首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Preplant soil fumigation experiments were conducted to control the citrus nematode, Tylenchulus semipenetrans. Generally, D-D (1,3-dichloropropene, 1,2-dichloroptopane and related chlorinated C3-hydrocarbons), Telone (1,3-dichloropropene and related chlorinated C3-hydrocarbons), Telone PBC (80% 1,3-dichloropropene, 15% chloropicrin, 5% propargyl bromide), and EDB (ethylene dibromide) controlled T. semipenetrans effectively for 4 years. The trials involved four scion varieties, two rootstock varieties and three soil types. Tree growth and yield were increased with application of D-D at 374 or 561 liters/ha (40 or 60 gal/acre) or Telone at 299 or 449 liters/ha (32 or 48 gal/acre) in broadcast and strip treatments.  相似文献   

2.
Metham sodium applied in October through center pivot irrigation systems was evaluated for control of Meloidogyne hapla at 374, 468, and 701 liters/ha and for control of M. chitwoodi at 468 liters/ha on potato. Metham sodium at the high rates effectively controlled M. hapla. No females were detected in the tubers at the high rates of nematicide application, whereas a mean of 19 and 69% of the tubers were infected at the low rate and in the nontreated controls, respectively. In the M. chitwoodi trial only 1.5% of the tubers in the treated plots were infected compared with 82% in the nontreated plots. Metham sodium effectively controlled M. chitwoodi to soil depths of 30, 61, and 91 cm.  相似文献   

3.
Two newly developed media, H4 and H7, were found to be highly suitable for culturing Bacillus thuringiensis subsp. israelensis and B. sphaericus, respectively. These media contained 0.05% K2HPO4 and 4% HDL (H4 medium) or 0.05% K2HPO4 and 7% HDL (H7 medium); HDL is the by-product from a monosodium glutamate factory. Tests to compare endospore formation and toxicity values of B. thuringiensis subsp. israelensis in H4 medium and nutrient broth supplemented with salts and glucose (NBSG) medium were carried out in a 3-liter fermentor. The viable cell count and LC50 value of B. thuringiensis subsp. israelensis in H4 medium at 48 hr were 2.5 × 108 cells/ml and 10?7.2 (dilution), respectively, while those in NBSG medium were 1.6 × 108 cells/ml and 10?6.5, respectively. In the case of B. sphaericus grown in H7 medium, the number of cells and LC50 value were found to be 1.4 × 109 cells/ml and 10?7.8, respectively. B. sphaericus grown in nutrient broth supplemented with salt and yeast extract (NBSY) were found to produce 6.4 × 108 cells/ml and an LC50 value of 10?6.8. The toxicity of B. thuringiensis subsp. israelensis was tested against Aedes aegypti larvae, while that of B. sphaericus was tested against Culex quinquefasciatus. The cost of 10 liters of medium for production of B. thuringiensis subsp. israelensis and in B. sphaericus and H4 and H7 was $0.02 and $0.03, respectively. The cost of these newly developed media was much less than that of NBSG medium ($7.05 per 10 liters) for cultivation of B. thuringiensis subsp. israelensis and NBSY medium ($11.67 per 10 liters) for cultivation of B. sphaericus.  相似文献   

4.
Two wettable powder formulations (Bactimos and Vectobac) and a flowable concentrate (Teknar) formulation of Bacillus thuringiensis serovar. israelensis were evaluated as larvicides of Culex pipiens, Aedes caspius, and Aedes detritus. In the laboratory, the levels of susceptibility of these species to the test formulations were essentially similar and corresponded to their relative potencies; the LC90 values ranged from 0.042 to 0.37 ppm. C. pipiens, A. caspius, and A. detritus, in that order, were susceptible to the biocide. Under field conditions in central Italy. Bactimos at 0.5 kg/ha gave 98% control of C. pipiens in an irrigation canal. Teknar at 1.25 liters/ha gave 86–100%, and at 2.5 liters/ha gave 90–100% control of C. pipiens in two natural ponds. Against A. caspius in salt marsh habitats, Bactimos at 0.5 kg/ha and Teknar at 2.5 liters/ha yielded complete control of the larvae, while a lower rate (0.2 kg/ha) of Bactimos, and Vectobac at 0.5 kg/ha resulted in 82–94% and 67–91% control, respectively. Higher rates (0.75 and 1.0 kg/ha) of Vectobac gave 76–100% and 98–100% control of A. caspius. Bactimos at 0.15 kg/ha gave 93–98% control of A. detritus in two salt marsh ponds. B. thuringiensis serovar. israelensis is practically economical for the control of C. pipiens, A. caspius, and A. detritus in the various biotopes in central Italy.  相似文献   

