首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To elucidate the mechanism of proliferation and differentiation of testicular germ cells, donor testicular germ cells labeled with enhanced green fluorescent protein (eGFP) were transplanted to recipient seminiferous tubules. The kinetics of colonization as well as of differentiation of the donor cells was followed in the same transplanted tubules (alive) under ultraviolet light. One week after transplantation, clusters of fluorescent cells were randomly spread as dots in the recipient seminiferous tubule, whereas non-homed cells flowed out from the testis to the epididymis. By 4 weeks after transplantation, green germ cells were observed with weak and moderate fluorescence along the recipient seminiferous tubule. By 8 weeks, proliferation and differentiation of the germ cells occurred, resulting in strong fluorescence in the middle part of the seminiferous tubule but in weak and moderate fluorescence at both terminals. The length of the fluorescent positive seminiferous tubule became longer. Detailed histological analyses of the recipient tubules indicated that the portions of the seminiferous tubule in weak, moderate, and strong fluorescence contained the spermatogonia, spermatogonia with spermatocytes, and all types of germ cells including spermatids, respectively. Thus, testicular stem cells colonized first as dots within 1 week, and then proliferated along the basement membrane of the seminiferous tubules followed by differentiation.  相似文献   

2.
3.
Nature of the spermatogenic arrest in Dazl -/- mice   总被引:5,自引:0,他引:5  
Dazl encodes an RNA-binding protein essential for spermatogenesis. Mice that are deficient for Dazl are infertile, lacking any formation of spermatozoa, and the only germ cells present are spermatogonia and a few spermatocytes. To gain more insight regarding the timing of the spermatogenic arrest in Dazl -/- mice, we studied the spermatogonial cell types present in testis sections and in seminiferous tubular whole mounts. Most of the seminiferous tubular cross-sections contained A spermatogonia as the most advanced cell type, with only very few containing cells up to pachytene spermatocytes. Both 5-bromodeoxy-uridine incorporation and mitotic index indicated that the remaining A spermatogonia were actively proliferating. C-kit immunohistochemical studies showed that most of the A spermatogonia were positively stained for the c-Kit protein ( approximately 80%). The clonal composition of the A spermatogonia in tubular whole mounts indicated these cells to be A(single) (A(s)), A(paired) (A(pr)), and A(aligned) (A(al)) spermatogonia. It is concluded that the prime spermatogenic defect in the Dazl -/- mice is a failure of the great majority of the A(al) spermatogonia to differentiate into A(1) spermatogonia. As a result, most seminiferous tubules of Dazl -/- mice only contain actively proliferating A(s), A(pr), and A(al) spermatogonia, with cell production being equaled by apoptosis of these cells.  相似文献   

4.
In the seminiferous epithelium, spermatogonial stem cells (SSCs) are located in a particular environment called the "niche" that is controlled by the basement membrane, key testis somatic cells, and factors originating from the vascular network. However, the role of Leydig cells (LCs) as a niche component is not yet clearly elucidated. Recent studies showed that peccaries (Tayassu tajacu) present a peculiar LC cytoarchitecture in which these cells are located around the seminiferous tubule lobes, making the peccary a unique model for investigating the SSC niche. This peculiarity allowed us to subdivide the seminiferous tubule cross-sections in three different testis parenchyma regions (tubule-tubule, tubule-interstitium, and tubule-LC contact). Our aims were to characterize the different spermatogonial cell types and to determine the location and/or distribution of the SSCs along the seminiferous tubules. Compared to differentiating spermatogonia, undifferentiated spermatogonia (A(und)) presented a noticeably higher nuclear volume (P < 0.05), allowing an accurate evaluation of their distribution. Immunostaining analysis demonstrated that approximately 93% of A(und) were GDNF receptor alpha 1 positive (GFRA1(+)), and these cells were preferentially located adjacent to the interstitial compartment without LCs (P < 0.05). The expression of colony-stimulating factor 1 was observed in LCs and peritubular myoid cells (PMCs), whereas its receptor was present in LCs and in GFRA1(+) A(und). Taken together, our findings strongly suggest that LCs, different from PMCs, might play a minor role in the SSC niche and physiology and that these steroidogenic cells are probably involved in the differentiation of A(und) toward type A(1) spermatogonia.  相似文献   

