首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immunization of rabbits with DNase I leads to the production of antiidiotypic Abs with DNase activity. It is not known at present whether antiidiotypic Abs against DNA-hydrolyzing enzymes can possess RNase activity. Here we show that immunization of healthy rabbits with bovine DNase I produces IgGs with intrinsic DNase and RNase activities. Electrophoretically and immunologically homogeneous polyclonal IgGs were obtained by sequential chromatography of the immune sera on Protein A-Sepharose and gel filtration. Affinity chromatography on DNA cellulose using elution of Abs with different concentrations of NaCl and an acidic buffer separated catalytic IgGs into four Ab subfractions, three of which demonstrated only DNase activity while one subfraction hydrolyzed RNA faster than DNA. The serum of patients with many different autoimmune (AI) diseases contains small fractions of antibodies (Abs) interacting with immobilized DNA, which possess both DNase and RNase activities. Our data suggest that a fraction of abzymes from AI patients hydrolyzing both DNA and RNA can contain a subfraction of Abs against DNase I.  相似文献   

2.
Proteins diffusing from tobacco pollen grains exhibit different phosphohydrolytic activities. Molecular sieving produces nuclease fractionation into forms I, II and III with apparent molecular masses ≥ 60 × 103, 32.9 × 103 and 24.6 × 103, respectively, and separation of principal forms II and III from phosphatase and major part of 5′- and 3′-nucleotidase activities. These forms did not differ in the mode of substrate attack and were combined for further enzyme characterization. The preparation had 3′-nueleotidase activity even after further purification by DEAE-cellulose chromatography. The enzyme is an endonuclease with preference for single stranded molecules. The endolytical cleavage of native DNA occurs simultaneously in both strands and generates limit products of about 58 pairs of nucleotides. DNA duplex polymers are also cleaved by a terminally-directed, exonuclease-like process. The products of DNA degradation are oligonucleotides and 5′-mononucleotides. In the presence of NaCl, both endolytical and exonucleaselike activities on bihelical DNA are inhibited and the proportion of mono-to oligonucleotides produced increases. The enzyme can rapidly convert superhelical plasmid DNA to a nicked open circular form, and then to a unit-length linear molecule. On the basis of these properties and of those found earlier (sugar-unspecificity, acidic pH optimum, activation by Zn2+ ions), the extracellular nuclease of tobacco pollen can be classified as plant nuclease I (EC 3.1.30.x).  相似文献   

3.
Immunization of animals with DNA leads to the production of anti-DNA antibodies (Abs) demonstrating both DNase and RNase activities. It is currently not known whether anti-RNA Abs can possess nuclease activities. In an attempt to address this question, we have shown that immunization of three rabbits with complex of RNA with methylated BSA (mBSA) stimulates production of IgGs with RNase and DNase activities belonging to IgGs, while polyclonal Abs from three non-immunized rabbits and three animals immunized with mBSA are catalytically inactive. Affinity chromatography of IgGs from the sera of autoimmune (AI) patients on DNA-cellulose usually demonstrates a number of fractions, all of which effectively hydrolyze both DNA and RNA, while rabbit catalytic IgGs were separated into Ab subfractions, some of which demonstrated only DNase activity, while others hydrolyzed RNA faster than DNA. The enzymic properties of the RNase and DNase IgGs from rabbits immunized with RNA distinguish them from all known canonical RNases and DNases and DNA- and RNA-hydrolyzing abzymes (Abzs) from patients with different AI diseases. In contrast to RNases and AI RNA-hydrolyzing Abs, rabbit RNase IgGs catalyze only the first step of the hydrolysis reaction but cannot hydrolyze the formed terminal 2',3'-cyclophosphate. The data indicate that Abzs of AI patients hydrolyzing nucleic acids in part may be Abs against RNA and its complexes with proteins. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Phosphorus-31 NMR has been applied to the characterization of terminal phosphates on fragments of calf thymus DNA induced by three different nuclease systems: DNase I, DNase II and the artificial nuclease 'Mn-TMPyP/KHSO5'. In this last case, the oxidative damage to deoxyribose leads to two monophosphates esters (at the 3' and 5' ends) on both sides of the cleavage site. This method constitutes a promising approach to visualise the phosphate termini generated in DNA or RNA cleavage by cytotoxic drugs or chemical nucleases and provides a novel insight into the molecular aspects of their mechanism of action.  相似文献   

