首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate of aquatic invasions by planktonic organisms has increased considerably in recent decades. In order to effectively direct funding and resources to control the spread of such invasions, a methodological framework for identifying high-risk transport vectors, as well as ruling out vectors of lesser concern will be necessary. A number of estuarine ecosystems on the North American Pacific Northwest coast have experienced a series of high impact planktonic invasions that have slowly unfolded across the region in recent decades, most notably, that of the planktonic copepod crustacean Pseudodiaptomus inopinus. Although introduction of P. inopinus to the United States almost certainly occurred through the discharge of ballast water from commercial vessels originating in Asia (the species’ native range), the mechanisms and patterns of subsequent spread remain unknown. In order to elucidate the migration events shaping this invasion, we sampled the genomes of copepods from seven invasive and two native populations using restriction-site associated DNA sequencing. This genetic data was evaluated against spatially-explicit genetic simulation models to evaluate competing scenarios of invasion spread. Our results indicate that invasive populations of P. inopinus exhibit a geographically unstructured genetic composition, likely arising from infrequent and large migration events. This pattern of genetic patchiness was unexpected given the linear geographic structure of the sampled populations, and strongly contrasts with the clear invasion corridors observed in many aquatic systems.  相似文献   

2.
The abundance and spatial distribution of copepod species werecompared in the euhaline region of the polluted estuary of Bilbao[mean biological oxygen demand (BOD): 49748.05 kg day–1in 1996] and the unperturbed estuary of Urdaibai. Sampling wasperformed at fixed salinity sites, where data of temperature,dissolved oxygen saturation, particulate organic matter, Secchidisk depth and chlorophyll were also obtained. Differences betweenthe estuaries and within the estuaries for environmental variablesand copepod abundances were tested statistically. The dominantspecies Acartia clausi and Paracalanus parvus differed significantlyin abundance between estuaries, and most of neritic speciesdiminished more drastically with decreasing salinity in Bilbaoby the effect of pollution. The different responses observedamong species in relation to pollution and water desalinationare discussed. The lack of the brackish-water species in Bilbaoindicated that water quality worsening upward the estuary ofBilbao not only limited the penetration of neritic species butalso prevented the development of autochthonous estuarine species.At the outer euhaline region of Bilbao, however, pollution wasfound to be low enough to enhance the development of tolerantneritic species that are favoured under moderate pollution conditions.Results indicate that comparisons of copepod abundances anddistributions with salinity in estuaries may be a useful toolto evaluate the health of the different estuarine pelagic habitats.  相似文献   

3.
Many types of ecosystems have little or no N2 fixation even when nitrogen (N) is strongly limiting to primary production. Estuaries generally fit this pattern. In contrast to lakes, where blooms of N2-fixing cyanobacteria are often sufficient to alleviate N deficits relative to phosphorus (P) availability, planktonic N2 fixation is unimportant in most N-limited estuaries. Heterocystic cyanobacteria capable of N2 fixation are seldom observed in estuaries where the salinity exceeds 8–10 ppt, and blooms have never been reported in such estuaries in North America. However, we provided conditions in estuarine mesocosms (salinity over 27 ppt) that allowed heterocystic cyanobacteria to grow and fix N2 when zooplankton populations were kept low. Grazing by macrozooplankton at population densities encountered in estuaries strongly suppressed cyanobacterial populations and N2 fixation. The cyanobacteria grew more slowly than observed in fresh waters, at least in part due to the inhibitory effect of sulfate (SO4 2−), and this slow rate of growth increased their vulnerability to grazing. We conclude that interactions between physiological (bottom–up) factors that slow the growth rate of cyanobacteria and ecological (top–down) factors such as grazing are likely to be important regulators excluding planktonic N2 fixation from most Temperate Zone estuaries. Received 26 April 2002; Accepted 12 July 2002.  相似文献   

