首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intercellular adhesion molecule-1 (ICAM-1) binds to the plasma protein fibrinogen (Fg) to mediate leukocyte/endothelial cell interactions. In our studies, the ligation of Fg to ICAM-1 on tumor necrosis factor-alpha-stimulated endothelial cells resulted in the tyrosine phosphorylation of Src homology domain 2 (SH2)-containing phosphatase-2 (SHP-2). The ICAM-1 cytoplasmic sequence IKKYRLQ conforms poorly to the concensus immunoreceptor tyrosine-based inhibition motifs found in receptors that bind SHP-2. Nevertheless, the tyrosine phosphorylated sequence (IKKpYRLQ) bound specifically to the SH2 domain proximal to the NH(2)-terminal of SHP-2 (SHP-2-N) but not to the SH2 domain proximal on the COOH-terminal side (SHP-2-C). Phosphorylated ICAM-1 bound SHP-2-N. In immunoprecipitation experiments, SHP-2 associated with phosphorylated ICAM-1. Cells expressing truncated ICAM-1 that lacked the cytoplasmic sequence (ICAM-1(TR)) failed to associate with SHP-2. ICAM-1 containing the tyrosine to alanine substitution at position 485 (ICAM-1(Y485A)) associated weakly with SHP-2. Cells expressing ICAM-1(TR) and ICAM-1(Y485A) underwent apoptosis upon adhesion to Fg, whereas the wild type ICAM-1 maintained cell survival. These results indicate that ICAM-1 interactions with SHP-2 allow better cellular survival mediated through Fg-ICAM-1 ligation.  相似文献   

2.
Neutrophils, an essential component of the innate immune system, are regulated in part by signaling pathways involving protein tyrosine phosphorylation. While protein tyrosine kinase functions in regulating neutrophil behavior have been extensively investigated, little is known about the role for specific protein tyrosine phosphatases (PTP) in modulating neutrophil signaling cascades. A key role for Src homology 2 domain-containing phosphatase 1 (SHP-1), a PTP, in neutrophil physiology is, however, implied by the overexpansion and inappropriate activation of granulocyte populations in SHP-1-deficient motheaten (me/me) and motheaten viable (me(v)/me(v)) mice. To directly investigate the importance of SHP-1 to phagocytic cell function, bone marrow neutrophils were isolated from both me/me and me(v)/me(v) mice and examined with respect to their responses to various stimuli. The results of these studies revealed that both quiescent and activated neutrophils from motheaten mice manifested enhanced tyrosine phosphorylation of cellular proteins in the 60- to 80-kDa range relative to that detected in wild-type congenic control neutrophils. MOTHEATEN: neutrophils also demonstrated increased oxidant production, surface expression of CD18, and adhesion to protein-coated plastic. Chemotaxis, however, was severely diminished in the SHP-deficient neutrophils relative to control neutrophils, which was possibly attributable to a combination of defective deadhesion and altered actin assembly. Taken together, these results indicate a significant role for SHP-1 in modulating the tyrosine phosphorylation-dependent signaling pathways that regulate neutrophil microbicidal functions.  相似文献   

3.
Identification of a novel phosphatase sequence motif.   总被引:7,自引:1,他引:6       下载免费PDF全文
We have identified a novel, conserved phosphatase sequence motif, KXXXXXXRP-(X12-54)-PSGH-(X31-54)-SRXXXXX HXXXD, that is shared among several lipid phosphatases, the mammalian glucose-6-phosphatases, and a collection of bacterial nonspecific acid phosphatases. This sequence was also found in the vanadium-containing chloroperoxidase of Curvularia inaequalis. Several lines of evidence support this phosphatase motif identification. Crystal structure data on chloroperoxidase revealed that all three domains are in close proximity and several of the conserved residues are involved in the binding of the cofactor, vanadate, a compound structurally similar to phosphate. Structure-function analysis of the human glucose-6-phosphatase has shown that two of the conserved residues (the first domain arginine and the central domain histidine) are essential for enzyme activity. This conserved sequence motif was used to identify nine additional putative phosphatases from sequence databases, one of which has been determined to be a lipid phosphatase in yeast.  相似文献   

