首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With yeast two-hybrid methods, we used a C-terminal fragment (residues 1697–2145) of non-erythroid beta spectrin (βII-C), including the region involved in the association with alpha spectrin to form tetramers, as the bait to screen a human brain cDNA library to identify proteins interacting with βII-C. We applied stringent selection steps to eliminate false positives and identified 17 proteins that interacted with βII-C (IPβII-C s). The proteins include a fragment (residues 38–284) of “THAP domain containing, apoptosis associated protein 3, isoform CRA g”, “glioma tumor suppressor candidate region gene 2” (residues 1-478), a fragment (residues 74–442) of septin 8 isoform c, a fragment (residues 704–953) of “coatomer protein complex, subunit beta 1, a fragment (residues 146–614) of zinc-finger protein 251, and a fragment (residues 284–435) of syntaxin binding protein 1. We used yeast three-hybrid system to determine the effects of these βII-C interacting proteins as well as of 7 proteins previously identified to interact with the tetramerization region of non-erythroid alpha spectrin (IPαII-N s) [1] on spectrin tetramer formation. The results showed that 3 IPβII-C s were able to bind βII-C even in the presence of αII-N, and 4 IPαII-N s were able to bind αII-N in the presence of βII-C. We also found that the syntaxin binding protein 1 fragment abolished αII-N and βII-C interaction, suggesting that this protein may inhibit or regulate non-erythroid spectrin tetramer formation.  相似文献   

2.
Calpains and caspases are ubiquitous cysteine proteases that are associated with a variety of cellular pathways. Calpains are involved in processes such as long term potentiation, cell motility and apoptosis, and have been shown to cleave non-erythroid (brain) α- and β-spectrin and erythroid β-spectrin. The cleavage of erythroid α-spectrin by calpain has not been reported. Caspases play an important role in the initiation and execution of apoptosis, and have been shown to cleave non-erythroid but not erythroid spectrin. We have studied the effect of spectrin fragments on calpain and caspase activities. The erythroid and non-erythroid spectrin fragments used were from the N-terminal region of α-spectrin, and C-terminal region of β-spectrin, both consisting of regions involved in spectrin tetramer formation. We observed that the all spectrin fragments exhibited a concentration-dependent inhibitory effect on calpain, but not caspase activity. It is clear that additional studies are warranted to determine the physiological significance of calpain inhibition by spectrin fragments. Our findings suggest that calpain activity is modulated by the presence of spectrin partial domains at the tetramerization site. It is not clear whether the inhibitory effect is substrate specific or is a general effect. Further studies of this inhibitory effect may lead to the identification and development of new therapeutic agents specifically for calpains, but not for caspases. Proteins/peptides with a coiled coil helical conformation should be studied for potential inhibitory effects on calpain activity.  相似文献   

3.
The N-terminal region of non-erythroid alpha spectrin (SpαII) is responsible for interacting with its binding partner, beta spectrin, to form functional spectrin tetramers. We used a yeast-two-hybrid system, with an N-terminal segment of alpha spectrin representing the functional tetramerization site, as a bait to screen human brain c-DNA library for proteins that interact with the alpha spectrin segment. In addition to several beta spectrin isoforms, we identified 14 proteins that interact with SpαII. Seven of the 14 were matched to 6 known proteins: Duo protein, Lysyl-tRNA synthetase, TBP associated factor 1, two isoforms (b and c) of a protein kinase A interacting protein and Zinc finger protein 333 (2 different segments). Four of the 6 proteins are located primarily in the nucleus, suggesting that spectrin plays important roles in nuclear functions. The remaining 7 proteins were unknown to the protein data base. Structural predictions show that many of the 14 proteins consist of a large portion of unstructured regions, suggesting that many of these proteins fold into a rather flexible conformation. It is interesting to note that all but 3 of the 14 proteins are predicted to consist of one to four coiled coils (amphiphilic helices). A mutation in SpαII, V22D, which interferes with the coiled coil bundling of SpαII with beta spectrin, also affects SpαII interaction with Duo protein, TBP associated factor 1 and Lysyl-tRNA synthetase, suggesting that they may compete with beta spectrin for interaction with SpαII. Future structural and functional studies of these proteins to provide interaction mechanisms will no doubt lead to a better understanding of brain physiology and pathophysiology.  相似文献   