5.
The detection and identification of pathogens from water samples remain challenging due to variations in recovery rates and the cost of procedures. Ultrafiltration offers the possibility to concentrate viral, bacterial, and protozoan organisms in a single process by using size-exclusion-based filtration. In this study, two hollow-fiber ultrafilters with 50,000-molecular-weight cutoffs were evaluated to concentrate microorganisms from 2- and 10-liter water samples. When known quantities (105 to 106 CFU/liter) of two species of enteric bacteria were introduced and concentrated from 2 liters of sterile water, the addition of 0.1% Tween 80 increased Escherichia coli strain K-12 recoveries from 70 to 84% and Salmonella enterica serovar Enteritidis recoveries from 36 to 72%. An E. coli antibiotic-resistant strain, XL1-Blue, was recovered at a level (87%) similar to that for strain K-12 (96%) from 10 liters of sterile water. When E. coli XL1-Blue was introduced into 10 liters of nonsterile Rio Grande water with higher turbidity levels (23 to 29 nephelometric turbidity units) at two inoculum levels (9 × 105 and 2.4 × 103 per liter), the recovery efficiencies were 89 and 92%, respectively. The simultaneous addition of E. coli XL1-Blue (9 × 105 CFU/liter), Cryptosporidium parvum oocysts (10 oocysts/liter), phage T1 (105 PFU/liter), and phage PP7 (105 PFU/liter) to 10 liters of Rio Grande surface water resulted in mean recoveries of 96, 54, 59, and 46%, respectively. Using a variety of surface waters from around the United States, we obtained recovery efficiencies for bacteria and viruses that were similar to those observed with the Rio Grande samples, but recovery of Cryptosporidium oocysts was decreased, averaging 32% (the site of collection of these samples had previously been identified as problematic for oocyst recovery). Results indicate that the use of ultrafiltration for simultaneous recovery of bacterial, viral, and protozoan pathogens from variable surface waters is ready for field deployment.  相似文献   

6.
1,3-Dichloropropene (1,3-D) at rates of 17.2 to 51.6 liters/ha applied 3 days preplant or at planting significantly (P < 0.05) reduced the amount of galling on roots of soybean grown in sites infested with Meloidogyne incognita or M. arenaria. Populations of M. incognita second-stage juveniles at harvest were significantly (P < 0.05) reduced by all treatments. Only the 51.6-liters/ ha treatments and a 3-day preplant 34.4-liters/ha application significantly reduced at-harvest juvenile infestations of M. arenaria. Equations (P < 0.001) relating soybean yield and 1,3-D dosage indicated soybean phytotoxicity at the upper range of the nematicide rates. The maximum yield response was predicted at 40 liters/ha applied 3 days preplant at both infestation sites. Maximum yield response was predicted with 30 liters/ha applied at planting to M. incognita-infested soil and from 25 liters/ha applied at planting to M. arenaria-infested soil. Application of economic factors suggested that management of M. incognita may be cost effective with at-plant treatments of low rates of 1,3-D. Yield responses of M. arenaria-infected soybean exposed to similar treatments were insufficient to justify their use at prevailing prices.  相似文献   

7.
U.S. Environmental Protection Agency method 1623 is widely used to monitor source waters and drinking water supplies for Cryptosporidium oocysts. Matrix spikes, used to determine the effect of the environmental matrix on the method's recovery efficiency for the target organism, require the collection and analysis of two environmental samples, one for analysis of endemic oocysts and the other for analysis of recovery efficiency. A new product, ColorSeed, enables the analyst to determine recovery efficiency by using modified seeded oocysts that can be differentiated from endemic organisms in a single sample. Twenty-nine stream water samples and one untreated effluent sample from a cattle feedlot were collected in triplicate to compare modified seeding procedures to conventional seeding procedures that use viable, unmodified oocysts. Significant negative correlations were found between the average oocyst recovery and turbidity or suspended sediment; this was especially apparent in samples with turbidities greater than 100 nephelometric turbidity units and suspended sediment concentrations greater than 100 mg/liter. Cryptosporidium oocysts were found in 16.7% of the unseeded environmental samples, and concentrations, adjusted for recoveries, ranged from 4 to 80 oocysts per 10 liters. Determining recovery efficiency also provided data to calculate detection limits; these ranged from <2 to <215 oocysts per 10 liters. Recoveries of oocysts ranged from 2.0 to 61% for viable oocysts and from 3.0 to 59% for modified oocysts. The recoveries between the two seeding procedures were highly correlated (r = 0.802) and were not significantly different. Recoveries by using modified oocysts, therefore, were comparable to recoveries by using conventional seeding procedures.  相似文献   