4.
The macrophage protein tyrosine phosphatase-1 SHP-1 has been implicated in the pathogenesis of infection with leishmania. To identify the factors that may interact with SHP-1, Leishmania donovani promastigote lysates were added to a GST-SHP-1 affinity matrix. A 44 kDa specifically bound protein was identified as leishmania fructose-1,6-bisphosphate aldolase (aldolase). Purified leishmania aldolase bound to SHP-1 indicating that the interaction was direct. In contrast, purified mammalian aldolase did not bind to SHP-1. Consistent with this, leishmania aldolase activated SHP-1 in vitro, whereas mammalian aldolase did not. The presence of leishmania aldolase in the cytosolic fractions prepared from infected macrophages indicated that leishmania aldolase is exported from phagolysosomes in infected cells where it can target host cytosolic proteins. In fact, co-immunoprecipitation showed association of leishmania aldolase with SHP-1. Moreover, leishmania aldolase-expressing macrophages showed the deactivated phenotype of leishmania infected cells as judged by much reduced inability to induce expression of nitric-oxide synthase in response to interferon-γ treatment. Collectively, these data show that leishmania aldolase is a novel SHP-1 binding and activating protein that contributes to macrophage dysfunction.  相似文献   

5.
It has been shown previously that the Huntingtin interacting protein 1 gene (HIP1) was fused to the platelet-derived growth factor beta receptor gene (PDGFbetaR) in leukemic cells of a patient with chronic myelomonocytic leukemia. This resulted in the expression of the chimeric HIP1/PDGFbetaR protein, which oligomerizes, is constitutively tyrosine-phosphorylated, and transforms the Ba/F3 murine hematopoietic cell line to interleukin-3-independent growth. Tyrosine phosphorylation of a 130-kDa protein (p130) correlates with transformation by HIP1/PDGFbetaR and related transforming mutants. We report here that the p130 band is immunologically related to the 125-kDa isoform of the Src homology 2-containing inositol 5-phosphatase, SHIP1. We have found that SHIP1 associates and colocalizes with the HIP1/PDGFbetaR fusion protein and related transforming mutants. These mutants include a mutant that has eight Src homology 2-binding phosphotyrosines mutated to phenylalanine. In contrast, SHIP1 does not associate with H/P(KI), the kinase-dead form of HIP1/PDGFbetaR. We also report that phosphorylation of SHIP1 by HIP1/PDGFbetaR does not change its 5-phosphatase-specific activity. This suggests that phosphorylation and possible PDGFbetaR-mediated sequestration of SHIP1 from its substrates (PtdIns(3,4,5)P(3) and Ins(1,3,4,5)P(4)) might alter the levels of these inositol-containing signal transduction molecules, resulting in activation of downstream effectors of cellular proliferation and/or survival.  相似文献   

6.
Src homology protein 1 (SHP-1) plays an important role in B cell Ag receptor (BCR) differentiation, proliferation, survival, and apoptosis. After BCR stimulation in apoptotic cells, SHP-1 has been shown to be recruited to phosphorylated immunoreceptor tyrosine-based inhibitory motifs present in receptors such as CD22 and CD72. However, the substrates of SHP-1 in the chicken B cell line, DT40, have remained undefined. To identify SHP-1 substrates in DT40, we used a trapping mutant, SHP-1 C/S (a catalytically inactive form). Cross-linking of BCR induced hyperphosphorylation of approximately 44-kDa protein in C/S transfectants. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis revealed that this was actin (cytoplasmic type 5) carrying three immunoreceptor tyrosine-based inhibitory motif-like sequences. SHP-1 was shown to bind to one of these sequences in synthetic peptide binding experiment. Thus, actin is a direct SHP-1 substrate. Furthermore, more SHP-1 molecules translocate into lipid rafts, and their association with actin was increased after BCR stimulation. In C/S transfectants, actin polymerization induced by membrane IgM ligation was sustained to a greater extent for a longer time compared with wild-type transfectants. Therefore, actin dephosphorylation by SHP-1 is essential for actin depolymerization after BCR stimulation. Our data suggest that SHP-1 plays a pivotal role in reorganization of cytoskeletal architecture inducing actin dephosphorylation. These results clearly demonstrate the direct interaction of SHP-1 with actin.  相似文献   