5.
The brook stickleback, Culaea inconstans (Kirtland), in common with other bony fishes, lacks a germinal epithelium in the tubules of the testis, and the tubule wall is composed of a thin, discontinuous layer of myoid cells and collagenous fibers. Labelling of germ cells with tritiated thymidine has shown that the germ cells are derived from clumps of spermatogonia in the interstitial area. Large companion cells within the lumina of the tubules extend their processes to engulf spermatogonia from the interstitium which then enter the lumen of the tubule. Subsequent development of the germ cells takes place within individual compartments formed by folds of the plasma membrane of a companion cell. The companion cell, together with its complement of germ cells, constitutes a cyst. A companion cell may surround spermatogonia in the interstitium and at the same time encompass residual sperm of the previous season within the lumen. The plasma membranes of the germ cells and the companion cells remain discrete. Mature sperm are released into the lumen of the tubule and the companion cell again extends its processes into the interstitium and engulfs more spermatogonia for the following year. Companion cells may be homologous to the Sertoli cells of higher vertebrates although their processes penetrate the interstitium during the initial stages of spermatogenesis and they do not contain a permanent stock of spermatogonia.  相似文献   

6.
7.
J R Wisner  W R Gomes 《Steroids》1975,26(6):769-783
Homogenates of rat seminiferous tubules, interstitium and intact testis tissues were assessed for their ability to convert cholesterol -1,2-3H to testosterone in vitro. While 3H-testosterone synthesis was observed in incubates of interstitial and whole testis homogenates, no synthesis was detectable in homogenates of seminiferous tubules. To determine whether cholesterol side-chain cleavage enzyme (CSCCE) was deficient or absent in tubules, mitochondria from tubules, interstitium and whole testes were analyzed for CSCCE activity by measuring conversion of cholesterol -26-14C to 14C-isocaproate (+pregnenolone). Interstitial mitochondrial preparations from each of six testes were found to be approximately 200 times more active in CSCCE than the corresponding tubule mitochondria, and 1600-1800 times more active on a specific activity basis. Although caution is required in extrapolation of in vitro data to the in vivo state, these findings suggest rat seminiferous tubules may be incapable of de novo testosterone biosynthesis and that this lack of synthetic ability may be due to a deficiency of CSCCE.  相似文献   

8.
To study self-renewal and differentiation of spermatogonial stem cells, we have transplanted undifferentiated testicular germ cells of the GFP transgenic mice into seminiferous tubules of mutant mice with male sterility, such as those dysfunctioned at Steel (Sl) locus encoding the c-kit ligand or Dominant white spotting (W) locus encoding the receptor c-kit. In the seminiferous tubules of Sl/Sl(d) or Sl(17H)/Sl(17H) mice, transplanted donor germ cells proliferated and formed colonies of undifferentiated c-kit (-) spermatogonia, but were unable to differentiate further. However, these undifferentiated but proliferating spermatogonia, retransplanted into Sl (+) seminiferous tubules of W mutant, resumed differentiation, indicating that the transplanted donor germ cells contained spermatogonial stem cells and that stimulation of c-kit receptor by its ligand was necessary for maintenance of differentiated type A spermatogonia but not for proliferation of undifferentiated type A spermatogonia. Furthermore, we have demonstrated that their transplantation efficiency in the seminiferous tubules of Sl(17H)/Sl(17H) mice depended upon the stem cell niche on the basement membrane of the recipient seminiferous tubules and was increased by elimination of the endogenous spermatogonia of mutant mice from the niche by treating them with busulfan.  相似文献   