4.
Colonisation of Lake Fletcher, a hypersaline, meromictic lake in the Vestfold Hills, Antarctica, by the calanoid copepod Drepanopus bispinosus, the cyclopoid copepod Oncea curvata and an undescribed cydippid ctenophore is discussed. In 1978, salinity directly under the ice was 66‰ and repeated net hauls found no zooplankton. In 1983, adults of D. bispinosus were found, and in 1984, a reproductively active population of this species. Surface water salinity in 1984 was 56‰. During winter 1986, surface salinity was 54‰ and three zooplankton species (D. bispinosus, O. curvata and an undescribed cydippid ctenophore) had established populations in the lake. In 1986/87, high tides caused nearby Taynaya Bay to flood into the lake, and three further species (the calanoid, Paralabidocera antarctica, and two harpacticoids, Harpacticus furcatus and Idomene sp.) were found in the lake. It appears that periodic flooding after 1978 caused a salinity decrease in the lake from 66 to 54‰, and this enabled some invertebrate species to maintain year-round populations, whereas others require marine incursions to re-establish summer only populations.  相似文献   

5.
The copepod genus Eurytemora occupies a wide range of habitat types throughout the Northern Hemisphere, with among the broadest salinity ranges of any known copepod. The epicenter of diversity for this genus lies along coastal Alaska, where several species are endemic. Systematic analysis has been difficult, however, because of a tendency toward morphological stasis in this genus, despite large genetic divergences among populations and species. The goals of this study were to (1) analyze patterns of morphological variation and divergence within this genus, focusing on Eurytemora species that occur in North America, and (2) determine patterns of geographic and salinity distribution of Eurytemora species within the ancestral range in Alaska. We applied a comparative multivariate morphological analysis using 16–26 characters from 125 specimens from 20 newly collected sites in Alaska and 15 existing samples predominantly from North America. Results from principal component and hierarchical cluster analyses identified seven distinct morphological species of Eurytemora in North America (E. affinis, E. americana, E. canadensis, E. composita, E. herdmani, E. pacifica, and E. raboti), and identified diagnostic characters that distinguish the species (forming the basis for a new identification key). Several previously named species were regarded as synonyms. The sites we sampled in Alaska were remarkable in the high levels of sympatry of Eurytemora species, to a degree not seen outside of Alaska. Future studies of Eurytemora should shed light on patterns of habitat invasions and physiological evolution within the genus, and yield insights into mechanisms leading to its remarkably broad geographic and habitat range.  相似文献   

6.
The mortality rates of the copepodite IV-copepodite V and copepodite V-adult individuals pairs in the populations of one of the most common species of planktonic copepod, Oithona similis, were estimated for the first time in the Barents and White seas. The average parameters were 0.060 and 0.082/day, respectively, in the Barents Sea and 0.166 and 0.120/day in the White Sea. In the Barents Sea, the mortality rates of O. similis significantly increased with an increase in water temperature and in the White Sea a significant decrease occurred with an increase in salinity. It was concluded that the mortality rate of this species is determined first by abiotic factors and that biotic factors are of secondary significance.  相似文献   

7.
Several species of scyphozoan medusae occur in river estuaries and other brackish waters but it is often unknown if the planulae settle and the scyphopolyps reproduce in those low-salinity waters. In the present study, scyphozoan species from the German Bight (North Sea) were tested in laboratory experiments to investigate their tolerance of low salinity. Planula larvae released from medusae in salinity 32 were still active after the salinity was reduced to 10 (Cyanea capillata, Cyanea lamarckii) and to 7 (Chrysaora hysoscella) in laboratory treatments. Planulae did not settle on the undersides of floating substrates when salinity was reduced to <20. By contrast, planulae released from C. capillata medusae in Kiel Bight (western Baltic Sea) in salinity 15 developed into polyps in laboratory cultures. Polyps reared from planulae in salinity 36 survived a reduction to 12 (C. capillata, C. lamarckii) and to 8 (Aurelia aurita). Polyps of all tested species strobilated and released young medusae (ephyrae) in salinity 12. These results show a high tolerance of planulae and polyps to low salinity, indicating their possible occurrence in estuaries and brackish waters. In addition to laboratory observations, young C. capillata ephyrae were collected in the western Baltic Sea (Kiel Bight) in salinity 15, which indicates that they were probably released by a local polyp population. We suggest that the polyps of the painfully stinging lion’s mane, C. capillata, may be more widespread in the Baltic Sea than previously assumed and that the occurrence of the medusae may not only depend on inflow of water masses from the North Sea.  相似文献   