7.
8.
To study the mechanism by which protein tyrosine phosphatases (PTPs) regulate CD3-induced tyrosine phosphorylation, we investigated the distribution of PTPs in subdomains of plasma membrane. We report here that the bulk PTP activity associated with T cell membrane is present outside the lipid rafts, as determined by sucrose density gradient sedimentation. In Jurkat T cells, approximately 5--10% of Src homology 2 domain-containing tyrosine phosphatase (SHP-1) is constitutively associated with plasma membrane, and nearly 50% of SHP-2 is translocated to plasma membrane after vanadate treatment. Similar to transmembrane PTP, CD45, the membrane-associated populations of SHP-1 and SHP-2 are essentially excluded from lipid rafts, where other signaling molecules such as Lck, linker for activation of T cells, and CD3 zeta are enriched. We further demonstrated that CD3-induced tyrosine phosphorylation of these substrates is largely restricted to lipid rafts, unless PTPs are inhibited. It suggests that a restricted partition of PTPs among membrane subdomains may regulate protein tyrosine phosphorylation in T cell membrane. To test this hypothesis, we targeted SHP-1 into lipid rafts by using the N-terminal region of Lck (residues 1--14). The results indicate that the expression of Lck/SHP-1 chimera inside lipid rafts profoundly inhibits CD3-induced tyrosine phosphorylation of CD3 zeta/epsilon, IL-2 generation, and nuclear mobilization of NF-AT. Collectively, these results suggest that the exclusion of PTPs from lipid rafts may be a mechanism that potentiates TCR/CD3 activation.  相似文献   

9.
Podosomes are adhesion structures in osteoclasts and are structurally related to focal adhesions mediating cell motility during bone resorption. Here we show that gelsolin coprecipitates some of the focal adhesion-associated proteins such as c-Src, phosphoinositide 3-kinase (PI3K), p130(Cas), focal adhesion kinase, integrin alpha(v)beta(3), vinculin, talin, and paxillin. These proteins were inducibly tyrosine-phosphorylated in response to integrin activation by osteopontin. Previous studies have defined unique biochemical properties of gelsolin related to phosphatidylinositol 3,4,5-trisphosphate in osteoclast podosomes, and here we demonstrate phosphatidylinositol 3,4,5-trisphosphate/gelsolin function in mediating organization of the podosome signaling complex. Overlay and GST pull-down assays demonstrated strong phosphatidylinositol 3,4,5-trisphosphate-PI3K interactions based on the Src homology 2 domains of PI3K. Furthermore, lipid extraction of lysates from activated osteoclasts eliminated interaction between gelsolin, c-Src, PI3K, and focal adhesion kinase despite equal amounts of gelsolin in both the lipid-extracted and unextracted experiment. The cytoplasmic protein tyrosine phosphatase (PTP)-proline-glutamic acid-serine-threonine amino acid sequences (PEST) was also found to be associated with gelsolin in osteoclast podosomes and with stimulation of alpha(v)beta(3)-regulated phosphorylation of PTP-PEST. We conclude that gelsolin plays a key role in recruitment of signaling proteins to the plasma membrane through phospholipid-protein interactions and by regulation of their phosphorylation status through its association with PTP-PEST. Because both gelsolin deficiency and PI3K inhibition impair bone resorption, we conclude that phosphatidylinositol 3,4,5-trisphosphate-based protein interactions are critical for osteoclast function.  相似文献   

10.
Coaggregation of Fc gamma RIIB1 with B cell Ag receptors (BCR) leads to inhibition of BCR-mediated signaling via recruitment of Src homology domain 2 (SH2)-containing phosphatases. In vitro peptide binding experiments using phosphotyrosine-containing sequences derived from the immunoreceptor tyrosine-based inhibitory motif (ITIM) known to mediate Fc gamma RIIB1 effects suggest that the receptor uses SH2-containing inositol phosphatase (SHIP) and SH2-containing phosphotyrosine phosphatase (SHP)-1, as well as SHP-2 as effectors. In contrast, coimmunoprecipitation studies of receptor-effector associations suggest that the predominant Fc gamma RIIB1 effector protein is SHIP. However, biologically significant interactions may be lost in such studies if reactants' dissociation rates (Kd) are high. Thus, it is unclear to what extent these assays reflect the relative recruitment of SHIP, SHP-1, and SHP-2 to the receptor in vivo. As an alternative approach to this question, we have studied the effects of ectopically expressed SHIP, SHP-1, or SHP-2 SH2-containing decoy proteins on Fc gamma RIIB1 signaling. Results demonstrate the SHIP is the predominant intracellular ligand for the phosphorylated Fc gamma RIIB1 ITIM, although the SHP-2 decoy exhibits some ability to bind Fc gamma RIIB1 and block Fc receptor function. The SHIP SH2, while not affecting Fc gamma RIIB1 tyrosyl phosphorylation, blocks receptor-mediated recruitment of SHIP, SHIP phosphorylation, recruitment of p52 Shc, phosphatidylinositol 3,4,5-trisphosphate hydrolysis, inhibition of mitogen-activated protein kinase activation, and, albeit more modestly, Fc gamma RIIB1 inhibition of Ca2+ mobilization. Taken together, results implicate ITIM interactions with SHIP as a major mechanism of Fc gamma RIIB1-mediated inhibitory signaling.  相似文献   

