首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ectomycorrhizal fungi (Paxillus involutus, Suillus grevillei and two unidentified basidiomycetes from excised Sitka spruce mycorrhizas) were isolated from stands of Sitka spruce either in monoculture or in a mixture with Japanese larch in an Irish conifer plantation. The growth of these fungi and their mycorrhizal formation in Sitka spruce and Japanese larch were examined after incubation in modified Melin-Norkrans medium containing either KH2PO4, Ca3(PO4)2 or Fe phytate as the phosphorus (P) source. P. involutus and S. grevillei utilized all three P sources. The unidentified basidiomycetes had limited ability to utilize Fe phytate. Basidiomycete 1 showed poor growth on KH2PO4 whereas growth of basidiomycete 2 was low on Ca3(PO4)2. Pure culture synthesis studies confirmed that P. involutus and the two basidiomycetes formed mycorrhizas with both tree species but S. grevillei was mycorrhizal only on Japanese larch. P. involutus formed more mycorrhizas in both conifers than the other fungi. Following inoculation with each of the four fungi, shoot and root dry mass of both Sitka spruce and Japanese larch seedlings was enhanced compared with uninoculated/nonmycorrhizal controls. On Fe phytate, Paxillus-inoculated Sitka spruce seedlings had the lowest primary root length and on KH2PO4, Suillus-inoculated Japanese larch had the greatest number of short roots. The only differences when Sitka spruce seedlings were grown in either monoculture or in a mixture with Japanese larch mycorrhizal with S. grevillei were primary root length and number of short roots after growth on media containing Fe phytate.  相似文献   

2.
Nitrogen is the main limiting nutrient in boreal ecosystems, but studies in southwest Sweden suggest that certain forests approach phosphorus (P) limitation driven by nitrogen (N) deposition. We added N, P or N + P to a Norway spruce forest in this region, to push the system to N or P limitation. Tree growth and needle nutrient concentrations indicated that the trees are P limited. EMF biomass was reduced only by N + P additions. Soil EMF communities responded more strongly to P than to N. Addition of apatite to ingrowth meshbags altered EMF community composition and enhanced the abundance of Imleria badia in the control and N plots, but not when P was added. The ecological significance of this species is discussed. Effects on tree growth, needle chemistry, and EMF communities indicate a dynamic interaction between EMF fungi and the nutrient status of trees and soils.  相似文献   

3.
Sitka spruce planted on nutrient-poor soils in mixture with pine or larch, unlike pure spruce, does not become N deficient and does not require N fertilizer. To test the hypothesis that N availability in the soil is enhanced beneath mixed species, the seasonal changes in different N forms were compared in humus (L+F+H) and soil beneath 15-year-old Sitka spruce (SS) and mixed Sitka spruce-Scots pine (SS and SP) planted on a gleyed heathland soil. Amounts of mineral and organic N extracted from humus in spring were significantly (p < 0.05) higher in SS and SP than in SS. Larger amounts were measured in the underlying soil, which favoured the deeper-rooting spruce and pine in SS and SP plots. Annual net N mineralization, measured by in-situ incubation, was 32 and 47 kg N ha-1 in the surface 10 cm beneath SS and (SS and SP), respectively. In spring, readily mineralized organic N (waterlogged incubation at 30°C) was higher in humus and soil from (SS and SP) than from SS by 15 kg N ha-1. The larger N pools beneath (SS and SP) were consistent with the higher total N content of the humus beneath (SS and SP), 446 compared with 255 kg N ha-1 beneath SS. This indicated that beneath (SS and SP) N had been transferred from the underlying soil.  相似文献   