8.
Judy O. Wern 《Hydrobiologia》1993,266(1-3):81-87
The distribution and abundance of nemerteans in the brackish-water lakes of Sea Rim State Park, Texas, near the Louisiana border, were studied and compared with other macrobenthos during one year. Six of 93 macrobenthic species collected were nemerteans (0.9% of the total number of specimens). Only one species of nemertean, Carinoma sp., was consistently present. This species is the most ubiquitous and, probably, the most abundant nemertean in the estuarine systems of the Texas coast. Carinoma sp. was collected at Sea Rim from a salinity range of 0–21 ppt and at other Texas estuaries from 2–26 ppt. Preliminary experiments with Carinoma sp. as predator and as prey indicated that it feeds on polychaete worms and in turn is fed upon by white (Penaeus setiferus) and brown (P. aztecus) shrimp.  相似文献   

9.
胶州湾浮游桡足类时空分布   总被引:4,自引:1,他引:3  
根据2003年1月至12月在胶州湾所获得的浮游生物样品,已鉴定浮游桡足类28种,幼虫、幼体6类.分析了该海区浮游桡足类的分布﹑时空变化及其与生态环境因子的关系,同相关历史资料进行了比较,结果表明,浮游桡足类的种类组成单纯,生态属性以暖温带、近岸低盐种类为主.浮游桡足类的丰度分布具明显的月份变化,高峰在7月份,为181.61个/m3,最低在12月份,为23.53个/m3,全年平均为71.42个/m3.浮游桡足类丰度的平面分布不均匀,最大丰度在5号站,为132.62个/m3,最小丰度在8号站,为40.45个/m3,丰度平面分布的变化趋势基本是湾北部海域大于湾南部海域.浮游桡足类丰度的时空分布,主要种类的季节更替,近20a来的变化趋势基本相同,高峰出现时间的差异,是受温度年季变化差异因素的影响.浮游桡足类丰度的时空分布与海水温度和盐度密切相关,与温度的关系更重要于与盐度的关系.并且用胶州湾的调察资料证实了浮游桡足类对浮游植物的依存关系,浮游植物为浮游桡足类的生长、繁衍提供了饵料.  相似文献   

10.
The Seine estuary illustrates the alterations to estuaries due to human activities heavy releases of pollutants of various origins and significant morphological changes beginning in the middle of the 19th century. The intertidal mudflat surface has been seriously reduced (< 30km2) since the channels of the Seine River came under management. While the role of the Seine estuary in the dynamics of the eastern English Channel ecosystem is recognized as important, the biological characteristics of the estuary remained relatively unknown until the 1990s. Biological diversity was progressively impoverished from the polyhaline zone to the oligohaline zone. In spite of a heavily contaminated environment, the macrobenthic and planktonic fauna of the Seine estuary remains similar to those of other northeastern Atlantic estuaries. The fauna exhibit clear contrasts between areas with very high abundance and others with very low abundance. The pelagic fauna, especially the copepod Eurytemora affinisand the shrimp Palaemon longirostris, are more abundant in the Seine estuary than in other estuaries. Diversified and abundant, Abra alba-Pectinaria koreni and Macoma balthica benthic communities occur, respectively, in the outer and inner parts of the estuary. In subtidal flats, benthic fauna is especially poor in terms of specific richness, abundance and biomass. Paradoxically, considering the high abundance of prey, fish are particularly scarce. Two food webs have been identified. In the oligohaline zone, where turbidity is maximum, the food web is exclusively planktonic, due to dredging that prevented benthic fauna from settling. In the polyhaline zone, fish populations that feed particularly on benthic fauna benefit from low turbidity and high oxygen concentrations. So, in spite of heavy organic and metallic contamination and human activities, the Seine estuary remains a highly productive ecosystem, which provides a nursery for marine fish and feeding grounds for migratory birds. A global management plan appears to be necessary in order to guarantee that the Seine estuary continues to function as it currently does.  相似文献   