11.
Phosphatidylinositol(3,4,5)triphosphate (PtdIns(3,4,5)P(3)) plays important signaling roles in immune cells, particularly in the control of activating pathways and of survival. It is formed by a family of phosphatidylinositol 3'-kinases (PI3Ks) which phosphorylate PtdIns(4,5)P(2) in vivo. In human neutrophils, the levels of PtdIns(3,4,5)P(3) increase rapidly at the leading edge of locomoting cells and at the base of the phagocytic cup during FcgammaR-mediated particle ingestion. Even though these, and other, data indicate that PtdIns(3,4,5)P(3) is involved in the control of chemotaxis and phagocytosis in human neutrophils, the mechanisms that regulate its levels have yet to be fully elucidated in these cells. We evaluated the potential implication of SHIP1 and PTEN, two lipid phosphatases that utilize PtdIns(3,4,5)P(3) as substrate, in the signaling pathways called upon in response to CD32a cross-linking. We observed that the cross-linking of CD32a resulted in a transient accumulation of PtdIns(3,4,5)P(3). CD32a cross-linking also induced the tyrosine phosphorylation of SHIP1, its translocation to the plasma membrane and its co-immunoprecipitation with CD32a. CD32a cross-linking had no effect on the level of serine/threonine phosphorylation of PTEN and did not stimulate its translocation to the plasma membrane. PP2, a Src kinase inhibitor, inhibited the tyrosine phosphorylation of SHIP1 as well as its translocation to the plasma membrane. Wortmannin, a PI3K inhibitor, had no effect on either of these two indices of activation of SHIP1. Our results indicate that SHIP1 is involved, in a Src kinase-dependent manner, in the early signaling events observed upon the cross-linking of CD32a in human neutrophils.  相似文献   

12.
Diabetic retinopathy (DR) is the prevalent microvascular complication of diabetes mellitus (DM), and it may lead to permanent blindness. The previous publication has indicated that both inflammatory response and oxidative stress are critical factors involved in DR progression, however, the accurate regulatory mechanism remains to be revealed. Src homology region 2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2), a member of the protein tyrosine phosphatase family, was reported to play a role in diabetic nephropathy, whereas its function in DR was unknown and required further exploration. The level of phosphorylated, not the total, SHP2 increased in the retinas of rats with streptozotocin injection-induced DM. Further, the intravitreal injection of SHP2 shRNA lentivirus alleviated retinal pathological changes, and inhibited inflammatory response and oxidative stress, which were accompanied with Yes-associated protein 1 (YAP1) deactivation in DR rats. Additional co-immunoprecipitation results confirmed the interaction of SHP2 and YAP1. Collectively, our data preliminarily show that DR amelioration-induced by SHP2 inhibition in rats may attribute to the deactivation of YAP1 pathway.  相似文献   

13.
Interaction of NK cells with target cells leads to formation of an immunological synapse (IS) at the contact site. NK cells form two distinctly different IS, the inhibitory NK cell IS (NKIS) and the cytolytic NKIS. Cognate ligand binding is sufficient to induce clustering of inhibitory killer cell Ig-like receptors (KIR) and phosphorylation of both the receptor and the phosphatase Src homology domain 2-containing protein tyrosine phosphatase 1 (SHP-1). Recruitment and activation of SHP-1 by a signaling competent inhibitory receptor are essential early events for NK cell inhibition. We have in the present study used three-dimensional immunofluorescence microscopy to analyze distribution of inhibitory KIR, SHP-1, LFA-1, and lipid rafts within the NKIS during cytolytic and noncytolytic interactions. NK clones retrovirally transduced with the inhibitory KIR2DL3 gene fused to GFP demonstrate colocalization of KIR2DL3 with SHP-1 in the center of early inhibitory NKIS. Ligand binding translocates the receptor to the center of the IS where activation signals are accumulating and provides a docking site for SHP-1. SHP-1 and rafts cluster in the center of early inhibitory NKIS and late cytolytic NKIS, and whereas rafts continue to increase in size in cytolytic conjugates, they are rapidly dissolved in inhibitory conjugates. Furthermore, rafts are essential only for cytolytic, not for inhibitory, outcome. These results indicate that the outcome of NK cell-target cell interactions is dictated by early quantitative differences in cumulative activating and inhibitory signals.  相似文献   

