首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insect herbivory has variable effects on plant physiology; so greater understanding is needed about how injury alters photosynthesis on individual injured and uninjured leaves. Gas exchange and light-adapted leaf chlorophyll fluorescence measurements were collected from uninjured and mechanical partial leaf defoliation in two experiments with Nerium oleander (Apocynaceae) leaves, and one experiment with Danaus plexippus herbivory on Asclepias curassavica (Asclepiadaceae) leaves. Gas exchange impairment (lower photosynthetic rate (P n ), stomatal conductance (g s)) indicates water stress in a leaf, suggests stomatal limitations causing injury P n impairment. The same pattern of gas exchange impairment also occurred on uninjured leaves opposite from injured leaves in both N. oleander experiments. This is an interesting result because photosynthetic impairment is rarely reported on injured leaves near injured leaves. No photosynthetic changes occurred in uninjured A. curassavica leaves opposite from D. plexippus-fed leaves. Partially defoliated leaves that had P n and g s reductions lacked any significant changes in intercellular leaf [CO2], C i. These results neither support, nor are sufficient to reject, stomatal limitations to photosynthesis. Manually imposed midrib vein severance in N. oleander experiment #1 significantly increased leaf C i, indicating mesophyll limitations to photosynthesis. Maximal light-adapted leaf photochemical efficiency () and also non-photochemical quenching (q N) were reduced by mechanical or insect herbivory to both study species, suggesting leaf trouble handling excess light energy not used for photochemistry. Midrib injury on N. oleander leaves and D. plexippus herbivory on A. curassavica leaves also reduced effective quantum yield (ΦPSII) and photochemical quenching (q P); so reduced plastoquinone pools could lead to additional PSII reaction center closure.  相似文献   

2.
Nitschke U  Ruth AA  Dixneuf S  Stengel DB 《Planta》2011,233(4):737-748
The emission of molecular iodine (I2) from the stipe, the meristematic area and the distal blade of the brown macroalga Laminaria digitata (Hudson) Lamouroux (Phaeophyceae) was monitored under low light and dark conditions. Photosynthetic parameters were determined to investigate both the extent of stress experienced by different thallus parts and the effects of emersion on photosynthesis. Immediately after air exposure, intense I2 emission was detectable from all thallus parts. I2 emission declined continuously over a period of 180 min following the initial burst, but was not affected by the light regime. The total number of mole of I2 emitted by stipes was approximately 10 times higher than those emitted from other thallus parts. Initial I2 emission rates (measured within 30 min of exposure to air) were highest for stipes (median values: 2,999 and 5,222 pmol g−1 dw min−1 in low light and dark, respectively) and lower, by one order of magnitude, for meristematic regions and distal blades. After exposure to air for between 60 and 180 min, I2 emission rates of all thallus parts were reduced by 70–80%. Air exposure resulted in a decrease of the maximum photosystem II (PSII) efficiency (F v/F m) by 3%, and in a 25–55% increase of the effective PSII quantum efficiency ( \Updelta F/F\textm \Updelta F/F^{\prime}_{\text{m}} ); this was caused by a higher fraction of open reaction centres (qP), whereas the efficiency of the latter in capturing energy ( F\textv /F\textm F^{\prime}_{\text{v}} /F^{\prime}_{\text{m}} ) remained constant. The results indicate the presence of an iodine pool which is easily volatilised and depleted due to air exposure, even under apparently low stress conditions.  相似文献   

3.
Plant glutathione S-transferases (GSTs) are involved in protecting plants against both diverse biotic and abiotic stresses. In the present study, a novel GST gene (LbGST1) was cloned from Limonium bicolor (Bunge) Kuntze (Plumbaginaceae). To characterize its function in salt tolerance, tobacco lines transformed with LbGST1 were generated. Compared with wild-type (WT) tobacco, transgenic plants overexpressing LbGST1 exhibited both GST and glutathione peroxidase activities. Moreover, superoxide dismutase, peroxidase (POD), and catalase activities in transgenic plants were significantly higher than those in WT plants, particularly when grown under conditions of salt stress. Similarly, levels of proline in transgenic plants were also higher than those in WT plants grown under NaCl stress conditions. Whereas, Malondialdehyde contents in transgenic plants were lower than those in WT plants under NaCl conditions. Furthermore, Na+ content in transgenic plants was lower than that in WT plants under these stress conditions. Subcellular localization analysis revealed that the LbGST1 protein was localized in the nucleus. These results suggested that overexpression of LbGST1 gene can affect many physiological processes associated with plant salt tolerance. Therefore, we hypothesize that LbGST1 gene can mediate many physiological pathways that enhance stress resistance in plants.  相似文献   