5.
The adenovirus-specific DNA-binding protein (DBP) has been shown to inhibit the hydrolysis of single-stranded DNA by a DNase isolated from KB cells, (Nass, K., and Frenkel, G.D. (1980). J. Virol. 35, 314–319). The specificity of the inhibition has now been investigated. The DBP inhibits the hydrolysis of single-stranded DNA by several different DNases (DNase II, KB DNase, S1 nuclease) under a variety of reaction conditions, but it has no effect on DNase I-catalyzed hydrolysis of single-stranded DNA. The DBP also inhibits the rate of hydrolysis of double-stranded DNA by KB DNase and DNase II, but has no effect on DNase I-catalyzed hydrolysis of this substrate. The DBP also inhibits the dephosphorylation of 5′-phosphoryl-terminated DNA by bacterial alkaline phosphatase but stimulates the phosphorylation of 5′-hydroxyl-terminated DNA by polynucleotide kinase.  相似文献   

6.
A new Type II restriction endonucleaseApaCI purified fromAcetobacter pasteurianus is an isoschizomer ofBamHI that cleaves at the nucleotide sequence 5′-G/GATCC-3′ of double-stranded DNA. The single restriction activity present in this strain permits rapidly purified 30 000 units of cleavage activity from 10 g of freshly harvested cells. The resultingApaCI preparation is free of contaminant nuclease activities that might interfere within vitro manipulation of DNA.  相似文献   

7.
High levels of nuclease activities were identified in filtrates ofAspergillus cultures after growth in low- but not in high-phosphate media. Deoxyribonuclease activities, characterized extensively by column chromatography, showed a coincident single peak for ss- and ds-DNase which was distinct from the peak for RNase. Both ss-DNase and ds-DNase are endonucleolytic and showed the highest activity in the presence of Ca2+ and Mn2+ (atpH 8.0). They also showed identical heat sensitivities suggesting that a single, phosphate-repressible DNase was secreted. This enzyme, therefore, corresponds to the well-characterized extracellular DNase A ofNeurospora. However, theAspergillus DNase A did not cross-react with antisera to secretedNeurospora nucleases and showed different chromatographic properties, and active peptides of different sizes were visualized on DNA activity gels. The increasing derepression ofAspergillus DNase A by decreasing phosphate levels was similar to that of secreted alkaline phosphatase and these increases were both abolished by the regulatory mutantpalcA. This investigation was supported by Grant A2564 from the Natural Science and Engineering Research Council of Canada.  相似文献   

8.
The activation of endonucleases resulting in the degradation of genomic DNA is one of the most characteristic changes in apoptosis. Here, we report the characterization of a novel endonuclease, termed DNase X due to its X-chromosomal localization. The active nuclease is a 35 kDa protein with 39% identity to DNase I. When incubated with isolated nuclei, recombinant DNase X was capable of triggering DNA degradation at internucleosomal sites. Similarly to DNase I, the nuclease activity of DNase X was dependent on Ca(2+) and Mg(2+) and inhibited by Zn(2+) ions or chelators of bivalent cations. Overexpression of DNase X caused internucleosomal DNA degradation and induction of cell death associated with increased caspase activation. Despite the presence of two potential caspase cleavage sites, DNase X was processed neither in vitro nor in vivo by different caspases. Interestingly, after initiation of apoptosis DNase X was translocated from the cytoplasm to the nuclear compartment and aggregated as a detergent-insoluble complex. Abundant expression of DNase X mRNA was detected in heart and skeletal muscle cells, suggesting that DNase X may be involved in apoptotic or other biological events in muscle tissues.  相似文献   

9.
10.
Calf thymus DNA containing defined levels of 8-hydroxy-2′-deoxyguanosine (8-oxodG) was prepared by treatment with visible light in the presence of photosensitiser Ro 19-8022. The DNA was checked for stability; after freeze-drying, the amount of 8-oxodG did not increase during 6 weeks' storage at room temperature. However, freeze-drying itself can introduce additional oxidative damage. Two enzymic hydrolysis regimes (DNase I, phosphodiesterases I and II, and alkaline phosphatase; or P1 nuclease and alkaline phosphatase) give similar values for 8-oxodG.  相似文献   