4.
Aboveground nitrogen (N) and phosphorus (P) requirement, retranslocation and use efficiency were determined for 28-year-old red oak (Quercus rubra L.), European larch (Larix decidua Miller), white pine (Pinus strobes L.), red pine (Pinus resinosa Ait.) and Norway spruce (Picea abies (L) Karst.) plantations on a similar soil in southwestern Wisconsin. Annual aboveground N and P requirements (kg/ha/yr) totaled 126 and 13 for red oak, 86 and 9 for European larch, 80 and 9 for white pine, 38 and 6 for red pine, and 81 and 13 for Norway spruce, respectively. Nitrogen and P retranslocation from current foliage ranged from 81 and 72%, respectively, for European larch, whereas red pine retranslocated the smallest amount of N (13%) and Norway spruce retranslocated the smallest amount of P (18%). In three evergreen species, uptake accounted for 72 to 74% of annual N requirement whereas for two deciduous species retranslocation accounted for 76 to 77% of the annual N requirement. Nitrogen and P use (ANPP/uptake) was more efficient in deciduous species than evergreen species. The results from this common garden experiment demonstrate that differences in N and P cycling among species may result from intrinsic characteristics (e.g. leaf longevity) rather than environmental conditions.  相似文献   

5.
落叶松(Larix gmelinii)是中国东北林区最重要的工业用材树种,而且在北温带森林中具有重要的生态学意义。落叶松的种植区域内气温低、冬季长,氮素矿化速度低,供氮不足常常成为落叶松生长的限制因素。为揭示落叶松生长与氮素营养的关系,采用沙培法设置了1、4、8和16 mmol·L-1 4个供氮水平,研究了不同供氮条件下落叶松一年生幼苗对碳和氮的获取与分配的规律。结果显示,落叶松幼苗的生物量、全株氮浓度、氮含量、比氮吸收速率均随供氮水平的增加而升高,叶重比(LWR)、茎重比(SWR)及叶氮比(LNR)、茎氮比(SNR)亦随供氮水平的增加而增加,而根重比(RWR)和根氮比(RNR)则随供氮水平的增加而降低。当供氮水平从1 mmol·L-1增加至8 mmol·L-1时,落叶松幼苗相对生长速率呈线性增加,而全株氮生产力几乎未受供氮水平的影响;当供氮水平从8 mmol·L-1增加至16 mmol·L-1时,全株相对生长速率不再增加,全株氮生产力则显著下降。与全株氮生产力的变化不同,落叶松幼苗的叶氮生产力与供氮水平呈负相关。  相似文献   

6.
The ability of tree species to cope with anticipated decrease in water availability is still poorly understood. We evaluated the potential of Norway spruce, Scots pine, European larch, black pine, and Douglas‐fir to withstand drought in a drier future climate by analyzing their past growth and physiological responses at a xeric and a mesic site in Central Europe using dendroecological methods. Earlywood, latewood, and total ring width, as well as the δ13C and δ18O in early‐ and latewood were measured and statistically related to a multiscalar soil water deficit index from 1961 to 2009. At the xeric site, δ13C values of all species were strongly linked to water deficits that lasted longer than 11 months, indicating a long‐term cumulative effect on the carbon pool. Trees at the xeric site were particularly sensitive to soil water recharge in the preceding autumn and early spring. The native species European larch and Norway spruce, growing close to their dry distribution limit at the xeric site, were found to be the most vulnerable species to soil water deficits. At the mesic site, summer water availability was critical for all species, whereas water availability prior to the growing season was less important. Trees at the mesic were more vulnerable to water deficits of shorter duration than the xeric site. We conclude that if summers become drier, trees growing on mesic sites will undergo significant growth reductions, whereas at their dry distribution limit in the Alps, tree growth of the highly sensitive spruce and larch may collapse, likely inducing dieback and compromising the provision of ecosystem services. However, the magnitude of these changes will be mediated strongly by soil water recharge in winter and thus water availability at the beginning of the growing season.  相似文献   