11.
Species invasions are occurring at an increasing rate in coastal environments. Accurately identifying introductions is a critical issue to take full advantage of the new invasion databases. Further, life history differences between morphologically comparable species may require that different management strategies be instigated to effectively control different species. Facing this problem, we used molecular approaches and documented a case of mistaken identification in a group of marine invertebrates, the calyptraeid gastropods. Members of this group have repeatedly and successfully invaded new habitats after anthropogenic introduction, especially in estuaries and bays on the west coast of the United States of America. For example, Crepidula fornicata, native to the east coast of the USA, has been reported from at least five USA west coast estuaries. We sequenced a fragment of the COI gene of a sample of putative C. fornicata from Humboldt Bay, California. By constructing a phylogeny of these and other calpytraeid gastropod sequences, we discovered that the individuals were C. convexa, the convex slippershell. In contrast to C. fornicata, C. convexa has large, demersal eggs and larvae are well developed at hatching. Its potential for dispersal is therefore lower as compared to C. fornicata and therefore any strategy to manage the invasion should take this into account. In the present study, we demonstrated the utility of molecular tools that can be used by non-taxonomic experts, to quickly and accurately identify alien species – an important first step in any study of invasion biology.  相似文献   

12.
Highly regulated salinity gradients in solar salt pond concentrating sequences provide an opportunity to investigate in situ salinity impacts on aquatic flora and fauna. The Shark Bay Salt solar ponds at Useless Inlet in Western Australia vary in salinity from seawater to four times seawater over the pond sequence. We observed a shift from planktonic to benthic primary productivity as salinity increased. Water column photosynthesis and biomass decreased markedly with increasing salinity, while benthic productivity increased as cyanobacterial mats developed. Correspondingly, productivity shifted from autotrophy to heterotrophy in the water column and from heterotrophy to autotrophy in the benthos. Both shifts occurred at intermediate salinity (S = 110 g kg−1, ρ = 1.087 g cm−3) in the pond sequence, where there was little production by either. Within individual ponds, productivity, algal biomass and physico-chemical conditions were relatively constant over one year, with only water column photosynthesis significantly different between seasons, mostly due to greater winter production. Transitions between benthic and planktonic production and their relative magnitudes appear to be driven mostly by direct responses to salinity stress, but also by changes in nutrient availability and grazing, which are also influenced by salinity.  相似文献   

13.
Tolo Harbour is a poorly flushed bay in the northeastern corner of Hong Kong. Eutrophication caused by discharge of untreated and secondarily treated sewage into the bay was first detected during the 1970s. Increased nutrient input led to a noticeable increase in algal biomass and algal bloom occurrences. Nutrient reduction measures, including the construction of a pipeline to export all sewage effluents from Tolo Harbour, were introduced during the late 1980s. Decline in nutrient levels and decrease in the number of algal blooms have been recorded since 1998 when all nutrient reduction measures became fully operational. Zooplankton samples collected during 2003–2004 revealed that Tolo Harbour still contained a higher density and lower diversity of planktonic copepods compared to Mirs Bay, a less-polluted sea area outside Tolo Harbour. A comparison between data collected in this study to those collected during 1988–1990, several years before nutrient reduction measures were to be fully implemented, showed a decrease in copepod densities and an increase in copepod diversity. Small copepods, notably species of Paracalanus and Oithona, dominated the copepod communities in both periods, but there was an increase in species evenness during 2003–2004, caused by an increase in the number of dominant species. These observations confirm that eutrophication may lead to increases in copepod densities accompanied by increased dominance of small species.  相似文献   