4.
Spectrin tetramerization is important for the erythrocyte to maintain its unique shape, elasticity and deformability. We used recombinant model proteins to show the importance of one residue (G46) in the erythroid α-spectrin junction region that affects spectrin tetramer formation. The G46 residue in the erythroid spectrin N-terminal junction region is the only residue that differs from that in non-erythroid spectrin. The corresponding residue is R37. We believe that this difference may be, at least in part, responsible for the 15-fold difference in the equilibrium constants of erythroid and non-erythroid tetramer formation. In this study, we replaced the Gly residue with Ala, Arg or Glu residues in an erythroid α-spectrin model protein to give G46A, G46R or G46E, respectively. We found that their association affinities with a β-spectrin model protein were quite different from each other. G46R exhibited a 10-fold increase and G46E exhibited a 16-fold decrease, whereas G46A showed little difference, when compared with the wild type. The thermal and urea denaturation experiments showed insignificant structural change in G46R. Thus, the differences in affinity were due to differences in local, specific interactions, rather than conformational differences in these variants. An intra-helical salt bridge in G46R may stabilize the partial domain single helix in α-spectrin, Helix C’, to allow a more stable helical bundling in the αβ complex in spectrin tetramers. These results not only showed the importance of residue G46 in erythroid α-spectrin, but also provided insights toward the differences in association affinity between erythroid and non-erythroid spectrin to form spectrin tetramers.  相似文献   

5.
Two isoforms of the 90-kDa heat-shock protein (Hsp90), i.e., Hsp90α and Hsp90β, are expressed in the cytosol of mammalian cells. Although Hsp90 predominantly exists as a dimer, the dimer-forming potential of the β isoform of human and mouse Hsp90 is less than that of the α isoform. The 16 amino acid substitutions located in the 561–685 amino acid region of the C-terminal dimerization domain should be responsible for this impeded dimerization of Hsp90β (Nemoto T, Ohara-Nemoto Y, Ota M, Takagi T, Yokoyama K. Eur J Biochem 233: 1–8, 1995). The present study was performed to define the amino acid substitutions that cause the impeded dimerization of Hsp90β. Bacterial two-hybrid analysis revealed that among the 16 amino acids, the conversion from Ala558 of Hsp90β to Thr566 of Hsp90α and that from Met621 of Hsp90β to Ala629 of Hsp90α most efficiently reversed the dimeric interaction, and that the inverse changes from those of Hsp90α to Hsp90β primarily explained the impeded dimerization of Hsp90β We conclude that taken together, the conversion of Thr566 and Ala629 of Hsp90α to Ala558 and Met621 is primarily responsible for impeded dimerization of Hsp90β.  相似文献   

6.
TonB is a protein prevalent in a large number of Gram-negative bacteria that is believed to be responsible for the energy transduction component in the import of ferric iron complexes and vitamin B12 across the outer membrane. We have analyzed all the TonB proteins that are currently contained in the Entrez database and have identified nine different clusters based on its conserved 90-residue C-terminal domain amino acid sequence. The vast majority of the proteins contained a single predicted cytoplasmic transmembrane domain; however, nine of the TonB proteins encompass a ∼290 amino acid N-terminal extension homologous to the MecR1 protein, which is composed of three additional predicted transmembrane helices. The periplasmic linker region, which is located between the N-terminal domain and the C-terminal domain, is extremely variable both in length (22–283 amino acids) and in proline content, indicating that a Pro-rich domain is not a required feature for all TonB proteins. The secondary structure of the C-terminal domain is found to be well preserved across all families, with the most variable region being between the second α-helix and the third β-strand of the antiparallel β-sheet. The fourth β-strand found in the solution structure of the Escherichia coli TonB C-terminal domain is not a well conserved feature in TonB proteins in most of the clusters. Interestingly, several of the TonB proteins contained two C-terminal domains in series. This analysis provides a framework for future structure-function studies of TonB, and it draws attention to the unusual features of several TonB proteins. Byron C. H. Chu and R. Sean Peacock contributed equally to this work.  相似文献   

