery of an additional, almost-complete set of Hox clusters in teleosts (zebrafish, pufferfish, medaka, and cichlid) but not in basal actinopterygian lineages (Polypterus) led to the formulation of the fish-specific genome duplication hypothesis. The phylogenetic timing of this genome duplication during the evolution of ray-finned fish is unknown, since only a few species of basal fish lineages have been investigated so far. In this study, three nuclear genes (fzd8, sox11, tyrosinase) were sequenced from sturgeons (Acipenseriformes), gars (Semionotiformes), bony tongues (Osteoglossomorpha), and a tenpounder (Elopomorpha). For these three genes, two copies have been described previously teleosts (e.g., zebrafish, pufferfish), but only one orthologous copy is found in tetrapods. Individual gene trees for these three genes and a concatenated dataset support the hypothesis that the fish-specific genome duplication event took place after the split of the Acipenseriformes and the Semionotiformes from the lineage leading to teleost fish but before the divergence of Osteoglossiformes. If these three genes were duplicated during the proposed fish-specific genome duplication event, then this event separates the species-poor early-branching lineages from the species-rich teleost lineage. The additional number of genes resulting from this event might have facilitated the evolutionary radiation and the phenotypic diversification of the teleost fish.[Reviewing Editor: Martin Kreitman]  相似文献   

13.
In addition to the nuclear genome, organisms have organelle genomes. Most of the DNA present in eukaryotic organisms is located in the cell nucleus. Chloroplasts have independent genomes which are inherited from the mother. Duplicated genes are common in the genomes of all organisms. It is believed that gene duplication is the most important step for the origin of genetic variation, leading to the creation of new genes and new gene functions. Despite the fact that extensive gene duplications are rare among the chloroplast genome, gene duplication in the chloroplast genome is an essential source of new genetic functions and a mechanism of neo-evolution. The events of gene transfer between the chloroplast genome and nuclear genome via duplication and subsequent recombination are important processes in evolution. The duplicated gene or genome in the nucleus has been the subject of several recent reviews. In this review, we will briefly summarize gene duplication and evolution in the chloroplast genome. Also, we will provide an overview of gene transfer events between chloroplast and nuclear genomes.  相似文献   

14.
基因倍增和脊椎动物起源   总被引:1,自引:1,他引:0  
有机体基因复制导致基因复杂性增加及其和脊椎动物起源的关系已经成为进化生物学研究的热点。20世纪70年代由Ohno提出后经Holland等修正的原始脊索动物经两轮基因组复制产生脊椎动物的假设目前已被广泛接受。脊椎动物起源和进化过程中发生过两轮基因组复制的主要证据有三点:(1)据估计脊椎动物基因组内编码基因数目大约相当于果蝇、海鞘等无脊椎动物的4倍;原口动物如果蝇和后口动物如头索动物文昌鱼的基因组大都只有单拷贝的基因,而脊椎动物的基因组则通常有4个同属于一个家族的基因。(2)无脊椎动物如节肢动物、海胆和头索动物文昌鱼都只有一个Hox基因簇,而脊椎动物除鱼类外,有7个具有Hox基因簇,其余都具有4个Hox基因簇。(3)基因作图证明,不但在鱼类和哺乳动物染色体广大片段上基因顺序相似,而且有证据显示哺乳动物基因组不同染色体之间存在相似性。据认为第一次基因倍增发生在脊椎动物与头索动物分开之后,第二次基因倍增发生在有颌类脊椎动物和无颌类脊椎动物分开以后。但是,基因是逐个发生倍增,还是通过基因组内某些DNA片段抑或整个基因组的加倍而实现的,目前还颇有争议。  相似文献   