7.
Ecosystem-level experiments on the effects of atmospheric CO2 enrichment and N deposition on forest trees are urgently needed. Here we present data for nine model ecosystems of spruce (Picea abies) on natural nutrient-poor montane forest soil (0.7 m2 of ground and 350 kg weight). Each system was composed of six 7-year-old (at harvest) trees each representing a different genotype, and a herbaceous understory layer (three species). The model ecosystems were exposed to three different CO2 concentrations (280, 420, 560 μl l−1) and three different rates of wet N deposition (0, 30, 90 kg ha−1 year−1) in a simulated annual course of Swiss montane climate for 3 years. The total ecosystem biomass was not affected by CO2 concentration, but increased with increasing N deposition. However, biomass allocation to roots increased with increasing CO2 leading to significantly lower leaf mass ratios (LMRs) and leaf area ratios (LARs) in trees grown at elevated CO2. In contrast to CO2 enrichment, N deposition increased biomass allocation to the aboveground plant parts, and thus LMR and LAR were higher with increasing N deposition. We observed no CO2 ×  N interactions on growth, biomass production, or allocation, and there were also no genotype × treatment interactions. The final leaf area index (LAI) of the spruce canopies was 19% smaller at 420 and 27% smaller at 560 than that measured at 280 μl CO2 l−1, but was not significantly altered by increasing N deposition. Lower LAIs at elevated CO2 largely resulted from shorter branches (less needles per individual tree) and partially from increased needle litterfall. Independently of N deposition, total aboveground N content in the spruce communities declined with increasing CO2 (−18% at 420 and −31% at 560 compared to 280 μl CO2 l−1). N deposition had the opposite effect on total above ground N content (+18% at 30 and +52% at 90 compared to 0 kg N ha−1 year−1). Our results suggest that under competitive conditions on natural forest soil, atmospheric CO2 enrichment may not lead to higher ecosystem biomass production, but N deposition is likely to do so. The reduction in LAI under elevated CO2 suggests allometric down-regulation of photosynthetic carbon uptake at the canopy level. The strong decline in the tree nitrogen mass per unit ground area in response to elevated CO2 may indicate CO2-induced reductions of soil N availability. Received: 11 May 1997 / Accepted: 4 August 1997  相似文献   

8.
In natural forest, disturbance changes tree species composition which in turn affects soil properties. Two areas in the Central Forest State Biosphere Reserve, in the Russian Southern Taiga Zone, differed in the intensity of disturbance: Norway spruce was the dominant species at one site, while at the other spruce was mixed with broadleaves. The presence of broadleaves was due to large gaps in the canopy having been formed, which have triggered vegetation succession. At both sites, five plots were selected to evaluate how the presence of broadleaves influences the properties of the soils under spruce. Soil samples were taken close to spruce trees and the O, A and E horizons were analysed. A difference in the distribution of organic matter in the soil horizons was evident, with a higher concentration in the O and A horizons at the spruce dominated site, while a more homogeneous distribution was found under spruce at the site where broadleaves were abundant. The organic matter did not only differ in quantity, but also in quality as estimated by the C/N ratio, and therefore affected the CEC and element relative availability. No differences at the two sites were found for water-extractable and exchangeable elements, but the ratio between the exchangeable and the acid-extractable forms were different, suggesting a higher relative availability of the elements at the spruce dominated site, and thus potentially higher leaching. Both theoretical and empirical studies have suggested that podzolisation and accumulation of organic matter in the O horizon are related to stagnation of ecosystem processes and ecosystem decline. Our data suggest that the presence to windthrow sites and the inclusion of broadleaf species acts to slow or even reverse podzolisation even in spruce dominated sites.  相似文献   

9.
为阐明不同树种间树木径向生长对气候变化的响应及其时间稳定性,本研究以长白山北坡高海拔处(1600~1750 m)落叶松和鱼鳞云杉为研究对象,运用年轮年代学方法探究树木径向生长与气候的关系.结果表明: 研究区落叶松生长与当年6月最高气温呈显著正相关,与当年6月降水呈负相关;鱼鳞云杉与当年5月最高温度呈显著正相关.冗余分析进一步表明,落叶松生长主要受夏季温度的影响,鱼鳞云杉生长主要受春季温度的制约.在1959—2014年,落叶松生长-夏季温度关系相对稳定;对于鱼鳞云杉,自1986年以来其与春季温度的相关性减弱,可能由于最高温度降低导致树木生长减慢.本研究结果可以为预测气候变化情景下长白山针叶树种生长的响应趋势提供数据支持和理论参考.  相似文献   