7.
Abstract: Spectrin isotypes segregate in neurons and are differentially distributed between axons and somatodendritic compartments. Their functions in those compartments are likely to be mediated by proteins that interact selectively with one or other isotype. Fodaxin (an axon-specific protein previously termed A60) colocalizes in CNS neurons with axonal spectrin and in vitro binds brain spectrin (a mixture of αI, βI, αII, and βII polypeptides) but not erythrocyte spectrin (αI and βI). Because αII and βII spectrin polypeptides are enriched in axons, we investigated a possible binding of fodaxin to the types of spectrin found in axons. Fodaxin did not bind to isolated brain α chains. Bacterially expressed C-terminal segments 18–19 of βII spectrin bound to fodaxin and inhibited the binding of fodaxin to whole brain spectrin. By contrast, recombinant segments 18–19 of the somatodendritic βIΣ2 spectrin showed no interaction with fodaxin. Within βII, fodaxin binding activity was localized to residues 2,087–2,198, which are unique to βII and link between the end of segment 18 and the pleckstrin homology domain in segment 19. The divergent regions of sequence in segments 19 of βII and βIΣ2 are candidates to mediate the isotype-specific functions of spectrin. Fodaxin is the first protein to be described that discriminates between the unique regions of β spectrin isoforms.  相似文献   

8.
In the dark, the activity of the rod cGMP phosphodiesterase (PDE) catalytic α- and β-subunits (Pαβ) is inhibited by two γ-subunits (Pγ). On light stimulation of the photoreceptor cells, the GTP-bound α-subunit of visual G-protein transducin (GtaGTP) displaces the Pγ-subunits from their inhibitory sites on Pαβ, leading to the effector enzyme activation. We designed a number of Pγ mutants, each with a single cysteine residue evenly distributed at a different position along the Pγ polypeptide chain. These cysteine residues served as sites for the introduction of the environmentally sensitive fluorescent probe, 3-(bromoacetyl)-7-diethyl aminocoumarin (BC). Analysis of the interactions of Pαβ and Gta with the fluorescently labeled Pγ mutants suggests two distinct functional interfaces of Pγ. The Pαβ/Pγ interface is formed essentially by the C-terminus of Pγ and by the N-terminal portion of the Pγ polycationic region, Pγ-24-45, whereas the Pγ/Gta interface includes the C-terminal portion of Pγ-24-45 and the region surrounding Pγ Cys68. Such functional organization of Pγ may represent an important element for the PDE activation mechanism during transduction of visual signals.  相似文献   

9.
MgADP and MgATP binding to catalytic sites of βY341W-α3β3Γ subcomplex of F1-ATPase from thermophilic Bacillus PS3 has been assessed using their effect on the enzyme inhibition by 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl). It was assumed that NBD-Cl can inhibit only when catalytic sites are empty, and inhibition is prevented if a catalytic site is occupied with a nucleotide. In the absence of an activator, MgADP and MgATP protect βY341W-α3β3Γ sub-complex from inhibition by NBD-Cl by binding to two catalytic sites with an affinity of 37 μM and 12 mM, and 46 μM and 15 mM, respectively. In the presence of an activator lauryldimethylamine-N-oxide (LDAO), MgADP protects βY341W-α3β3Γ subcomplex from inhibition by NBD-Cl by binding to a catalytic site with a K d of 12 mM. Nucleotide binding to a catalytic site with affinity in the millimolar range has not been previously revealed in the fluorescence quenching experiments with βY341W-α3β3Γ subcomplex. In the presence of activators LDAO or selenite, MgATP protects βY341W-α3β3Γ subcomplex from inhibition by NBD-Cl only partially, and the enzyme remains sensitive to inhibition by NBD-Cl even at MgATP concentrations that are saturating for ATPase activity. The results support a bi-site mechanism of catalysis by F1-ATPases.  相似文献   

10.
Subunit E of the vacuolar ATPase (V-ATPase) contains an N-terminal extended α helix (Rishikesan et al. J Bioenerg Biomembr 43:187–193, 2011) and a globular C-terminal part that is predicted to consist of a mixture of α-helices and β-sheets (Grüber et al. Biochem Biophys Res Comm 298:383–391, 2002). Here we describe the production, purification and 2D structure of the C-terminal segment E133-222 of subunit E from Saccharamyces cerevisiae V-ATPase in solution based on the secondary structure calculation from NMR spectroscopy studies. E133-222 consists of four β-strands, formed by the amino acids from K136-V139, E170-V173, G186-V189, D195-E198 and two α-helices, composed of the residues from R144-A164 and T202-I218. The sheets and helices are arranged as β1:α1:β2:β3:β4:α2, which are connected by flexible loop regions. These new structural details of subunit E are discussed in the light of the structural arrangements of this subunit inside the V1- and V1VO ATPase.  相似文献   