9.
Transilluminated seminiferous tubules were staged and utilized to determine the distribution of nuclear pore complexes in seminiferous tubules of the rat. Segments of seminiferous tubules of adult albino rats were separated and identified (in stages VII-VIII, IX-XI, XII-XIV, and V-VI), and then processed by freeze-fracture. Type A spermatogonia, the only spermatogonia located in seminiferous segments possessing stages IX-XI and XII-XIV, are oval cells in contact with the basal lamina. They either exhibit a random distribution of nuclear pores or a slight degree of clumping. Type B spermatogonia, found in segments possessing stages V-VI, exhibit, instead, a noticeable pore clustering. The identification of intermediate spermatogonia was not undertaken in this study. Preleptotene spermatocytes are easily identified in freeze-fracture by their location in segments with stages VII-VIII, by their arrangement in numerous groups between the basal lamina and the pachytene spermatocytes, and by their comparatively small size. They exhibit noticeable pore clustering. Leptotene (segments containing stages IX-XI) and zygotene (XII-XIV) spermatocytes show a more homogeneous distribution of nuclear pores. Pachytene spermatocytes are identified by their large size, by consistent detachment from the basal lamina and by being rather numerous and found in all the stages explored. Diplotene spermatocytes have the largest nuclei of all germ cells. They are always detached from the basal lamina and found only in seminiferous segments containing stage XIII. Pachytenes display a regular geometric array of pore aggregation with striking clustering, whereas diplotene nuclear pores takes on a random distribution. Secondary spermatocytes, only present in stage XIV intermingled with metaphase-anaphase profiles, are characterized in replicas by a paucity of evenly distributed nuclear pores.  相似文献   

10.
Ground Skink (Scincella lateralis) testes were examined histologically to determine the testicular organization and germ cell development strategy employed during spermatogenesis. Testicular tissues were collected from 19 ground skinks from Aiken County, South Carolina during the months of March-June, August, and October. The testes consisted of seminiferous tubules lined with germinal epithelia in which germ cells matured in close association with Sertoli cells. As germ cells matured, they migrated away from the basal lamina of the epithelia towards the lumina of the seminiferous tubules. The testes were spermatogenically active during the months of March, April, May, June, and October (largest seminiferous tubule diameters and epithelial heights), but entered a quiescent period in August (smallest seminiferous tubule diameter and epithelial height) where only spermatogonia type A and B and early spermatocytes were present in low numbers within the seminiferous epithelium. Although the testicular organization was similar to other amniotes, a temporal germ cell development strategy was employed during spermatogenesis within Ground Skinks, similar to that of anamniotes. Thus, this skink's germ cell development strategy, which also has been recently reported in all other major reptilian clades, may represent an evolutionary intermediate in terms of testicular organization between anamniotes and birds and mammals.  相似文献   

11.
Summary Four different types of spermatogonia were identified in the seminiferous tubules of the Japanese quail: a dark type A (Ad), 2 pale A type (Ap1 and Ap2), and a type B. A model is proposed describing the process of spermatogonial development in the quail. The Ad spermatogonia are considered to be the stem cells. Each divides to produce a new Ad spermatogonium and a Ap1 spermatogonium during Stage IX of the cycle of the seminiferous epithelium. An Ap1 spermatogonium produces two Ap2 spermatogonia during Stage II of the cycle, Ap2 spermatogonia produce four type B spermatogonia during Stage VI of the cycle, and type B spermatogonia produce eight primary spermatocytes during Stage III of the cycle. Consequently, 32 spermatids can result from each division of an Ad spermatogonium. Spermatogonial development in the quail differs from the process described in mammals in that there are fewer mitotic divisions and they are all synchronized with the cycle of the seminiferous epithelium. It is suggested that the fewer mitotic divisions explain why a smaller area of the seminiferous tubule is occupied by a cellular association in the quail than in mammals like the rat, ram and bull. The duration of spermatogenesis from the division of the Ad spermatogonia to sperm release from the seminiferous epithelium was estimated to be 12.77 days.  相似文献   