10.
 Effects of SO2, aqueous fluoride (NaF) and a solution of nitrogen compounds (NH4NO3) on the visible symptoms, pollutant accumulation and ultrastructure of Scots pine (Pinus sylvestris L.) and Norway spruce [Picea abies (L.) Karst.] seedlings were studied in an open-air experiment lasting for 3 consecutive years. Visible injury symptoms were most pronounced in combination exposures and whenever F was applied. Visible symptoms correlated well with needle pollutant concentrations. Exposure to NaF increased needle F contents particularly when F was applied with SO2 or NH4NO3. This suggests that a reduction in N or SO2 emissions, in F polluted areas, could improve the condition of conifers via decreased accumulation of phytotoxic F in the needles. Norway spruce needles accumulated 2 – 10 times as much S and F as those of Scots pine. Microscopic observations showed various changes in the needle mesophyll cell ultrastructure. In both species, exposure to SO2 increased significantly the amount of cytoplasmic vacuoles, suggesting detoxification of excess sulphate or low pH. F treatments resulted in a significant enlargement of plastoglobuli in Scots pine and a darkening of plastoglobuli in Norway spruce. All exposures enhanced the accumulation of lipid bodies. An increased portion of translucent plastoglobuli was most pronounced in N treatments. Many of the ultrastructural changes and visible symptoms appeared only as number of years exposed increased, indicating that long-term experiments are needed. Both visible symptoms and ultrastructural changes pointed to the more pronounced sensitivity of Norway spruce compared to Scots pine. Ultrastructural results mostly supported earlier qualitative observations of F, N and SO2 effects on needle mesophyll cell ultrastructure. However, no reduction of thylakoids in SO2 containing exposure or curling of thylakoids in F exposure could be detected in the present study. Received: 5 December 1994 / Accepted: 28 April 1995  相似文献   

11.
Callus cultures of Siberian larch (Larix sibiricaLedeb.) and Siberian spruce (Picea obovataLedeb.) were used to demonstrate the elicitor activity of two ophiostomatoid fungal species, Ceratocystis laricicolaand Ceratocystis polonica, as the pioneer settlers on larch and spruce, respectively. The extract from C. laricicolamycelium stimulated the accumulation of lignin in larch cells by 37% and that of bound proanthocyanidins by 25%. In spruce callus cultures, C. laricicolaand C. polonicaincreased the bound PA content by 25 and 46%, respectively. In the callus cultures of larch and spruce, the addition of extract of C. laricicolaincreased the concentration of p-hydroxybenzoic acid 13-fold and nearly 4-fold, respectively. The metabolic characteristics of accumulation of phenolic compounds in conifer cells are discussed.  相似文献   

12.
For sustainable use and suitable management of larch plantations, we must clarify the ecophysiological responses of larch species to environmental changes. The physical environment has been changing dramatically, e.g., increase in atmospheric CO2 concentration ([CO2]), nitrogen (N) deposition, and atmospheric ozone concentration ([O3]), and these changes may negatively affect growth of larch species. This review summarizes the previous experimental studies on the ecophysiological responses of larch species to elevated [CO2], soil acidification, elevated [O3], and N load. Based on the advanced studies, although elevated [CO2] will stimulate the productivity of larch, increase of [O3] and severe soil acidification will reduce it. Increase of N deposition, at least, will not negatively affect larch productivity. Finally, we propose the future direction for investigation to understand the mechanism of the responses of larch species and to predict the associated risk.  相似文献   