14.
The zooplankton of three european estuaries (Ems, Gironde and Westerschelde) was investigated during spring 1992 by means of samples taken along the salinity gradient. The three estuaries are comparable in terms of total area, flushing time and salinity gradient but differ by their level of eutrophication (highest in the Westerschelde), suspended matter concentration (highest in the Gironde) and potential phytoplankton production (highest in the Ems). Copepods and meroplankton dominated the zooplankton in the three estuaries. The dominant copepod species were Eurytemora affinis and Acartia bifilosa. The distribution of E. affinis along the salinity gradient differed between the estuaries. Peaks of abundance were observed at 0 PSU in the Gironde, 6 PSU in the Ems and 9 PSU in the Westerschelde. The downstream shift of the population in the Westerschelde was likely due to anoxic conditions occurring in the oligohaline zone. In the Gironde the downstream distribution of E. affinis was limited by the very high suspended matter concentration found in the maximum turbidity zone. Whatever the estuary, the parameters of the population of E. affinis and maximum abundance values were similar. However, the influence of the better quality of the available food was suggested in the Ems where individual dry weights and egg production were higher than in the two other estuaries. The influence of a good quality of food in the Ems was confirmed by the development of a large population of Acartia bifilosa (as abundant as E. affinis) and highest values of adult individual weights.The meroplankton (essentially Polychaete and cirripede larvae) was much more developed in the Ems than in the Westerschelde and Gironde. This was likely due to the large extent of mudflats and hard substrates in the Ems favouring adult settlement and hence the number of larvae locally produced.  相似文献   

15.
The semiterrestrial crab Neohelice (=Chasmagnathus) granulata (Dana 1851) is a predominant species in brackish salt marshes, mangroves and estuaries. Its larvae are exported towards coastal marine waters. In order to estimate the limits of salinity tolerance constraining larval retention in estuarine habitats, we exposed in laboratory experiments freshly hatched zoeae to six different salinities (5–32‰). At 5‰, the larvae survived for a maximum of 2 weeks, reaching only exceptionally the second zoeal stage, while 38% survived to the megalopa stage at 10‰. Shortest development and negligible mortality occurred at all higher salt concentrations. These observations show that the larvae of N. granulata can tolerate a retention in the mesohaline reaches of estuaries, with a lower limit of ca. 10–15‰. Maximum survival at 25‰ suggests that polyhaline conditions rather than an export to oceanic waters are optimal for successful larval development of this species. In another experiment, we tested the capability of the last zoeal stage (IV) for reimmigration from coastal marine into brackish waters. Stepwise reductions of salinity during this stage allowed for moulting to the megalopa at 4–10‰. Although survival was at these conditions reduced and development delayed, these results suggest that already the zoea-IV stage is able to initiate the reimmigration into estuaries. After further salinity reduction, megalopae survived in this experiment for up to >3 weeks in freshwater, without moulting to juvenile crabs. In a similar experiment starting from the megalopa stage, successful metamorphosis occurred at 4–10‰, and juvenile growth continued in freshwater. Although these juvenile crabs showed significantly enhanced mortality and smaller carapace width compared to a seawater control, our results show that the late larval and early juvenile stages of N. granulata are well adapted for successful recruitment in brackish and even limnetic habitats.  相似文献   