12.
The in vivo injection of cadmium (Cd) was reported to induce blood-testis barrier disruption, and assumed to be an experimental model to examine junctional structures in seminiferous tubules. The purpose of this study is to investigate time-dependent changes of albumin permeability in the normal or Cd-treated mouse testis by our "in vivo cryotechnique" with immunohistochemistry, reflecting tight junctional (TJ) barriers of Sertoli cells. The albumin in the seminiferous tubules was firstly immobilized by the cryotechnique, in which normal blood circulation was always kept. The cryofixed testicular tissues were then processed for freeze-substitution, and embedded in the paraffin wax. Serial sections were immunostained by anti-mouse albumin antibody with peroxidase immunostaining, and also stained with hematoxylin-eosine (HE) for morphological observation. In normal seminiferous tubules, the immunoreaction products were localized around peritubular myoid cells and between Leydig cells, as well as in blood vessels. They were also localized as arch-like patterns around some spermatogonia in basal compartments of seminiferous tubules. Twenty-four and 48 hrs after Cd-treatment, some enlarged spaces and vesicular formations in the seminiferous epithelium were observed on the HE-stained sections. The albumin immunolocalization was detected not only in the basal compartments, but also in the adluminal compartments between Sertoli cells and germ cells. Thus, the structural disruptions of inter-Sertoli TJ barriers could be clearly demonstrated by the "in vivo cryotechnique".  相似文献   

13.
Summary Histology and ultrastructure of the connexion of seminiferous and straight testicular tubules were studied in 58 bovine testes of 29 animals ranging from 4 to 52 weeks of postnatal development. In the 4th and 8th week seminiferous tubules are solid. Their non-germinal supporting cells possess spherical nuclei in a basal location and a great amount of granular endoplasmic reticulum. The straight tubules have a narrow lumen and a stratified epithelium rich in intercellular canaliculi. Between 20 and 25 weeks the seminiferous tubules acquire a lumen and develop a terminal segment, the tip of which (terminal plug) protrudes into the cup-shaped modification of the adjacent straight tubule. At 30 weeks the structural differentiation between seminiferous tubule proper and its terminal segment has proceeded: in the former spermatocytes and spermatids make their first appearance, and the supporting cells have transformed to Sertoli cells. In the latter the morphology of the supporting cell preserves a more primitive state. Starting from the 16th week and proceeding through the 30th week and further, the epithelium of the tubulus rectus close to the connexion with the seminiferous tubule becomes monolayered by rearrangement of its cells and advances along the basal lamina into the area of the seminiferous tubule. Those cells of the seminiferous tubule that are cut off from the basal lamina by invading rectus cells degenerate. Between 40 and 52 weeks the adult situation is principally achieved. The terminal segment of the seminiferous tubule is tripartite consisting of transitional region, intermediate portion, and terminal plug. The terminal segment is surrounded by a vascular plexus. The straight testicular tubule adjacent to the terminal segment is modified into a cup region encompassing the terminal plug, followed by a narrow stalk region, which is lined by simple columnar epithelium. Mononuclear free cells are a constant feature of the tubulus rectus epithelium in all stages of postnatal development.Supported by grant Wr 7/6-6 from the Deutsche Forschungsge-meinschaft  相似文献   

14.
The binding of metabolites of the polycyclic aromatic hydrocarbon (PAH) 7,12-dimethylbenz[a]anthracene (DMBA) to protein in rat testis seminiferous tubules was studied. Treatment of cultured seminiferous tubule segments with DMBA resulted in very little binding to protein, suggesting that the seminiferous epithelium from rat testis lacks the cytochrome P-450-dependent monooxygenase(s) required for DMBA metabolism. In contrast, Leydig cells from rat testis contain monooxygenase systems which catalyze the metabolism of PAH, such as DMBA. This metabolic activation of DMBA was localized in both mitochondria and microsomes derived from Leydig cells and was decreased by inhibitors of the cytochrome P-450 system and by free radical scavengers, suggesting that the metabolism involved both cytochrome P-450 and free radical-dependent pathways. In the presence of whole Leydig cells or microsomes prepared from Leydig cells, the covalent binding of DMBA metabolites to protein of rat testis seminiferous tubules was increased 5- and 13-fold, respectively. These results suggest that DMBA is metabolized primarily in rat testis Leydig cells and that part of the produced metabolites find their way to the seminiferous epithelium, where they undergo further metabolism producing reactive metabolites, possibly cation radicals and diolepoxides, which interfere with the functions of spermatogonia and spermatocytes by modifying key proteins covalently.  相似文献   