4.
Cytochromes are important components of photosynthetic electron transport chain. Here we report on genetic transformation of Cytochrome c6 (UfCyt c6) gene from Ulva fasciata Delile in tobacco for enhanced photosynthesis and growth. UfCyt c6 cDNA had an open reading frame of 330 bp encoding a polypeptide of 109 amino acids with a predicted molecular mass of 11.65 kDa and an isoelectric point of 5.21. UfCyt c6 gene along with a tobacco petE transit peptide sequence under control of CaMV35S promoter was transformed in tobacco through Agrobacterium mediated genetic transformation. Transgenic tobacco grew normal and exhibited enhanced growth as compared to wild type (WT) and vector control (VC) tobacco. Transgenic tobacco had higher contents of photosynthetic pigments and better ratios of photosynthetic pigments. The tobacco expressing UfCyt c6 gene exhibited higher photosynthetic rate and improved water use efficiency. Further activity of the water-splitting complex, photosystem II quantum yield, photochemical quenching, electron transfer rate, and photosynthetic yield were found comparatively higher in transgenic tobacco as compared to WT and VC tobacco. Alternatively basal quantum yield of non-photochemical processes in PSII and non-photochemical quenching were estimated lower in tobacco expressing UfCyt c6 gene. As a result of improved photosynthetic performance the transgenic tobacco had higher contents of sugar and starch, and exhibited comparatively better growth. To the best of our knowledge this is the first report on expression of UfCyt c6 gene from U. fasciata for improved photosynthesis and growth in tobacco.  相似文献   

5.
Plant growth, chlorophyll (Chl) content, photosynthetic gas exchange, ribulose-1,5-bisphosphate carboxylase (RuBPCO) enzyme activity, and Chl fluorescence in radish (Raphanus sativus var. longipinnatus) plants were examined after turnip mosaic virus (TuMV) infection. Plant fresh mass, dry mass, Chl content, net photosynthetic rate (P N), transpiration rate (E), stomatal conductance (g s), and RuBPCO activity were significantly lower in infected plants after 5 weeks of virus infection as compared to healthy plants. The 5-week virus infection did not induce significant differences in intercellular CO2 concentration (C i, photochemical efficiency of photosystem 2, PS2 (Fv/Fm), excitation capture efficiency of open PS2 reaction centres (Fv'/Fm'), effective quantum efficiency of photosystem 2 (ΔF/Fm'), and photochemical quenching (qP), but non-photochemical quenching (qN) and alternative electron sink (AES) were significantly enhanced. Thus the decreased plant biomass of TuMV-infected plants might be associated with the decreased photosynthetic activity mainly due to reduced RuBPCO activity.  相似文献   

6.
Small heat shock proteins (sHSPs) have been shown to be involved in stress tolerance. However, their functions in Prunus mume under heat treatment are poorly characterized. To improve our understanding of sHSPs, we cloned a sHSP gene, PmHSP17.9, from P. mume. Sequence alignment and phylogenetic analysis indicated that PmHSP17.9 was a member of plant cytosolic class III sHSPs. Besides heat stress, PmHSP17.9 was also upregulated by salt, dehydration, oxidative stresses and ABA treatment. Leaves of transgenic Arabidopsis thaliana that ectopically express PmHSP17.9 accumulated less O2 ? and H2O2 compared with wild type (WT) after 42 °C treatment for 6 h. Over-expression of PmHSP17.9 in transgenic Arabidopsis enhanced seedling thermotolerance by decreased relative electrolyte leakage and MDA content under heat stress treatment when compared to WT plants. In addition, the induced expression of HSP101, HSFA2, and delta 1-pyrroline-5-carboxylate synthase (P5CS) under heat stress was more pronounced in transgenic plants than in WT plants. These results support the positive role of PmHSP17.9 in response to heat stress treatment.  相似文献   