11.
12.
Site-directed mutagenesis based on predicted modeled structure of pencillin G acylase from Bacillus megaterium (BmPGA) was followed to increase its performance in the kinetically controlled synthesis of cephalexin with high reactant concentrations of 133 mM 7-amino-desaceto-xycephalosporanic acid (7-ADCA) and 267 mM d-phenylglycine amide (D-PGA). We directed changes in amino acid residues to positions close to the active site that were expected to affect the catalytic performance of penicillin acylase: alpha Y144, alpha F145, and beta V24. Alpha F145 was mutated into tyrosine, alanine, and leucine. Alpha Y144 and beta V24 were mutated into arginine and phenylalanine, respectively. The S/H ratios of three mutants, BmPGAα144R, BmPGAβ24F, and BmPGAβ24F+α144R, were up to 1.3–3.0 times higher values. Compared to the wild-type BmPGA, BmPGAβ24F+α144R showed superior potential of the synthetic performance, allowing the accumulation of up to twofold more cephalexin at significantly higher conversion rates. Jingang Wang and Qing Zhang contributed equally to this paper.  相似文献   

13.
Among the four types of hemoglobin (Hb) M with a substitution of a tyrosine (Tyr) for either the proximal (F8) or distal (E7) histidine in the α or β subunits, only Hb M Saskatoon (βE7Tyr) assumes a hexacoordinate structure and its abnormal subunits can be reduced readily by methemoglobin (metHb) reductase. This is distinct from the other three M Hbs. To gain new insight into the cause of the difference, we examined the ionization states of E7 and F8 Tyrs by UV resonance Raman (RR) spectroscopy and Fe–O(Tyr) bonding by visible RR spectroscopy. Hb M Iwate (αF8Tyr), Hb M Boston (αE7Tyr), and Hb M Hyde Park (βF8Tyr) exhibited two extra UV RR bands at 1,603 cm−1 (Y8a′) and 1,167 cm−1 (Y9a′) arising from deprotonated (ionized) Tyr, but Hb M Saskatoon displayed the UV RR bands of protonated (unionized) Tyr at 1,620 and 1,175 cm−1 in addition to those of deprotonated Tyr. Evidence for the bonding of both ionization states of Tyr to the heme in Hb M Saskatoon was provided by visible RR spectroscopy. These results indicate that βE7Tyr of Hb M Saskatoon is in equilibrium between protonated and deprotonated forms, which is responsible for facile reducibility. Comparison of the UV RR spectral features of metHb M with that of metHb A has revealed that metHb M Saskatoon and metHb M Hyde Park are in the R (relaxed) structure, similar to that of metHb A, whereas metHb M Iwate, metHb M Boston and metHb M Milwaukee are in the T (tense) quaternary structure.  相似文献   

14.
The mechanism that underlies a multitude of human disorders, including type II diabetes, Parkinson’s, Huntington’s and Alzheimer’s, and the prion encephalopathies, is β-structure expansion through a pathogenic aggregation-prone monomeric form. β-sheet expansion disorders share intermolecular association as a common determinant, being therefore collectively identified as conformational diseases, but little is known about the underlying mechanism. Transmissible spongiform encephalopathies, also known as prion diseases, are all characterised by progressive neuronal degeneration associated to marked extracellular accumulation of an amyloidogenic conformer of the normal cellular prion protein (PrPC), referred to as the scrapie isoform (PrPSc), which is thought to be responsible for the disease symptoms. PrPC is a ubiquitous 231-amino acid glycoprotein, whose physiological role is still elusive. It is organised as an N-terminal disordered region and a compact C-terminal domain, where secondary structure elements consist of three α-helices (α1, α2 and α3), with an α2-α3 disulphide bridge, and two short β-strands (β1 and β2). Evidence accumulated so far suggests that the protein possesses one or several ‘spots’ of intrinsic conformational weakness, which may trigger generic folding, leading the whole architecture to adopt aggregation-prone conformations. One of such spots is suspected to be the C-terminal side of the α-helix 2, which has recently gained the attention of several investigations because it gathers several disease-associated point mutations, can be strongly fibrillogenic and toxic to neuronal cells, and possesses chameleon conformational behaviour. This paper briefly reviews recent literature on α-2 domain-derived model peptides.  相似文献   