15.
Summary Sulfhydryl oxidase (SOx) immunoreactivity was investigated in the seminiferous epithelium of human biopsy material from the testes of 33 adult men with disturbed fertility. SOx immunoreactivity was expressed in normal seminiferous epithelium in type-A spermatogonia (27±4% of all spermatogonia) (n=4), in spermatocytes and round spermatids. Mature spermatozoa as well as Sertoli cells were unlabelled. within the interstitium, Leydig cells were immunopositive. In biopsies of oligozoospermic men showing hypospermatogenesis (n=24), an increase in labelled spermatogonia up to more than 90% was observed in biopsies, where seminiferous epithelia revealed only spermatogonia and Sertoli cells. Within the group of oligozoospermic patients there was a significant increase of labelled spermatogonia from 43±13% (>20 mill/ejaculate) (n=7) to 55±16% ( 20 and >20 mill/ejaculate) (n=6) to 68±8% (<5 mill/ejaculate) (n=11) and a significant (P=0.01) decrease of score count from 7.0±2.7 to 2.0±1.8. In this group the increase of labelled spermatogonia was correlated with sperm concentrations in the ajaculate (correlation coefficient: r=-0.6). In biopsies of azoospermic patients showing maturation arrest at the level of spermatocytes or spermatids (n=5) the percentage of labelled spermatogonia was within the range of 24% to 59%. Immunoreactivity in Sertoli cells was only found in single degenerating cells and in tubules showing Sertoli Cell Only Syndrome (SCO) without lumen formation. Sertoli cells within immature seminiferous cords were immunonegative, indicating that Sertoli cell SOx immunoreactivity is rather a sign of physiological alterations in degenerating cells than dependent on the stage of differentiation. Leydig cells did not show changes of immunoreactivity in any biopsy. It is concluded that SOx expression in spermatogonia may serve as a marker for spermatogenic efficiency.  相似文献   

16.
17.
A procedure is described which permits the isolation from the prepuberal mouse testis of highly purified populations of primitive type A spermatogonia, type A spermatogonia, type B spermatogonia, preleptotene primary spermatocytes, leptotene and zygotene primary spermatocytes, pachytene primary spermatocytes and Sertoli cells. The successful isolation of these prepuberal cell types was accomplished by: (a) defining distinctive morphological characteristics of the cells, (b) determining the temporal appearance of spermatogenic cells during prepuberal development, (c) isolating purified seminiferous cords, after dissociation of the testis with collagenase, (d) separating the trypsin-dispersed seminiferous cells by sedimentation velocity at unit gravity, and (e) assessing the identity and purity of the isolated cell types by microscopy. The seminiferous epithelium from day 6 animals contains only primitive type A spermatogonia and Sertoli cells. Type A and type B spermatogonia are present by day 8. At day 10, meiotic prophase is initiated, with the germ cells reaching the early and late pachytene stages by 14 and 18, respectively. Secondary spermatocytes and haploid spermatids appear throughout this developmental period. The purity and optimum day for the recovery of specific cell types are as follows: day 6, Sertoli cells (purity>99 percent) and primitive type A spermatogonia (90 percent); day 8, type A spermatogonia (91 percent) and type B spermatogonia (76 percent); day 18, preleptotene spermatocytes (93 percent), leptotene/zygotene spermatocytes (52 percent), and pachytene spermatocytes (89 percent), leptotene/zygotene spermatocytes (52 percent), and pachytene spermatocytes (89 percent).  相似文献   