16.
Copepod succession in two South African estuaries   总被引:3,自引:0,他引:3  
The seasonal succession of copepod species was studied fromNovember 1976 through October 1978 in the Swartkops and Sundaysriver estuaries. South Africa. Acartia natalensis appeared inthe plankton in spring and reaches maximum abundance duringsummer and autumn. It was replaced by A. longipatella in lateautumn which reached maximum abundance in winter and spring.Cycles of dominance are regulated by the interaction of temperature,salinity and competition between the two species. A natalensis a more tolerant of low salinity and the replacementof A. longipatella by A. natalensis starts in the upper estuaryand spreads seawards. Maximum abundance of A. natalensis isattained in water of lower salinity than in the case of A. longipatella.In the Sundays estuary A. natalensis appeared briefly in thelatter half of the study and in the upper and middle estuaryonly. In the lower estuary A. longipatella was present duringall seasons. This was due to the absence of competition fromA. natalensis, high salinity and lower summer temperatures dueto marine influence. A third species of copepod, Pseudodiaptomushessei functions as a pioneer species, exploiting "new water"after flooding or strong fresh water inflow. High abundancemay therefore occur during any season and no competition betweenP. hessei and either species of Acartia was observed.  相似文献   

17.
The freshwater fish assemblage in most estuaries is not as species rich as the marine assemblage in the same systems. Coupled with this differential richness is an apparent inability by most freshwater fish species to penetrate estuarine zones that are mesohaline (salinity: 5·0–17·9), polyhaline (salinity: 18·0–29·9) or euhaline (salinity: 30·0–39·9). The reason why mesohaline waters are avoided by most freshwater fishes is difficult to explain from a physiological perspective as many of these species would be isosmotic within this salinity range. Perhaps, a key to the poor penetration of estuarine waters by freshwater taxa is an inability to develop chloride cells in gill filament epithelia, as well as a lack of other osmoregulatory adaptations present in euryhaline fishes. Only a few freshwater fish species, especially some of those belonging to the family Cichlidae, have become fully euryhaline and have successfully occupied a wide range of estuaries, sometimes even dominating in hyperhaline systems (salinity 40+). Indeed, this review found that there are few fish species that can be termed holohaline (i.e. capable of occupying waters with a salinity range of 0–100+) and, of these taxa, there is a disproportionally high number of freshwater species (e.g. Cyprinodon variegatus, Oreochromis mossambicus and Sarotherodon melanotheron). Factors such as increased competition for food and higher predation rates by piscivorous fishes and birds may also play an important role in the low species richness and abundance of freshwater taxa in estuaries. Added to this is the relatively low species richness of freshwater fishes in river catchments when compared with the normally higher diversity of marine fish species for potential estuarine colonization from the adjacent coastal waters. The almost complete absence of freshwater fish larvae from the estuarine ichthyoplankton further reinforces the poor representation of this guild within these systems. An explanation as to why more freshwater fish species have not become euryhaline and occupied a wide range of estuaries similar to their marine counterparts is probably due to a combination of the above described factors, with physiological restrictions pertaining to limited salinity tolerances probably playing the most important role.  相似文献   