14.
15.
Several protein phosphatases are involved in neuroprotection in response to ischemic brain injury. Here, we report that reactive oxygen species (ROS)-mediated oxidative stress promotes phosphorylation of endogenous SHP-2 through lipid rafts in rat primary astrocytes. SHP-2 was transiently phosphorylated during hypoxia/reoxygenation, an effect abrogated by a ROS scavenger and an NADPH oxidase inhibitor. Additionally, exogenous treatment with hydrogen peroxide (H2O2) triggered SHP-2 phosphorylation in a time- and dose-dependent manner and led to its translocation into lipid rafts. H2O2-mediated SHP-2 phosphorylation and translocation were inhibited by filipin III and methyl-β-cyclodextrin (MCD), lipid-raft-disrupting agents. In the presence of H2O2, SHP-2 formed a complex with STAT-3 and reduced the steady-state STAT-3 phosphorylation level. Interestingly, the effect of H2O2 on SHP-2 phosphorylation was cell-type specific. Remarkably, SHP-2 phosphorylation was induced strongly by H2O2 in astrocytes, but barely detectable in microglia. Our results collectively indicate that SHP-2 is activated by ROS-mediated oxidative stress in astrocytes and functions as a component of the raft-mediated signaling pathway that acts through dephosphorylation and inactivation of other phosphotyrosine proteins, such as STAT-3.  相似文献   

16.
The protein tyrosine phosphatase Src homology 2 domain-containing phosphatase 1 (SHP-1) has previously been shown to be a negative regulator of signaling mediated via the TCR. A growing body of evidence indicates that the regulated localization of proteins within certain membrane subdomains, referred to as lipid rafts, is important for the successful transduction of signaling events downstream of the TCR. However, considerably less is known about the localization of negative regulators during these lipid raft-dependent signaling events. In this study we have investigated the subcellular localization of SHP-1 and its role in regulation of TCR-mediated signaling. Our studies demonstrate that in a murine T cell hybridoma as well as in primary murine thymocytes, a fraction of SHP-1 localizes to the lipid rafts, both basally and after TCR stimulation. Interestingly, although SHP-1 localized in the nonraft fractions is tyrosine phosphorylated, the SHP-1 isolated from the lipid rafts lacks the TCR-induced tyrosine phosphorylation, suggesting physical and/or functional differences between these two subpopulations. We identify a requirement for the C-terminal residues of SHP-1 in optimal localization to the lipid rafts. Although expression of SHP-1 that localizes to lipid rafts potently inhibits TCR-mediated early signaling events and IL-2 production, the expression of lipid raft-excluded SHP-1 mutants fails to elicit any of the inhibitory effects. Taken together these studies reveal a key role for lipid raft localization of SHP-1 in mediating the inhibitory effects on T cell signaling events.  相似文献   

17.
Recent characterization of Mcl-1 as the primary anti-apoptotic Bcl-2 family member expressed in solid tumors, coupled with its ability to enable therapeutic resistance, has provided the impetus for further study into how Mcl-1 is involved in apoptosis signaling. Here, we employ Sabutoclax, a potent and effective Mcl-1 antagonist, as a competing agent to screen a randomized 12-residue phage display library for peptides that bind strongly to the Bcl-2 homology 3 (BH3) binding groove of Mcl-1. Although the screen identified a number of α-helical peptides with canonical BH3 domain sequences, it also isolated a pair of unique peptide sequences. These sequences exhibit a reverse organization of conserved hydrophobic and acidic residues when compared with canonical BH3 sequences, and we therefore refer to them as reverse BH3 (rBH3) peptides. Furthermore, studies of the rBH3 peptides using NMR spectroscopy, fluorescence polarization displacement assays, and alanine scanning data all suggest that they bind to the BH3 binding groove of Mcl-1 selectively over Bcl-x(L). A search for proteins containing the rBH3 motif has identified a number of interesting Mcl-1 protein partners, some of which have previously been associated with apoptosis regulation involving Mcl-1. These findings provide insights into the development of more specific Mcl-1 antagonists and open the way to the identification of a previously unknown family of apoptosis-regulating and Mcl-1 interacting proteins.  相似文献   