18.
Repopulation of the seminiferous epithelium became evident from Day 75 postirradiation onward after doses of 0.5, 1.0, and 2.0 Gy of X rays. Cell counts in cross sections of seminiferous tubules revealed that during this repopulation the numbers of Apale (Ap) spermatogonia, Adark (Ad) spermatogonia, and B spermatogonia increased simultaneously. After 0.5 Gy the number of spermatogonia increased from approximately 10% of the control level at Day 44 to 90% at Day 200. After 1.0 and 2.0 Gy the numbers of spermatogonia increased from less than 5% at Day 44 to 70% at Days 200 and 370. The number of Ad and B spermatogonia, which are considered to be resting and differentiating spermatogonia, respectively, already had increased when the number of proliferating Ap spermatogonia was still very low. This early inactivation and differentiation of a large part of the population of Ap spermatogonia slows down repopulation of the seminiferous epithelium of the primates. By studying repopulating colonies in whole mounts of seminiferous tubules various types of colonies were found. In colonies consisting of only A spermatogonia, 40% of the A spermatogonia were found to be of the Ad type, which indicates that even before the colony had differentiated, 40% of the A spermatogonia were inactivated into Ad. Differentiating colonies were also found in which one or two generations of germ cells were missing. In some of those colonies it was found that the Ap spermatogonia did not form any B spermatogonia during one or two cycles of the seminiferous epithelium, while in other colonies all Ap spermatogonia present had differentiated into B spermatogonia. This indicates that the differentiation of Ap into B spermatogonia is a stochastic process. When after irradiation the density of the spermatogonia in the epithelium was very low, it could be seen that the populations of Ap and Ad spermatogonia are composed of clones of single, paired, and aligned spermatogonia, which are very similar to the clones of undifferentiated spermatogonia in non-primates.  相似文献   

19.
Although spermatogonial stem cell niches have been defined in lower organisms, their definitive localization in mammalian seminiferous tubules has been elusive. In a recent Science paper, Yoshida et al. (2007) elegantly demonstrated a vascular and interstitial tissue-associated niche for undifferentiated spermatogonia in the mouse.  相似文献   

20.
为探索细胞外基质相关蛋白在隐睾双峰驼的分布情况及其组织化学特征,应用电镜技术和多种组织化学方法比较了隐睾和正常睾丸的超微结构,组织化学特点及层粘连蛋白(LN)、Ⅳ型胶原(Col Ⅳ)和硫酸乙酰肝素糖蛋白(HSPG)的分布特征。结果显示:(1)与正常睾丸间质结构相比,光镜下隐睾生精小管发育不全,间质内胶原纤维稀疏,网状纤维分布明显,间质血管及生精小管固有膜PAS及AB-PAS阳性反应较弱。电镜下,隐睾生精上皮基膜明显增生,外围I型胶原纤维较少,管周肌样细胞不典型;间质毛细血管及Leydig细胞周围纤维细胞多见,而正常睾丸在间质毛细血管及Leydig细胞周围多分布有成纤维细胞。(2) 免疫组织化学染色显示,正常睾丸组织的Col Ⅳ、LN及HSPG在Leydig细胞内均为强阳性表达,Col Ⅳ和LN在毛细血管内皮细胞强阳性表达,后者在Sertoli细胞的表达尤为明显,HSPG在精原细胞无表达;隐睾时Col Ⅳ、LN及HSPG在Leydig细胞内阳性表达均明显减弱,Col Ⅳ、LN在管周肌样细胞及毛细血管内皮细胞阳性表达也减弱明显,HSPG在精原细胞较强阳性表达,且在精子细胞呈强阳性表达。免疫组织化学图像分析结果显示,双峰驼正常睾丸组织中Col Ⅳ和LN的分布显著高于隐睾组织(P<0.05),HSPG检测结果在正常睾丸与隐睾之间无统计学差异(P>0.01)。该研究表明,双峰驼隐睾生精小管发育异常,间质组织中合成胶原纤维的能力下降,睾丸细胞外基质的重要成分Col Ⅳ,LN与正常组差异显著与生精小管及Leydig细胞异常发育有关,而HSPG在隐睾生精上皮的强阳性表达与精原细胞发育不成熟密切相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号