11.
Lyon CJ  Evans CJ  Bill BR  Otsuka AJ  Aguilera RJ 《Gene》2000,252(1-2):147-154
The Caenorhabditis elegans nuc-1 gene has previously been implicated in programmed cell death due to the presence of persistent undegraded apoptotic DNA in nuc-1 mutant animals. In this report, we describe the cloning and characterization of nuc-1, which encodes an acidic nuclease with significant sequence similarity to mammalian DNase II. Database searches performed with human DNase II protein sequence revealed a significant similarity with the predicted C. elegans C07B5.5 ORF. Subsequent analysis of crude C. elegans protein extracts revealed that wild-type animals contained a potent endonuclease activity with a cleavage preference similar to DNase II, while nuc-1 mutant worms demonstrated a marked reduction in this nuclease activity. Sequence analysis of C07B5.5 DNA and mRNA also revealed that nuc-1(e1392), but not wild-type animals contained a nonsense mutation within the CO7B5.5 coding region. Furthermore, nuc-1 transgenic lines carrying the wild-type C07B5.5 locus demonstrated a complete complementation of the nuc-1 mutant phenotype. Our results therefore provide compelling evidence that the C07B5.5 gene encodes the NUC-1 apoptotic nuclease and that this nuclease is related in sequence and activity to DNase II.  相似文献   

12.
Extraction of Nicotiana tabacum cell cultures, chromatography on DEAE-cellulose and gel filtration resulted in a homogeneous protein (Mr = 14500), which strongly reduces the hydrolysis of Escherichia coli DNA by DNase I. DNA degradation by micrococcal nuclease is not inhibited. The inhibitor protein interacts with DNase I in the absence of DNA, as determined by the partial quenching of protein intrinsic fluorescence; a 1:1 stoichiometry is deduced. From the reduction of DNase I activity with increasing inhibitor concentration apparent equilibrium constants for the inhibitor X DNase-I complex have been calculated. This interaction is strongly temperature-dependent; at 20 degrees C and 26 degrees C dissociation constants of 5 nM and 110 nM, respectively, were determined. As a consequence a rather high enthalpy of interaction can be estimated.  相似文献   

13.
Calf thymus DNA containing defined levels of 8-hydroxy-2'-deoxyguanosine (8-oxodG) was prepared by treatment with visible light in the presence of photosensitiser Ro 19-8022. The DNA was checked for stability; after freeze-drying, the amount of 8-oxodG did not increase during 6 weeks' storage at room temperature. However, freeze-drying itself can introduce additional oxidative damage. Two enzymic hydrolysis regimes (DNase I, phosphodiesterases I and II, and alkaline phosphatase; or P1 nuclease and alkaline phosphatase) give similar values for 8-oxodG.  相似文献   

14.
Multiple DNA-dependent enzyme activities have been detected in highly purified preparations of a single-strand-specific nuclease from vaccinia virus. These enzyme preparations were extensively purified and characterized by using superhelical DNAs as substrates. In particular, the nuclease activity was monitored by the extent of conversion of supercoiled closed duplex DNA (DNA I) to nicked circular DNA (DNA II), which could subsequently be converted to duplex linear DNA (DNA III) by prolonged incubation with the enzyme. DNA species which were not substrates for the enzyme included relaxed closed duplex DNA, DNA II which had been prepared by nuclease S1 treatment or by photochemical nicking of DNA I, and DNA III. With plasmid pSM1 DNA as substrate, the extent of cleavage of DNA I to DNA II was found to increase with superhelix density above a threshold value of about -0.06. The linear reaction products were examined by gel electrophoresis after restriction enzyme digestion of the DNAs from plasmids pSM1 and pBR322 and of the viral DNAs from bacteriophage phi X174 (replicative form) and simian virus 40, and the map coordinate locations of the scissions were determined. These products were further examined by electron microscopy and by gel electrophoresis under denaturing conditions. Electron micrographs taken under partially denaturing conditions revealed molecules with terminal loops or hairpins such as would result from the introduction of cross-links at the cutting sites. These species exhibited snapback renaturation. The denaturing gel electrophoresis experiments revealed the appearance of new bands at locations consistent with terminal cross-linking. With pSM1 and pBR322 DNAs, this band was shown to contain DNA that was approximately twice the length of a linear single strand. The terminal regions of the cross-linked linear duplex reaction products were sensitive to nuclease S1 but insensitive to proteinase K, suggesting that the structure is a hairpin loop not maintained by a protein linker. A similar structure is found in mature vaccinia virus DNA.  相似文献   

15.
We have assessed the contribution of apoptosis-inducing factor (AIF) and inhibitor of caspase-activated DNase (ICAD) to the nuclear morphology and DNA degradation pattern in staurosporine-induced apoptosis. Expression of D117E ICAD, a mutant that is resistant to caspase cleavage at residue 117, prevented low molecular weight (LMW) DNA fragmentation, stage II nuclear morphology, and detection of terminal deoxynucleotidyl transferase staining. However, high molecular weight (HMW) DNA fragmentation and stage I nuclear morphology remained unaffected. On the other hand, expression of either D224E or wild type ICAD had no effect on DNA fragmentation or nuclear morphology. In addition, both HMW and LMW DNA degradation required functional executor caspases. Interestingly, silencing of endogenous AIF abolished type I nuclear morphology without any effect on HMW or LMW DNA fragmentation. Together, these results demonstrate that AIF is responsible for stage I nuclear morphology and suggest that HMW DNA degradation is a caspase-activated DNase and AIF-independent process.  相似文献   