15.
Duplicated genes produce genetic variation that can influence the evolution of genomes and phenotypes. In most cases, for a duplicated gene to contribute to evolutionary novelty it must survive the early stages of divergence from its paralog without becoming a pseudogene. I examined the evolutionary dynamics of recently duplicated genes in the Drosophila pseudoobscura genome to understand the factors affecting these early stages of evolution. Paralogs located in closer proximity have higher sequence identity. This suggests that gene conversion occurs more often between duplications in close proximity or that there is more genetic independence between distant paralogs. Partially duplicated genes have a higher likelihood of pseudogenization than completely duplicated genes, but no single factor significantly contributes to the selective constraints on a completely duplicated gene. However, DNA-based duplications and duplications within chromosome arms tend to produce longer duplication tracts than retroposed and inter-arm duplications, and longer duplication tracts are more likely to contain a completely duplicated gene. Therefore, the relative position of paralogs and the mechanism of duplication indirectly affect whether a duplicated gene is retained or pseudogenized. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.
Invertebrates, tetrapod vertebrates, and fish might be expected to differ in their number of gene copies, possibly due the occurrence of genome duplication events during animal evolution. Reggie (flotillin) genes code for membrane-associated proteins involved in growth signaling in developing and regenerating axons. Until now, there appeared to be only two reggie genes in fruitflies, mammals, and fish. The aim of this research was to search for additional copies of reggie genes in fishes, since a genome duplication might have increased the gene copy number in this group. We report the presence of up to four distinct reggie genes (two reggie-1 and two reggie-2 genes) in the genomes of zebrafish and goldfish. Phylogenetic analyses show that the zebrafish and goldfish sequence pairs are orthologous, and that the additional copies could have arisen through a genome duplication in a common ancestor of bony fish. The presence of novel reggie mRNAs in fish embryos indicates that the newly discovered gene copies are transcribed and possibly expressed in the developing and regenerating nervous system. The intron/exon boundaries of the new fish genes characterized here correspond with those of human genes, both in location and phase. An evolutionary scenario for the evolution of reggie intron-exon structure, where loss of introns appears to be a distinctive trait in invertebrate reggie genes, is presented. Received: 24 January 2001 / Accepted: 27 July 2001  相似文献   

18.
19.
Differential genome duplication and fish diversity   总被引:3,自引:0,他引:3  
The duplication of genes and entire genomes arebelieved to be important mechanisms underlyingmorphological variation and functionalinnovation in the evolution of life andespecially for the broad diversity observed inthe speciation of fishes. How did these fishspecies and their genetic diversity arise? Theoccurrence of three rounds of genomeduplication during vertebrate evolution mightexplain why many gene families are typicallyabout half the size in land vertebrates as theyare in fishes. However, mechanisms of geneticdiversity in fish lineages need to be furtherexplained. Here we propose that differentialgenome duplication of from two to six roundsoccurred in different fish lines, offering newopportunities during the radiation of fishlineages. This model provides a fundamentalbasis for the understanding of theirspeciation, diversity and evolution.  相似文献   

20.
Ankyrins are membrane adaptor molecules that play important roles in coupling integral membrane proteins to the spectrin-based cytoskeleton network. Human mutations of ankyrin genes lead to severe genetic diseases such as fatal cardiac arrhythmias and hereditary spherocytosis. To elucidate the evolutionary history of ankyrins, we have identified novel ankyrin sequences in insect, fish, frog, chicken, dog, and chimpanzee genomes and explored the phylogenetic relationships of the ankyrin gene family. Our data demonstrate that duplication of ankyrin genes occurred at two different stages. The first duplication resulted from an independent evolution event specific in Arthropoda after its divergence from Chordata. Following the separation from Urochordata, expansion of ankyrins in vertebrates involved ancestral genome duplications. We did not find evidence of coordinated arrangements of gene families of ankyrin-associated membrane proteins on paralogous chromosomes. In addition, evolution of the 24 ANK-repeats strikingly correlated with the exon boundary sites of ankyrin genes, which might have occurred before its duplication in vertebrates. Such correlation is speculated to bring functional diversity and complexity. Moreover, based on the phylogenetic analysis of the ANK-repeat domain, we put forward a novel model for the putative primordial ankyrin that contains the fourth six-ANK-repeat subdomain and the spectrin-binding domain. These findings will provide guides for future studies concerning structure, function, evolutionary origins of ankyrins, and possibly other cytoskeletal proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号