13.
Fine root systems may respond to soil chemical conditions, but contrasting results have been obtained from field studies in non-manipulated forests with distinct soil chemical properties. We investigated biomass, necromass, live/dead ratios, morphology and nutrient concentrations of fine roots (<2 mm) in four mature Norway spruce (Picea abies [L.] Karst.) stands of south-east Germany, encompassing variations in soil chemical properties and climate. All stands were established on acidic soils (pH (CaCl2) range 2.8–3.8 in the humus layer), two of the four stands had molar ratios in soil solution below 1 and one of the four stands had received a liming treatment 22 years before the study. Soil cores down to 40 cm mineral soil depth were taken in autumn and separated into four fractions: humus layer, 0–10 cm, 10–20 cm and 20–40 cm. We found no indications of negative effects of N availability on fine root properties despite large variations in inorganic N seepage fluxes (4–34 kg N ha−1 yr−1), suggesting that the variation in N deposition between 17 and 26 kg N ha−1 yr−1 does not affect the fine root system of Norway spruce. Fine root biomass was largest in the humus layer and increased with the amount of organic matter stored in the humus layer, indicating that the vertical pattern of fine roots is largely affected by the thickness of this horizon. Only two stands showed significant differences in fine root biomass of the mineral soil which can be explained by differences in soil chemical conditions. The stand with the lowest total biomass had the lowest Ca/Al ratio of 0.1 in seepage, however, Al, Ca, Mg and K concentrations of fine roots were not different among the stands. The Ca/Al ratio in seepage might be a less reliable stress parameter because another stand also had Ca/Al ratios in seepage far below the critical value of 1.0 without any signs of fine root damages. Large differences in the live/dead ratio were positively correlated with the Mn concentration of live fine roots from the mineral soil. This relationship was attributed to faster decay of dead fine roots because Mn is known as an essential element of lignin degrading enzymes. It is questionable if the live/dead ratio can be used as a vitality parameter of fine roots since both longevity of fine roots and decay of root litter may affect this parameter. Morphological properties were different in the humus layer of one stand that was limed in 1983, indicating that a single lime dose of 3–4 Mg ha−1 has a long-lasting effect on fine root architecture of Norway spruce. Almost no differences were found in morphological properties in the mineral soil among the stands, but vertical patterns were apparently different. Two stands with high base saturation in the subsoil showed a vertical decrease in specific root length and specific root tip density whereas the other two stands showed an opposite pattern or no effect. Our results suggest that proliferation of fine roots increased with decreasing base saturation in the subsoil of Norway spruce stands.  相似文献   

14.
We measured annual net nitrogen (N) mineralization, nitrification, and amino acid production in situ across a primary successional sequence in interior Alaska, USA. Net N mineralization per gram dry soil increased across the successional sequence, but with a sharp decline in the oldest stage (black spruce). Net N mineralization expressed per gram soil organic matter exhibited the opposite pattern, suggesting that soil organic matter quality decreases significantly across succession. Net N mineralization rates during the growing season from green-up (early May) through freeze-up (late September–early October) accounted for approximately 60% of the annual inorganic N flux, whereas the remaining N was released during the apparent dormant season. Nitrogen release during winter occurred primarily during October–January with only negligible N mineralization during early spring in stands of willow, alder, balsam poplar and white spruce. By contrast, black spruce stands exhibited substantial mineralization after snow melt during early spring. The high rates of N mineralization in late autumn through early winter coincide with high turnover of fine root biomass in these stands, suggesting that labile substrate production, rather than temperature, is a major controlling factor over N release in these ecosystems. We suggest that the convention of restricting measurements of soil processes to the growing season greatly underestimate annual flux rates of inorganic nitrogen in these high-latitude ecosystems.  相似文献   