15.
In the present study, we investigated chronological changes of μ-calpain, m-calpain and cleaved spectrin αII immunoreactivity in the ventral horn after transient spinal cord ischemia to investigate relationship between calpains and vulnerability to ischemia using abdominal aorta occlusion model in rabbits. Spinal cord sections at the level of L7 were immunostained with calpains and cleaved spectrin αII monoclonal antibodies. μ-Calpain and m-calpain immunoreactivity was significantly increased in the ischemic ventral horn at 30 min and 1 h after ischemia/reperfusion, respectively. Thereafter, they were decreased with time after ischemia/reperfusion: at 48 h after ischemia, their immunoreactivities nearly disappeared in the ischemic ventral horn. Cleaved spectrin αII immunoreactivity was significantly increased in the ventral horn of spinal cord at 12 h after ischemia/reperfusion, and thereafter, its immunoreactivity was decreased with time after ischemia/reperfusion. In addition, spectrin αII protein level (280 kDa) was decreased from 12 h after ischemia/reperfusion; in contrast, cleaved spectrin αII protein level (150 kDa) was significantly increased at 12 h after ischemia/reperfusion. In conclusion, our observations in this study indicate that calpain is associated with neuronal degeneration in the ventral horn at early time after transient spinal cord ischemia via the proteolysis of spectrin αII.Jae-Chul Lee and In Koo Hwang equally contribute to this article.  相似文献   

16.
We have examined the properties and interactions of expressed polypeptide fragments from the N-terminus of the α-chain and the C-terminus of the β-chain of human erythroid spectrin. Each polypeptide comprises one complete structural repeating unit, together with the incomplete repeat that interacts with its partner when spectrin tetramers are formed. The shared repeat thus generated is made up of two helices from the C-terminal part of the β-chain and one helix from the N-terminus of the α-chain. Three mutant β-chain fragments with amino acid substitutions in the incomplete terminal repeat were also studied. The α- and β-chain fragments were both substantially monomeric, as shown by sedimentation equilibrium. Circular dichroism analysis and thermal denaturation profiles revealed that the complete repeat present in each fragment had entered the stable tertiary fold. Unexpectedly, the conformational stability of the folded β-chain repeat was found to be grossly perturbed by the mutations, all of them well beyond its C-terminal boundary; possible explanations for this phemomenon are considered. Sedimentation equilibrium showed that in equimolar mixtures the wild-type α- and β-chain peptides formed a 1:1 complex. Mixing curves, observed by circular dichroism, revealed that association was accompanied by an increase in α-helicity. From continuous-variation profiles an association constant in the range 1–2×106 M–1 was inferred. The association was unaffected by the apparently unstructured anionic tail of 54 residues, found at the C-terminus of the spectrin β-chain. Of the three mutations in the β-chain fragment, one (an Ala→Val replacement in the A helix segment of the incomplete repeat) had a relatively small effect on the association with the α-chain fragment, whereas Trp→Arg mutations in the A and in the remote B helix segments were much more deleterious. These observations are consistent with the relative severities of the haemolytic conditions associated with the mutations. Received: 10 August 1998 / Revised version: 13 October 1998 / Accepted: 13 October 1998  相似文献   

17.
Nitrile hydratases (NHase), which catalyze the hydration of nitriles to amides, have an unusual Fe3+ or Co3+ center with two modified Cys ligands: cysteine sulfininate (Cys-SO2 ) and either cysteine sulfenic acid or cysteine sulfenate [Cys-SO(H)]. Two catalytic mechanisms have been proposed. One is that the sulfenyl oxygen activates a water molecule, enabling nucleophilic attack on the nitrile carbon. The other is that the Ser ligand ionizes the strictly conserved Tyr, activating a water molecule. Here, we characterized mutants of Fe-type NHase from Rhodococcus erythropolis N771, replacing the Ser and Tyr residues, αS113A and βY72F. The αS113A mutation partially affected catalytic activity and did not change the pH profiles of the kinetic parameters. UV–vis absorption spectra indicated that the electronic state of the Fe center was altered by the αS113A mutation, but the changes could be prevented by a competitive inhibitor, n-butyric acid. The overall structure of the αS113A mutant was similar to that of the wild type, but significant changes were observed around the catalytic cavity. Like the UV–vis spectra, the changes were compensated by the substrate or product. The Ser ligand is important for the structure around the catalytic cavity, but is not essential for catalysis. The βY72F mutant exhibited no activity. The structure of the βY72F mutant was highly conserved but was found to be the inactivated state, with αCys114-SO(H) oxidized to Cys-SO2 , suggesting that βTyr72 affected the electronic state of the Fe center. The catalytic mechanism is discussed on the basis of the results obtained.  相似文献   