7.
In Arabidopsis, NPR1 (non-expressor of pathogenesis related genes 1, AtNPR1) functions downstream of salicylic acid (SA) and modulates the SA mediated systemic acquired resistance. It is also involved in a cross talk with the jasmonate pathway that is essential for resistance against herbivores and necrotrophic pathogens. Overexpression of AtNPR1 in transgenic plants resulted in enhanced disease resistance. Recently, tobacco transgenic plants expressing AtNPR1 were shown to be tolerant to the early instars of Spodoptera litura (Meur et al., Physiol Plant 133:765–775, 2008). In this communication, we show that the heterologous expression of AtNPR1 in tobacco has also enhanced the oxidative stress tolerance. The transgenic plants exhibited enhanced tolerance to the treatment with methyl viologen. This tolerance was associated with the constitutive upregulation of PR1, PR2 (glucanase), PR5 (thaumatin like protein), ascorbate peroxidase (APX) and Cu2+/Zn2+ superoxide dismutase (SOD). This is the first demonstration of the novel function of heterologous expression of AtNPR1 in oxidative stress tolerance in transgenic tobacco.  相似文献   

8.
Two rice chlorophyll (Chl) b-less mutants (VG28-1, VG30-5) and the respective wild type (WT) plant (cv. Zhonghua No. 11) were analyzed for the changes in Chl fluorescence parameters, xanthophyll cycle pool, and its de-epoxidation state under exposure to strong irradiance, SI (1 700 μmol m−2 s−1). We also examined alterations in the chloroplast ultrastructure of the mutants induced by methyl viologen (MV) photooxidation. During HI (0–3.5 h), the photoinactivation of photosystem 2 (PS2) appeared earlier and more severely in Chl b-less mutants than in the WT. The decreases in maximal photochemical efficiency of PS2 in the dark (Fv/Fm), quantum efficiency of PS2 electron transport (ΦPS2), photochemical quenching (qP), as well as rate of photochemistry (Prate), and the increases in de-epoxidation state (DES) and rate of thermal dissipation of excitation energy (Drate) were significantly greater in Chl b-mutants compared with the WT plant. A relatively larger xanthophyll pool and 78–83 % conversion of violaxanthin into antheraxanthin and zeaxanthin in the mutants after 3.5 h of HI was accompanied with a high ratio of inactive/total PS2 (0.55–0.73) and high 1–qP (0.57–0.68) which showed that the activities of the xanthophyll cycle were probably insufficient to protect the photosynthetic apparatus against photoinhibition. No apparent difference of chloroplast ultrastructure was found between Chl b-less mutants and WT plants grown under low, LI (180 μmol m−2 s−1) and high, HI (700 μmol m−2 s−1) irradiance. However, swollen chloroplasts and slight dilation of thylakoids occurred in both mutants and the WT grown under LI followed by MV treatment. These typical symptoms of photooxidative damage were aggravated as plants were exposed to HI. Distorted and loose scattered thylakoids were observed in particular in the Chl b-less mutants. A greater extent of photoinhibition and photooxidation in these mutants indicated that the susceptibility to HI and oxidative stresses was enhanced in the photosynthetic apparatus without Chl b most likely as a consequence of a smaller antenna size.  相似文献   

9.
A new plant expression vector (pBSbtCry1Ac-GNA) containing two insect resistant genes, a synthetic chimeric gene SbtCry1Ac encoding the insecticidal protein CrylAc and a gene GNA encoding snowdrop lectin (Galanthus nivalis agglutinin) was constructed. Transgenic tobacco plants containing these two genes were obtained through Agrobacterium-mediated transformation of tobacco leaf discs. Results from PCR detection and genomic DNA Southern blot analysis indicated that both SbtCrylAc gene and GNA gene were integrated into the genome of these plants. Results of Western blot analysis indicated that these two proteins were expressed in the analyzed plants. Bioassays of Myzus persicae and Helicoverpa assulta on detached leaves of transformed tobacco plants were carried out. The average aphid inhibition rate of these plants tested at 12 d post-infestation was 71.9 %. The average H. assulta mortality of these plants tested at 6 d post-infestation was up to 89.8 %. The kanamycin resistance of the T1 progeny of these transgenic plants was analyzed and a typical 3:1 segregation was observed.  相似文献   