18.
SHP-2 is an Src homology 2 (SH2) domain-containing tyrosine phosphatase with crucial functions in cell signaling and major pathological implications. It stays inactive in the cytosol and is activated by binding through its SH2 domains to tyrosine-phosphorylated receptors on the cell surface. One such cell surface protein is PZR, which contains two tyrosine-based inhibition motifs responsible for binding of SHP-2. We have generated a glutathione S-transferase fusion protein carrying the tandem tyrosine-based inhibition motifs of PZR, and the protein was tyrosine-phosphorylated by co-expressing c-Src in Escherichia coli cells. The purified phosphoprotein displays a strong binding to SHP-2 and causes its activation in vitro. However, when introduced into NIH 3T3 cells by using a protein delivery reagent, it effectively inhibited the activation of ERK1/2 induced by growth factors and serum but not by phorbol ester, in reminiscence of the effects caused by expression of dominant negative SHP-2 mutants and deletion of functional SHP-2. The data suggest that the exogenously introduced PZR protein specifically binds SHP-2, blocks its translocation, and renders it functionally incompetent. This is further supported by the fact that the phosphorylated PZR protein had no inhibitory effects on fibroblasts derived from mice expressing only a mutant SHP-2 protein lacking most of the N-terminal SH2 domain. This study thus provides a novel and highly specific method to interrupt the function of SHP-2 in cells.  相似文献   

19.
SH-PTP2 is a nontransmembrane human protein-tyrosine phosphatase that contains two Src homology 2 (SH2) domains and binds to insulin receptor substrate 1 (IRS-1) via these domains in response to insulin. The expression of a catalytically inactive mutant of SH-PTP2 (containing the mutation Cys-459-->Ser) in Chinese hamster ovary cells that overexpress human insulin receptors (CHO-IR cells) markedly attenuated insulin-stimulated Ras activation. Expression of mutant SH-PTP2 also inhibited MAP kinase activation in response to insulin but not in response to 12-O-tetradecanoyl phorbol-13-acetate. In contrast, the insulin-induced association of phosphoinositide 3-kinase activity with IRS-1 was not affected by the expression of inactive SH-PTP2. Furthermore, the expression of mutant SH-PTP2 had no effect on the binding of Grb2 to IRS-1, on the tyrosine phosphorylation of Shc, or on the formation of the complex between Shc and Grb2 in response to insulin. However, the amount of SH-PTP2 bound to IRS-1 in insulin-treated CHO-IR cells expressing mutant SH-PTP2 was greater than that observed in CHO-IR cells overexpressing wild-type SH-PTP2. Recombinant SH-PTP2 specifically dephosphorylated a synthetic phosphopeptide corresponding to the sequence surrounding Tyr-1172 of IRS-1, a putative binding site for SH-PTP2. Additionally, phenylarsine oxide, an inhibitor of protein-tyrosine phosphatases, inactivated SH-PTP2 in vitro and increased the insulin-induced association of SH-PTP2 with IRS-1. These results suggest that SH-PTP2 may regulate an upstream element necessary for Ras activation in response to insulin and that this upstream element may be required for the Grb2- or Shc-dependent pathway. Furthermore, these results are consistent with the notion that SH-PTP2 may bind to IRS-1 through its SH2 domains in response to insulin and dephosphorylate the phosphotyrosine residue to which it binds, thereby regulating its association with IRS-1.  相似文献   

20.
AIMS: The characterization of a novel insertion sequence (IS) in vanB2-containing Enterococcus faecium was conducted. METHODS AND RESULTS: Direct PCR amplification of ORFC region of Tn5382 from DNA extracted from vanB2-containing E. faecium, and sequence analysis were performed. A novel IS was identified. It is 1418 bp in length and contains one putative open reading frame that is similar to transposase. There exists inverted terminal repeats of 12 bp, but direct repeats are not present. According to high similarity to putative transposases of IS3 members, such as, IS150, IS861, IS1077 and IS911, we designated it ISEnfa3. SIGNIFICANCE AND IMPACT OF STUDY: Since ISEnfa3 was detected in all vanB2-containing strains examined so far, it could be used as a tool for epidemiological study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号