18.
Abstract The kinetics of bacterial hydrolytic ectoenzymatic activity and the uptake of monomeric compounds were investigated in the Northwestern Mediterranean Sea. Aminopeptidase and α- and β-glucosidase activities were analyzed by using fluorogenic substrates at 15–22 concentrations ranging from 1 nM to 500 μM. Radiolabeled glucose and a mixture of amino acids were chosen as representatives of monomeric compounds, and the bacterial uptake rates (assimilation plus respiration) were determined over a wide range of substrate concentrations (from 0.2 nM to 3 μM). We found biphasic kinetics both for hydrolytic enzymes and uptake systems: high affinity enzymes at low concentrations of substrates (K m values ranged from 48 nM to 2.7 μM for ectoenzymes and from 1.4 nM to 42 nM for uptake systems), and low affinity enzymes at high concentrations of substrates (K m values ranged from 18 μM to 142 μM for ectoenzymes and from 0.1 μM to 1.3 μM for uptake systems). Transition between high and low affinity enzymes was observed at 10 μM for aminopeptidase and from 1 μM to 25 μM for glucosidases, and it was more variable and less pronounced for the uptake of glucose (40 nM–0.28 μM) and amino acids (10 nM–0.16 μM). Results showed that the potential rates of hydrolysis and uptake are tightly coupled only if the high affinity hydrolytic ectoenzymes and the low affinity uptake systems are operating simultaneously. Received: 5 March 1998; Accepted: 31 July 1998  相似文献   

19.
GABAA receptors composed of α, β and γ subunits display a significantly higher single-channel conductance than receptors comprised of only α and β subunits. The pore of GABAA receptors is lined by the second transmembrane region from each of its five subunits and includes conserved threonines at the 6′, 10′ and 13′ positions. At the 2′ position, however, a polar residue is present in the γ subunit but not the α or β subunits. As residues at the 2′, 6′ and 10′ positions are exposed in the open channel and as such polar channel-lining residues may interact with permeant ions by substituting for water interactions, we compared both the single-channel conductance and the kinetic properties of wild-type α1β1 and α1β1γ2S receptors with two mutant receptors, αβγ(S2′A) and αβγ(S2′V). We found that the single-channel conductance of both mutant αβγ receptors was significantly decreased with respect to wild-type αβγ, with the presence of the larger valine side chain having the greatest effect. However, the conductance of the mutant αβγ receptors remained larger than wild-type αβ channels. This reduction in the conductance of mutant αβγ receptors was observed at depolarized potentials only (ECl = −1.8 mV), which revealed an asymmetry in the ion conduction pathway mediated by the γ2′ residue. The substitutions at the γ2′ serine residue also altered the gating properties of the channel in addition to the effects on the conductance with the open probability of the mutant channels being decreased while the mean open time increased. The data presented in this study show that residues at the 2′ position in M2 of the γ subunit affects both single-channel conductance and receptor kinetics.  相似文献   

20.
Septins form a conserved family of filament forming GTP binding proteins found in a wide range of eukaryotic cells. They share a common structural architecture consisting of an N-terminal domain, a central GTP binding domain and a C-terminal domain, which is often predicted to adopt a coiled-coil conformation, at least in part. The crystal structure of the human SEPT2/SEPT6/SEPT7 heterocomplex has revealed the importance of the GTP binding domain in filament formation, but surprisingly no electron density was observed for the C-terminal domains and their function remains obscure. The dearth of structural information concerning the C-terminal region has motivated the present study in which the putative C-terminal domains of human SEPT2, SEPT6 and SEPT7 were expressed in E. coli and purified to homogeneity. The thermal stability and secondary structure content of the domains were studied by circular dichroism spectroscopy, and homo- and hetero-interactions were investigated by size exclusion chromatography, chemical cross-linking, analytical ultracentrifugation and surface plasmon resonance. Our results show that SEPT6-C and SEPT7-C are able to form both homo- and heterodimers with a high α-helical content in solution. The heterodimer is elongated and considerably more stable than the homodimers, with a K D of 15.8 nM. On the other hand, the homodimer SEPT2-C has a much lower affinity, with a K D of 4 μM, and a moderate α-helical content. Our findings present the first direct experimental evidence toward better understanding the biophysical properties and coiled-coil pairings of such domains and their potential role in filament assembly and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号