10.
The suadea salsa full-length S-adenosylmethionine synthetase (SsSAMS2) was introduced into tobacco (Nicotiana tabacum L.) by Agrobacterium tumefaciens-mediated transformation. The gene transformation and expression in tobacco were confirmed by PCR, RT-PCR and Northern blotting analysis. Several transgenic lines (ST lines) overexpressing SsSAMS2 gene under the control of cauliflower mosaic virus 35S promoter showed more seeds number and weight, and accumulated higher free total polyamines (PAs) than wild-type plants (WT lines) and transformants with blank vector (BT lines). Salt stress-induced damage was attenuated in these transgenic plants, in the symptom of maintaining higher photosynthetic rate and biomass. These results that the transgenic plants overexpressing suadea salsa SAMS2 are more tolerant to salt stress than wild-type plants suggest that PAs may play an important role in contributing salt tolerance to plants.  相似文献   

11.
An H+-PPase gene, TsVP from Thellungiella halophila, was transferred into two cotton (Gossypium hirsutum) varieties (Lumianyan19 and Lumianyan 21) and southern and northern blotting analysis showed the foreign gene was integrated into the cotton genome and expressed. The measurement of isolated vacuolar membrane vesicles demonstrated that the transgenic plants had higher V–H+-PPase activity compared with wild-type plants (WT). Overexpressing TsVP in cotton improved shoot and root growth, and transgenic plants were much more resistant to osmotic/drought stress than the WT. Under drought stress conditions, transgenic plants had higher chlorophyll content, improved photosynthesis, higher relative water content of leaves and less cell membrane damage than WT. We ascribe these properties to improved root development and the lower solute potential resulting from higher solute content such as soluble sugars and free amino acids in the transgenic plants. In this study, the average seed cotton yields of transgenic plants from Lumianyan 19 and Lumianyan 21 were significantly increased compared with those of WT after exposing to drought stress for 21 days at flowering stage. The average seed cotton yields were 51 and 40% higher than in their WT counterparts, respectively. This study benefits efforts to improve cotton yields in arid and semiarid regions.  相似文献   

12.
In comparison with its wild type (WT), the transgenic (TG) rice with silenced OsBP-73 gene had significantly lower plant height, grain number per panicle, and leaf net photosynthetic rate (P N). Also, the TG rice showed significantly lower chlorophyll (Chl), ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBPCO), RuBPCO activase, and RuBP contents, photosystem 2 (PS2) photochemical efficiency (Fv/Fm and ΔF/Fm′), apparent quantum yield of carbon assimilation (Φc), carboxylation efficiency (CE), photosynthetic electron transport and photophosphorylation rates as well as sucrose phosphate synthase activity, but higher intercellular CO2 concentration, sucrose, fructose, and glycerate 3-phosphate contents, and non-photochemical quenching of Chl fluorescence (NPQ). Thus the decreased P N in the TG rice leaves is related to both RuBP carboxylation and RuBP regeneration limitations, and the latter is a predominant limitation to photosynthesis.  相似文献   

13.
Abscisic acid (ABA) regulates plant adaptive responses to various environmental stresses. 9-cis-epoxycarotenoid dioxygenase (NCED) is the key enzyme of ABA biosynthesis in higher plants. A NCED gene, SgNCED1, was overexpressed in transgenic tobacco plants which resulted in 51–77% more accumulation of ABA in leaves. Transgenic tobacco plants decreased stomatal conductance, transpiration rate, and photosynthetic rate but induced activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate-peroxidase (APX). Hydrogen peroxide (H2O2) and nitric oxide (NO) in leaves were also induced in the transgenic plants. Compared to the wild-type control, the transgenic plants improved growth under 0.1 M mannitol-induced drought stress and 0.1 M NaCl-induced salinity stress. It is suggested that the ABA-induced H2O2 and NO generation upregulates the stomatal closure and antioxidant enzymes, and therefore increases drought and salinity tolerance in the transgenic plants.  相似文献   