15.
落叶松、水曲柳的氮营养行为及其种间分异   总被引:8,自引:0,他引:8  
对已郁闭的12年生带状混交林和盆栽苗木的研究表明,落叶松和水曲柳在吸收空间的利用和吸收N素的时间(季节)、数量、形态诸方面都有不同的行为模式,二者存在着显著的种间差异.水曲柳根系发达,与落叶松混交能够保持固有的扎根习性不变,吸收根主要集中在土壤上层(0~20cm);落叶松根系在土壤上层受到水曲柳排斥,吸收根大量向下层(20~60cm)发展.在整个生长季中,两树种都有明显的N吸收峰期,水曲柳峰期出现在6月中下旬,落叶松峰期则出现在7月中下旬,二者是明显错开的.在吸收N素的数量上,水曲柳吸收量大,N利用效率较低;落叶松吸收量相对较小,N利用效率较高(比水曲柳高60.8%).在对N素养分化学形态的偏向选择方面,水曲柳较喜NO3--N,落叶松则对NO3--N和NH+-N无明显的偏好性.  相似文献   

16.
Summary Larvae of the spruce sawfly Gilpinia hercyniae were reared on whole branches of Norway spruce, Picea abies. Top and low branches were selected from flowering and nonflowring stands. Sawfly performance from the larval L2-stage until the fertile egg stage of the next generation was recorded. Growth and development were best on top branches from the flowering stand, poorest on branches from windblown, partly derooted and heavily flowering trees. Analysis of some 30 biochemicals in needles and faeces was performed. New needles had the highest concentrations of some nutrients (total nitrogen, amino acids), however, G. hercyniae larvae only fed on old needles, a 100% mortality being recorded on newly flushed needles, probably because these needles also contained the highest concentrations of the secondary compound, quinic acid. Old needles showed high variability in concentrations of nutrients and secondary compounds. Regression analysis demonstrated that the total amount of carbohydrates (glucose, fructose and sucrose) was significantly correlated with the larval linear growth rate, the maximal larval weight, the cocoon weight and the number of eggs per female. In these performance variables 72–88% of the variation could be explained by five biochemicals. Survival rates of larvae or pupae and the instantaneous growth rate could not be explained by the biochemical variables. Only weak correlations were found between nitrogen or amino acids and performance variables. Assimilation of the various biochemicals was calculated and showed high rates (90–97%) in hexoses and lower rates (38–65%) in total nitrogen and amino acids.  相似文献   

17.
The complete nitrogen cycle of an N-saturated spruce forest ecosystem   总被引:1,自引:0,他引:1  
Long-term nitrogen deposition into forest ecosystems has turned many forests in Central Europe and North America from N-limited to N-saturated systems, with consequences for climate as well as air and groundwater quality. However, complete quantification of processes that convert the N deposited and contributed to ecosystem N cycling is scarce. In this study, we provide the first complete quantification of external and internal N fluxes in an old-growth spruce forest, the Höglwald, Bavaria, Germany, exposed to high chronic N deposition. In this forest, N cycling is dominated by high rates of mineralisation of soil organic matter, nitrification and immobilisation of ammonium and nitrate into microbial biomass. The amount of ammonium available is sufficient to cover the entire N demand of the spruce trees. The data demonstrate the existence of a highly dynamic internal N cycle within the soil, driven by growth and death of the microbial biomass, which turns over approximately seven times each year. Although input and output fluxes are of high environmental significance, they are low compared to the internal fluxes mediated by microbial activity.  相似文献   

18.

Background

Many theoretical researches predicted that the larch species would decrease drastically in China under future climatic changes. However, responses of the structural and compositional changes of Gmelin larch (Larix gmelinii var. gmelinii) forests to climatic changes have rarely been reported.

Methodology/Principal Findings

Field survey was conducted to examine the structures and compositions of natural Gmelin larch forests along a climatic gradient. Stepwise linear regression analyses incorporating linear and quadratic components of climatic and non-climatic factors were performed on the structural and compositional attributes of those natural Gmelin larch forests. Isothermality, Max Temperature of Warmest Month (TempWarmestMonth), Precipitation of Wettest Month (PrecipWettestMonth), Precipitation Seasonality (PrecipSeasonality) and Precipitation of Driest Quarter (PrecipDriestQuarter) were observed to be effective climatic factors in controlling structure and composition of Gmelin larch forests. Isothermality significantly affected total basal area of larch, while TempWarmestMonth, PrecipWettestMonth and PrecipSeasonality significantly affected total basal area of Mongolian pine, and PrecipDriestQuarter significantly affected mean DBH of larch, stand density of larch and total basal area of spruce and fir.