8.
The effectiveness of a model ultraviolet (UV) radiation unit for treating flowing turbid seawater contaminated with poliovirus was determined. At a turbidity of 70 ppm, the observed survival ratios ranged from 1.9 x 10(-3) (99.81% reduction) to 1.5 x 10(-4) (99.98% reduction) at flow rates ranging from 25 to 15 liters/min; no virus was recovered at flow rates of 10 and 5 liters/min. At a turbidity of 240 ppm, the observed survival ratios ranged from 3.2 x 10(-2) (96.80% reduction) to 2.1 x 10(-4) (99.98% reduction) at flow rates ranging from 25 to 5 liters/min. As expected, turbidity had an adverse influence on the effectiveness of UV radiation; however, by adjusting the flow rate of the seawater through the treatment unit, adequate disinfection was shown to be predictable.  相似文献   

9.
Water samples collected throughout several reclamation facilities were analyzed for the presence of infectious Cryptosporidium parvum by the focus detection method-most-probable-number cell culture technique. Results revealed the presence of infectious C. parvum oocysts in 40% of the final disinfected effluent samples. Sampled effluent contained on average seven infectious oocysts per 100 liters. Thus, reclaimed water is not pathogen free but contains infectious C. parvum.  相似文献   

10.
Pinto bean yields and Pratylenchus spp. (nematode) population densities are reported for field plots pro-plant treated with nematicides in 1966 and 1968. Vidden-D (1,3-dichloropropene, 1,2-dichloropropane and related chlorinated hydrocarbons), Vortex (20% methyl isothioeyanate plus 80% chlorinated Ca-hydrocarbons), Telone PBC (80% dichloropropenes, 15% chloropicrin, and 5% propargyl bromide), Dasardt (0,0-Diethyl 0-[p-(methylsulfmyl)phenyl] phosphorothioate, and Dowfume MC-2 (98% methyl bromide plus 2% chloropierin) were used in 1966. Vorlex, Dasanit, and D-D (1,3-dichloropropene, 1,2-dichloropropane and related chlorinated hydrocarbons) were each used at two rates in 1968.Fumigated plot yields ranged 32-56% higher than control plots in 1966 and 11-80% higher in 1968. Significant yield increases were obtained for all fumigants except Telone PBC in 1966. In 1968 significant increases were obtained from use of the high rate (374 liters/ha) of Vorlex and low rate (8.4 liters/ha) of Dasanit. There was an inverse relationship between yield and numbers of Pratylenchus spp./g root on four sampling dates in 1968. A correlation coefficient of -.39 (P ≤ 0.05) was obtained for samples taken 36 days after planting and -.52 (P ≤ 0.01) for samples taken 30 days later. There was no significant correlation between yield and numbers of Pratylenchus spp. recovered from the soil.  相似文献   

11.
Twelve families, 26 genera, and 30 identifiable spider species were found in surveys conducted in apple orchards of western Oregon. The Salticidae, Linyphiidae, Clubionidae, Philodromidae, and Theridiidae comprised 85.56% ofthe total spiders collected. The most common species in order of abundance were Metaphidippus aeneolus Curtis, Spirembolus mundus Chamberlin & Ivie, Cheiracanthium inclusum (Hentz), Philodromus spectabilis Keyserling, Eris marginata (Walckenaer), and Theridion lawrencei Gertsch & Archer. Individuals of these species were collected in 50-60% of the samples and were most abundant in the month of August. The Bacillus thuringiensis-based insecticides, DiPel (100 Million International Units/100 liters) and MVP (250 ml/100 liters), summer oil (0.5-1.0 liter/100 liters), the insect growth regulator (IGR) diflubenzuron (3-12 g/100 liters), and organophosphate Phosmet (6-60 g/100 liters) were generally harmless (P > 0.05) to these spider species. Full field rates of organophosphate azinphosmethyl (25 g/100 liters) and carbamate carbaryl (60 g/100 liters) were slightly to moderately harmful (25-75% mortality). These insecticides at reduced rates (azinphosmethyl 2.5-5.0 g and carbaryl 12 g/100 liters) applied alone or in combination with DiPel and MVP, had a negligible effect. Full rates of pyrethroids esfenvalerate (2.5 g/100 liters) and permethrin (4.0 g/100 liters) were moderately to highly harmful (50-75% mortality) and their reduced rates (esfenvalerate 0.25-0.50 g and permethrin 0.4-0.8 g/100 liters) were selective to the spiders.  相似文献   