14.
Several studies have found the photosynthetic integration in clonal plants to response to resource heterogeneity, while little is known how it responses to heterogeneity of UV-B radiation. In this study, the effects of heterogeneous UV-B radiation (280–315 nm) on gas exchange and chlorophyll fluorescence of a clonal plant Trifolium repens were evaluated. Pairs of connected and severed ramets of the stoloniferous herb T. repens were grown under the homogeneity (both of ramets received only natural background radiation, ca. 0.6 kJ m−2 d−1) and heterogeneity of UV-B radiation (one of the ramet received only natural background radiation and the other was exposed to supplemental UV-B radiation, 2.54 kJ m−2 d−1) for seven days. Stomatal conductance (g s), intercellular CO2 concentration (C i) and transpiration rate (E) showed no significant differences in connected and severed ramets under homogenous and heterogeneous UV-B radiation, however, net photosynthetic rate (P N) and maximum photosynthetic rate (P max) of ramets suffered from supplemental increased UV-B radiation and that of its connected sister ramet decreased significantly. Moreover, additive UV-B radiation resulted in a notable decrease of the minimal fluorescence of dark-adapted state (Fo), the electron transport rate (ETR) and photochemical quenching coefficient (qP) and an increase of nonphotochemical quenching (NPQ) under supplemental UV-B radiation, while physiological connection reverse the results. In all, UV-B stressed ramets could benefit from unstressed ramets by physiological integration in photosynthetic efficiency, and clonal plants are able to optimize the efficiency to maintain their presence in less favourable sites.  相似文献   

15.
In the mitochondria of animal steroidogenic tissues, cytochrome P450SCC encoded by the CYP11A1 gene catalyzes the conversion of cholesterol into pregnenolone—the general precursor of all steroid hormones. In this work we study the steroid metabolism in transgenic tobacco plants carrying the CYP11A1 cDNA encoding cytochrome P450SCC from the bovine adrenal cortex. The transgenic plants under investigation markedly surpass the control wild-type plants by size and are characterized by a shortened period of vegetative growth (by rapid flowering); their leaves contain pregnenolone—the product of a reaction catalyzed by cytochrome P450SCC. The level of progesterone in transgenic tobacco leaves is higher than in the control plants of the wild type. The seeds of the transgenic plants contain less (24R)-brassinosteroids than the wild-type tobacco plants. The results obtained indicate that the synthesis of an active P450SCC cytochrome in transgenic Nicotiana tabacum plants has a profound effect on steroid metabolism and is responsible for the specific phenotypic features of transgenic plants bearing CYP11A1 cDNA.  相似文献   

16.
Glycine betaine has been reported as an osmoprotectant compound conferring tolerance to salinity and osmotic stresses in plants. We previously found that the expression of betaine aldehyde dehydrogenase 1 gene (OsBADH1), encoding a key enzyme for glycine betaine biosynthesis pathway, showed close correlation with salt tolerance of rice. In this study, the expression of the OsBADH1 gene in transgenic tobacco was investigated in response to salt stress using a transgenic approach. Transgenic tobacco plants expressing the OsBADH1 gene were generated under the control of a promoter from the maize ubiquitin gene. Three homozygous lines of T2 progenies with single transgene insert were chosen for gene expression analysis. RT-PCR and western blot analysis results indicated that the OsBADH1 gene was effectively expressed in transgenic tobacco leading to the accumulation of glycine betaine. Transgenic lines demonstrated normal seed germination and morphology, and normal growth rates of seedlings under salt stress conditions. These results suggest that the OsBADH1 gene could be an excellent candidate for producing plants with osmotic stress tolerance.  相似文献   