16.
Shiokawa D  Tanuma S 《Biochemistry》2001,40(1):143-152
We describe here the characterization of the so far identified human DNase I family DNases, DNase I, DNase X, DNase gamma, and DNAS1L2. The DNase I family genes are found to be expressed with different tissue specificities and suggested to play unique physiological roles. All the recombinant DNases are shown to be Ca(2+)/Mg(2+)-dependent endonucleases and catalyze DNA hydrolysis to produce 3'-OH/5'-P ends. High activities for DNase I, DNase X, and DNase gamma are observed under neutral conditions, whereas DNAS1L2 shows its maximum activity at acidic pH. These enzymes have also some other peculiarities: different sensitivities to G-actin, aurintricarboxylic acid, and metal ions are observed. Using a transient expression system in HeLa S3 cells, the possible involvement of the DNases in apoptosis was examined. The ectopic expression of each DNase has no toxic effect on the host cells; however, extensive DNA fragmentation is observed only in DNase gamma-transfected cells after the induction of apoptosis. Furthermore, DNase gamma is revealed to be located at the perinuclear region in living cells, and to translocate into the nucleus during apoptosis. Our results demonstrate that DNase I, DNase X, DNase gamma, and DNAS1L2 have similar but unique endonuclease activities, and that among DNase I family DNases, DNase gamma is capable of producing apoptotic DNA fragmentation in mammalian cells.  相似文献   

17.
While studying small noncoding RNA in C. elegans, we discovered that protocols used for isolation of RNA are contaminated with small DNA pieces. After electrophoresis on a denaturing gel, the DNA fragments appear as a ladder of bands, ∼10 nucleotides apart, mimicking the pattern of nuclease digestion of DNA wrapped around a nucleosome. Here we show that the small DNA pieces are products of the DNA fragmentation that occurs during apoptosis, and correspondingly, are absent in mutant strains incapable of apoptosis. In contrast, the small DNA pieces are present in strains defective for the engulfment process of apoptosis, suggesting they are produced in the dying cell prior to engulfment. While the small DNA pieces are also present in a number of strains with mutations in predicted nucleases, they are undetectable in strains containing mutations in nuc-1, which encodes a DNase II endonuclease. We find that the small DNA pieces can be labeled with terminal deoxynucleotidyltransferase only after phosphatase treatment, as expected if they are products of DNase II cleavage, which generates a 3′ phosphate. Our studies reveal a previously unknown intermediate in the process of apoptotic DNA fragmentation and thus bring us closer to defining this important pathway.  相似文献   

18.
Conformational changes in the chromatin of skeletal muscle of 3-, 14-and 30 day-old developing rats have been studied using DNase I and micrococcal nuclease (MCN). Purified nuclei were digested separately by MCN and DNase I. The rate and extent of digestion by MCN decreases gradually as development proceeds. The electrophoretic pattern of MCN digested DNA, however, shows no change. The kinetics of digestion of nuclei by DNase I show no change with development. However, the electrophoretic pattern of DNase I digested DNA shows a gradual decrease in the amount of 10–30 bp fragments with progressive development. These studies show that the chromatin of the skeletal muscle undergoes certain conformational changes during postnatal development, and such changes in chromatin may be necessary for terminal differentiation of this tissue.  相似文献   

19.
20.
A novel nuclease activity have been detected at three specific sites in the chromatin of the spacer region flanking the 5'-end of the ribosomal RNA gene from Tetrahymena. The endogenous nuclease does not function catalytically in vitro, but is in analogy with the DNA topoisomerases activated by strong denaturants to cleave DNA at specific sites. The endogenous cleavages have been mapped at positions +50, -650 and -1100 relative to the 5'-end of the pre-35S rRNA. The endogenous cleavage sites are associated with micrococcal nuclease hypersensitive sites and DNase I hypersensitive regions. Thus, a single well-defined micrococcal nuclease hypersensitive site is found approximately 130 bp upstream from each of the endogenous cleavages. Clusters of defined sites, the majority of which fall within the 130 bp regions defined by vicinal micrococcal nuclease and endogenous cleavages, constitute the DNase I hypersensitive regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号