18.
Explaining the nearly ubiquitous absence of nitrogen fixation by planktonic organisms in strongly nitrogen-limited estuaries presents a major challenge to aquatic ecologists. In freshwater lakes of moderate productivity, nitrogen limitation is seldom maintained for long since heterocystic, nitrogen-fixing cyanobacteria bloom, fix nitrogen, and alleviate the nitrogen limitation. In marked contrast to lakes, this behavior occurs in only a few estuaries worldwide. Primary production is limited by nitrogen in most temperate estuaries, yet no measurable planktonic nitrogen fixation occurs. In this paper, we present the hypothesis that the absence of planktonic nitrogen fixers from most estuaries is due to an interaction of bottom-up and top-down controls. The availability of Mo, a trace metal required for nitrogen fixation, is lower in estuaries than in freshwater lakes. This is not an absolute physiological constraint against the occurrence of nitrogen-fixing organisms, but the lower Mo availability may slow the growth rate of these organisms. The slower growth rate makes nitrogen-fixing cyanobacteria in estuaries more sensitive to mortality from grazing by zooplankton and benthic organisms.We use a simple, mechanistically based simulation model to explore this hypothesis. The model correctly predicts the timing of the formation of heterocystic, cyanobacterial blooms in freshwater lakes and the magnitude of the rate of nitrogen fixation. The model also correctly predicts that high zooplankton biomasses in freshwaters can partially suppress blooms of nitrogen-fixing cyanobacteria, even in strongly nitrogen-limited lakes. Further, the model indicates that a relatively small and environmentally realistic decrease in Mo availability, such as that which may occur in seawater compared to freshwaters due to sulfate inhibition of Mo assimilation, can suppress blooms of heterocystic cyanobacteria and prevent planktonic nitrogen fixation. For example, the model predicts that at a zooplankton biomass of 0.2 mg l–1, cyanobacteria will bloom and fix nitrogen in lakes but not in estuaries of full-strength seawater salinity because of the lower Mo availability. Thus, the model provides strong support for our hypothesis that bottom-up and top-down controls may interact to cause the absence of planktonic nitrogen fixation in most estuaries. The model also provides a basis for further exploration of this hypothesis in individual estuarine systems and correctly predicts that planktonic nitrogen fixation can occur in low salinity estuaries, such as the Baltic Sea, where Mo availability is greater than in higher salinity estuaries.  相似文献   

19.
Marta Illyová 《Biologia》2006,61(5):531-539
The species composition, seasonal dynamic of biomass and density of zooplankton were studied in two arms with a different hydrological regime. The samples were collected in two hydrologically different years — extremely wet in 2002 and extremely dry in 2003. In the first arm the mean annual chlorophyll-a concentration was 31.6 μg L−1 (2002) and relatively high 64.7 μg L−1 during 2003. Mean seasonal zooplankton wet biomass was low and varied: 11.6 g m−3 (2002) and 2.93 g m−3 (2003). Total zooplankton density was high (7,370 N L−1) in 2002, when rotifers predominated in an open water zone and contributed up to 81% of the total zooplankton biomass and 83% of the total zooplankton density. In medial and littoral zone, in total, 22 cladoceran and 15 copepod species were identified. In the second arm the mean annual concentration of chlorophyll-a was high: 74.8 μg L−1 (2002) and 61.4 μg L−1 (2003). Mean seasonal zooplankton wet biomass varied from 92.5 g m−3 (2002) and 44.10 g m−3 (2003). In 2002 the planktonic crustaceans predominated; their mean biomass was 87.1 g m−3 and B. longirostris formed more than 91% of this value. In 2003, the zooplankton density was high (15,687 N L−1), when rotifers contributed up to 94% of this value. The boom of rotifers (58,740 N L−1) was recorded in June 2003. In total, 45 cladoceran and 14 copepod species were recorded in the medial and littoral zones. During observation we concluded that the structure of zooplankton, particularly species composition, abundance, biomass and seasonal dynamics are affected by the fluctuation of water levels in the arms of the rivers’ inundation areas. This unstable hydrological regime prevented the development of planktonic crustaceans.  相似文献   

20.
We investigated the effect of salinity on growth, survival, and condition of pinfish Lagodon rhomboides juveniles (36–80 mm standard length) in two laboratory experiments in July 2003 and June/July 2004. Our results show that juvenile pinfish grown in laboratory conditions under a range of salinities experience rapid growth and high survival in typical estuarine-like salinities (15–30 ppt). We also found that relative weight as an index of condition corroborates the idea that pinfish are well adapted to survive and grow in a wide range of salinities. Such rapid growth and high survival in a dynamic environment may afford juvenile pinfish potential ecological advantages over other estuarine-dependent fish species that are relatively more constrained by changes in salinity regime. Because coastal development is wide-spread throughout Gulf of Mexico and Atlantic estuaries, insights concerning the impacts of human-induced changes to estuarine environments are essential for effective management practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号