12.
Five field trials were conducted in Italy in 1983 and 1984 to test the efficacy of isazofos and benfuracarb in controlling Heterodera carotae on carrot, Ditylenchus dipsaci on onion, and Meloidogyne javanica on tomato. Methyl isothiocyanate (MIT) was tested against H. carotae and M. javanica. Single (10 kg a.i./ha) and split (5 + 5 kg a.i./ha) applications of isazofos gave yield increases of carrot and onion similar to those obtained with DD (300 liters/ha) and aldicarb (10 kg a.i./ha). Population densities of H. carotae in carrot roots at harvest and of M. javanica in tomato roots 2 months after transplanting were also suppressed by isazofos. Benfuracarb (10 kg a.i./ha increased onion yields in a field infested with D. dipsaci, but it was not effective against H. carotae or M. javanica. The efficacy of MIT at 400 and 600 liters/ha was similar to that of MIT + DD (Di-Trapex) at 300 liters/ha. Both nematicides inhibited hatch of H. carotae eggs and decreased the soil population density of M. javanica.  相似文献   

13.
Aspergillus flavus ATCC 15517 produced up to 212 mg per liter of total aflatoxin in submerged culture in aerated (3,000, 6,000, 9,000, and 12,000 ml/min) and agitated medium in 14-liter fermentors with 10 liters of medium consisting of 2% yeast extract and 10% sucrose. Aflatoxin production increased with time. A maximum of 212 mg/liter was produced at 9,000 ml/min aeration, whereas the yield decreased substantially at the lower aeration rates. Two other strains of A. flavus synthesized aflatoxin in smaller quantities.  相似文献   

14.
The validity of using indicator organisms (total and fecal coliforms, enterococci, Clostridium perfringens, and F-specific coliphages) to predict the presence or absence of pathogens (infectious enteric viruses, Cryptosporidium, and Giardia) was tested at six wastewater reclamation facilities. Multiple samplings conducted at each facility over a 1-year period. Larger sample volumes for indicators (0.2 to 0.4 liters) and pathogens (30 to 100 liters) resulted in more sensitive detection limits than are typical of routine monitoring. Microorganisms were detected in disinfected effluent samples at the following frequencies: total coliforms, 63%; fecal coliforms, 27%; enterococci, 27%; C. perfringens, 61%; F-specific coliphages, ~40%; and enteric viruses, 31%. Cryptosporidium oocysts and Giardia cysts were detected in 70% and 80%, respectively, of reclaimed water samples. Viable Cryptosporidium, based on cell culture infectivity assays, was detected in 20% of the reclaimed water samples. No strong correlation was found for any indicator-pathogen combination. When data for all indicators were tested using discriminant analysis, the presence/absence patterns for Giardia cysts, Cryptosporidium oocysts, infectious Cryptosporidium, and infectious enteric viruses were predicted for over 71% of disinfected effluents. The failure of measurements of single indicator organism to correlate with pathogens suggests that public health is not adequately protected by simple monitoring schemes based on detection of a single indicator, particularly at the detection limits routinely employed. Monitoring a suite of indicator organisms in reclaimed effluent is more likely to be predictive of the presence of certain pathogens, and a need for additional pathogen monitoring in reclaimed water in order to protect public health is suggested by this study.  相似文献   

15.
Summary During ultrafiltration in a hollow fiber device 105 liters of lipase frort Pseudomonas fluorescens was concentrated to 4 liters with a yield of 56% of total initial activity. The concentrated lipase solution was lyophilized and purified on a DEAE-cellulose anion exchanger column. The partly purified lipase was found to probably contain carbohydrates.  相似文献   

16.
A central composite design circumscribed method was used to define the experimental conditions that improve the methane production rate (kCH4, liters of methane per kilogram of VS of waste added and per day) and the cumulative methane production (cMP, liters of methane per kilogram of VS of waste added) of the co-digestion of sewage sludge (SS) with crude glycerol (cGly) and waste frying oil (WFO). Three factors were selected, i.e., SS concentration, global co-substrate concentration, and mass fraction of cGly (xcGly) in a mixture of cGly and WFO (in chemical oxygen demand, COD). SS digestion without co-substrate reached a cMP of (294?±?6) L·kg?1 and a kCH4 of (64?±?1) L·kg?1·d?1, at standard temperature and pressure conditions and expressed relatively to the initial volatile solids. After statistical analysis, SS and co-substrate concentrations of 4.6 g·L?1 and 8.8 g·L?1 (in COD), respectively, with xcGly of 0.8, were defined to simultaneously boost cMP (91 % more) and kCH4 (3-fold increase). Application of these conditions would yield 214 MWh more in electricity per 1000 m3 of SS digested.  相似文献   

