共查询到20条相似文献,搜索用时 8 毫秒
1.
Repression of interleukin-5 transcription by the glucocorticoid receptor targets GATA3 signaling and involves histone deacetylase recruitment 总被引:4,自引:0,他引:4
Jee YK Gilmour J Kelly A Bowen H Richards D Soh C Smith P Hawrylowicz C Cousins D Lee T Lavender P 《The Journal of biological chemistry》2005,280(24):23243-23250
2.
3.
4.
5.
6.
7.
8.
Hui Ming Qianfeng Wang Yuwen Zhang Luzhang Ji Lu Cheng Xiangru Huo Zixiang Yan Zhexiao Liu Yongjun Dang Bo Wen 《蛋白质与细胞》2021,12(4):297-304
Dear Editor,
In the nucleus of higher eukaryotes, chromatin occupies only a small proportion of the nuclear space, while many proteins and RNAs segregate into membrane-less nuclear bodies (NBs).These NBs follow a stochastic or ordered assembly model and constantly exchange components with the surrounding nucleoplasm (Jain et al., 2016).Typical NBs include nucleoli, nuclear speckles, paraspeckles, PML bodies, Cajal bodies, polycomb bodies and Sam68 bodies,which play critical roles in various biological processes such as ribosome assembly, RNA processing, and protein modification.The dysfunction of nuclear bodies may cause diseases, such as cancer (Li et al., 2019). 相似文献
9.
Us3, a serine/threonine kinase encoded by all alphaherpesviruses, plays diverse roles during virus infection, including preventing virus-induced apoptosis, facilitating nuclear egress of capsids, stimulating mRNA translation and promoting cell-to-cell spread of virus infection. Given this diversity, the full spectrum of Us3 function may not yet be recognized. We noted, in transiently transfected cells, that herpes simplex virus type 2 (HSV-2) Us3 disrupted promyelocytic leukemia protein nuclear bodies (PML-NBs). However, PML-NB disruption was not observed in cells expressing catalytically inactive HSV-2 Us3. Analysis of PML-NBs in Vero cells transfected with pseudorabies virus (PRV) Us3 and those in Vero cells infected with Us3-null or -repaired PRV strains indicated that PRV Us3 expression also leads to the disruption of PML-NBs. While loss of PML-NBs in response to Us3 expression was prevented by the proteasome inhibitor MG132, Us3-mediated degradation of PML was not observed in infected cells or in transfected cells expressing enhanced green fluorescent protein (EGFP)-tagged PML isoform IV. These findings demonstrate that Us3 orthologues derived from distantly related alphaherpesviruses cause a disruption of PML-NBs in a kinase- and proteasome-dependent manner but, unlike the alphaherpesvirus ICP0 orthologues, do not target PML for degradation. 相似文献
10.
11.
AMP-activated protein kinase (AMPK) is a key regulator of energy metabolism; it is inhibited under obese conditions and is activated by exercise and by many anti-diabetic drugs. Emerging evidence also suggests that AMPK regulates cell differentiation, but the underlying mechanisms are unclear. We hypothesized that AMPK regulates cell differentiation via altering β-catenin expression, which involves phosphorylation of class IIa histone deacetylase 5 (HDAC5). In both C3H10T1/2 cells and mouse embryonic fibroblasts (MEFs), AMPK activity was positively correlated with β-catenin content. Chemical inhibition of HDAC5 increased β-catenin mRNA expression. HDAC5 overexpression reduced and HDAC5 knockdown increased H3K9 acetylation and cellular β-catenin content. HDAC5 formed a complex with myocyte enhancer factor-2 to down-regulate β-catenin mRNA expression. AMPK phosphorylated HDAC5, which promoted HDAC5 exportation from the nucleus; mutation of two phosphorylation sites in HDAC5, Ser-259 and -498, abolished the regulatory role of AMPK on β-catenin expression. In conclusion, AMPK promotes β-catenin expression through phosphorylation of HDAC5, which reduces HDAC5 interaction with the β-catenin promoter via myocyte enhancer factor-2. Thus, the data indicate that AMPK regulates cell differentiation and development via cross-talk with the wingless and Int (Wnt)/β-catenin signaling pathway. 相似文献
12.
13.
14.
15.
16.
Histone deacetylases (HDACs) are enzymes that catalyze the removal of acetyl groups from lysine residues of histone and nonhistone proteins. Recent studies suggest that they are key regulators of many cellular events, including cell proliferation and cancer development. Human class I HDACs possess homology to the yeast RPD3 protein and include HDAC1, HDAC2, HDAC3, and HDAC8. While HDAC1, HDAC2, and HDAC3 have been characterized extensively, almost nothing is known about HDAC8. Here we report that HDAC8 is phosphorylated by cyclic AMP-dependent protein kinase A (PKA) in vitro and in vivo. The PKA phosphoacceptor site of HDAC8 is Ser(39), a nonconserved residue among class I HDACs. Mutation of Ser(39) to Ala enhances the deacetylase activity of HDAC8. In contrast, mutation of Ser(39) to Glu or induction of HDAC8 phosphorylation by forskolin, a potent activator of adenyl cyclase, decreases HDAC8's enzymatic activity. Remarkably, inhibition of HDAC8 activity by hyperphosphorylation leads to hyperacetylation of histones H3 and H4, suggesting that PKA-mediated phosphorylation of HDAC8 plays a central role in the overall acetylation status of histones. 相似文献
17.
Pondering the promyelocytic leukemia protein (PML) puzzle: possible functions for PML nuclear bodies 总被引:19,自引:0,他引:19 下载免费PDF全文
Borden KL 《Molecular and cellular biology》2002,22(15):5259-5269
18.
19.