Conclusions/Significance

The summer and winter temperatures and precipitations are all predicted to increase in future in Northeast China. Our results showed the increase of total basal area of spruce and fir, the suppression of regeneration and the decrease of stand density of larch under increased winter precipitation, and the decrease of total basal area of larch under increased summer temperature in the region of current Gmelin larch forest. Therefore, we suggest that larch would decrease and spruce and fir would increase in the region of future Gmelin larch forest.  相似文献   

19.
Aim We investigate the timing and factors responsible for the transformation of closed‐crown forests into lichen–spruce woodlands. Location The study area extends between 70° and 72° W in the closed‐crown forest zone from its southern limit near 47°30′ N to its northern limit at the contact with the lichen–spruce woodland zone around 52°10′ N. A total of 24 lichen–spruce woodlands were selected. Methods Radiocarbon dating of charcoals at mineral soil contact and within the organic horizons allowed the principal factors causing the degradation of the closed‐crown forest to be identified, i.e. light fires, successive fires and the occurrence of a spruce budworm epidemic followed by a fire. Results Charcoals dated in the organic horizon were less than 200 years old, suggesting a recent transformation of the closed‐crown forest following surface fires. Before their transformation into lichen–spruce woodlands, stands were occupied by old, dense forests that originated from fires dating back to 1000 yr bp . The radiocarbon dating of charcoals in the organic horizon indicated that several stands burned twice in less than 50 years, while others burned shortly after a spruce budworm epidemic. Light fires are frequent within the lichen–spruce woodlands according to multiple charcoal layers found within the organic matter horizon. Main conclusions While closed‐crown forests are predicted to expand under climate warming, compound disturbances diminish the natural regeneration of the closed‐crown forests in the south and favour the expansion of lichen–spruce woodlands. As black spruce germinates on mineral soils, surface fires accentuate the expansion of the lichen–spruce woodlands southward. Under global warming, warmer springs will lead to earlier low‐intensity fires that do not remove as much organic matter, and hence prevent conditions suitable for black spruce regeneration. Also, spruce budworm reduces seed production for a certain time. The occurrence of fire during this period is critical for regeneration of black spruce.  相似文献   

20.
The change of current pools of soil C in Norway spruce ecosystems in Sweden were studied using a process-based model (CoupModel). Simulations were conducted for four sites representing different regions covering most of the forested area in Sweden and representing annual mean temperatures from 0.7°C to 7.1°C. The development of both tree layer and field layer (understory) was simulated during a 100-year period using data on standing stock volumes from the Swedish Forest Inventory to calibrate tree growth using different assumptions regarding N supply to the plants. The model successfully described the general patterns of forest stand dynamics along the Swedish climatic transect, with decreasing tree growth rates and increasing field layer biomass from south to north. However, the current tree growth pattern for the northern parts of Sweden could not be explained without organic N uptake and/or enhanced mineralisation rates compared to the southern parts. Depending on the assumption made regarding N supply to the tree, different soil C sequestration rates were obtained. The approach to supply trees with both mineralised N and organic N, keeping the soil C:N ratio constant during the simulation period was found to be the most realistic alternative. With this approach the soils in the northern region of Sweden lost 5 g C m−2 year−1, the soils in the central region lost 2 g C m−2 year−1, and the soils in the two southern regions sequestered 9 and 23 g C m−2 year−1, respectively. In addition to climatic effects, the feedback between C and N turnover plays an important role that needs to be more clearly understood to improve estimates of C sequestration in boreal forest ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号