17.
Two microplot experiments in 1981 and 1983 provided information on the effect of different population densities of Meloidogyne incognita race 1 and yield of sweet pepper. Microplots were square concrete pipes (30 × 30 cm and 50 cm long) filled with 40 liters of soil infested with 0, 0.062, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256, and 512 eggs and juveniles/cm³ soil. Tolerance limits of 2.2 and 0.165 eggs and juveniles/cm³ soil and minimum yields of 58% and 20% of the controls were obtained in 1981 and 1983, respectively. Maximum reproduction rates of the nematode were 274 and 1,498 at the lowest initial population density. The population of the nematode declined rapidly after harvest, and only 13% and 6.5% of eggs and juveniles were detected in the soil after 1 and 6 months, respectively.  相似文献   

18.
Knowledge of host specificity, combined with genomic sequencing of Giardia and Cryptosporidium spp., has demonstrated a microbial source tracking (MST) utility for these common waterborne microbes. To explore the source attribution potential of these pathogens, water samples were collected in a mixed rural-urban watershed in the Township of Langley, in southwestern British Columbia (BC), Canada, over a 2-year period. Cryptosporidium was detected in 63% of surface water samples at concentrations ranging from no positive detection (NPD) to 20,600 oocysts per 100 liters. Giardia was detected in 86% of surface water samples at concentrations ranging from NPD to 3,800 cysts per 100 liters of water. Sequencing at the 18S rRNA locus revealed that 50% of Cryptosporidium samples and 98% of Giardia samples contained species/genotypes (Cryptosporidium) or assemblages (Giardia) that are capable of infecting humans, based on current knowledge of host specificity and taxonomy. Cryptosporidium genotyping data were more promising for source tracking potential, due to the greater number of host-adapted (i.e., narrow-host-range) species/genotypes compared to Giardia, since 98% of Giardia isolates were zoonotic and the potential host could not be predicted. This report highlights the benefits of parasite genomic sequencing to complement Method 1623 (U.S. Environmental Protection Agency) and shows that Cryptosporidium subtyping for MST purposes is superior to the use of Giardia subtyping, based on better detection limits for Cryptosporidium-positive samples than for Giardia-positive samples and on greater host specificity among Cryptosporidium species. These additional tools could be used for risk assessment in public health and watershed management decisions.  相似文献   

19.
Data are reported on the net recovery O2 consumption (VO2) for nine male subjects (mean age 21.9 yr, VO2max 63.0 ml.kg-1.min-1, body fat 10.6%) used in a 3 (independent variables: intensities of 30, 50, and 70% VO2max) x 3 (independent variables: durations of 20, 50, and 80 min) repeated measures design (P less than or equal to 0.05). The 8-h mean excess postexercise O2 consumptions (EPOCs) for the 20-, 50-, and 80-min bouts, respectively, were 1.01, 1.43, and 1.04 liters at 30% VO2max (6.8 km/h); 3.14, 5.19, and 6.10 liters at 50% VO2max (9.5 km/h); and 5.68, 10.04, and 14.59 liters at 70% VO2max (13.4 km/h). The mean net total O2 costs (NTOC = net exercise VO2 + EPOC) for the 20-, 50-, and 80-min bouts, respectively, were 20.48, 53.20, and 84.23 liters at 30% VO2max; 38.95, 100.46, and 160.59 liters at 50% VO2max; and 58.30, 147.48, and 237.17 liters at 70% VO2max. The nine EPOCs ranged only from 1.0 to 8.9% of the NTOC (mean 4.8%) of the exercise. These data, therefore, indicate that in well-trained subjects the 8-h EPOC per se comprises a very small percentage of the NTOC of exercise.  相似文献   

20.
A rapid procedure for wort fermentation with Saccharomyces carlsbergensis at 12 C is described. Fermentation time was reduced from 7 to 4 days with normal inoculum by shaking. Increasing the inoculation to 5 to 10 times normal and shaking resulted in complete fermentation in 3 days. Maximum yeast population was reached rapidly with the large inocula, but fermentation proceeded at approximately the same rate when inoculations in excess of four times the normal were used. Similar results were obtained with both small-scale (100 ml) and microbrew (2.4 liters) fermentations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号