17.
Nucleotide sequence encoding the truncated insecticidal Cry1Ca1 protein from Bacillus thuringiensis was extensively modified based on the codon usage of rice genes. The overall G + C contents of the synthetic cry1Ca1 coding sequence were raised to 65% with an additional bias of enriching for G and C ending codons as preferred by monocots. The synthetic gene was introduced into the Chinese japonica variety, Xiushui 11, by Agrobacterium-mediated transformation. Transgenic rice plants harboring this gene were highly resistant to Chilo suppressalis and Spodoptera litura larvae as revealed by insect bioassays. High levels of Cry1Ca1 protein were obtained in the leaves of transgenic rice, which were effective in achieving 100% mortality of S. litura and C. suppressalis larvae. The levels of Cry1Ca1 expression in the leaves of these transgenic plants were up to 0.34% of the total soluble proteins. The larvae of C. suppressalis and S. litura could consume a maximum of 1.89  and 4.89 mm2 of transgenic leaf area whereas the consumption of non-transgenic leaves by these larvae was significantly higher; 58.33 and 61.22 mm2, respectively. Analysis of R1 transgenic plants indicated that the cry1Ca1 was inherited by the progeny plants and provided complete protection against C. suppressalis and S. litura larvae.  相似文献   

18.
Expansins are non-enzymatic plant proteins breaking hydrogen bonds between cellulose microfibrils and hemicellulose polymer matrix. Each plant has many expansin genes, whose protein products participate in the regulation of plant growth and development mainly by regulating cell expansion. To analyze the effects of elevated expansin expression on the plant organ sizes, we cloned the AtEXPA10 gene from Arabidopsis thaliana and PnEXPA1 gene from Populus nigra. Transgenic tobacco plants expressing the target genes were obtained. The obtained transgenic tobacco plants were shown to have significantly larger leaves and longer stems compared to control plants. The flowers were quite insignificantly larger, but at the same time transgenic plants had more flowers. The microscopic studies showed that the organs of AtEXPA10-carrying plants were larger mainly due to stimulated cell proliferation, whereas the overexpression of the PnEXPA1 gene activated cell expansion.  相似文献   

19.
Three types of transgenic tobacco plants were acquired by separate transformation or co-transformation of a vacuolar Na+/H+ antiporter gene, SeNHX1, and a betaine synthesis gene, BADH. When exposed to 200 mM NaCl, the dual gene-transformed plants displayed greater accumulation of betaine and Na+ than their wild-type counterparts. Photosynthetic rate and photosystem II activity in the transgenic plants were less affected by salt stress than wild-type plants. Transgenic plants exhibited a greater increase in osmotic pressure than wild-type plants when exposed to NaCl. More importantly, the dual gene transformed plants accumulated higher biomass than either of the single transgenic plants under salt stress. Taken together, these findings indicate that simultaneous transformation of BADH and SeNHX1 genes into tobacco plants can enable plants to accumulate betaine and Na+, thus conferring them more tolerance to salinity than either of the single gene transformed plants or wild-type tobacco plants. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
The activation mechanism of Pseudomonas stutzeri cytochrome c peroxidase (CCP) was probed through the mediated electrochemical catalysis by its physiological electron donor, P. stutzeri cytochrome c-551. A comparative study was carried out, by performing assays with the enzyme in the resting oxidized state as well as in the mixed-valence activated form, using cyclic voltammetry and a pyrolytic graphite membrane electrode. In the presence of both the enzyme and hydrogen peroxide, the peak-like signal of cytochrome c-551 is converted into a sigmoidal wave form characteristic of an \textE\textr \textC\texti {\text{E}}_{\text{r}} {\text{C}}_{\text{i}}^{\prime } catalytic mechanism. An intermolecular electron transfer rate constant of (4 ± 1) × 105 M−1 s−1 was estimated for both forms of the enzyme, as well as a similar Michaelis–Menten constant. These results show that neither the intermolecular electron transfer nor the catalytic activity is kinetically controlled by the activation mechanism of CCP in the case of the P. stutzeri enzyme. Direct enzyme catalysis using protein film voltammetry was unsuccessful for the analysis of the activation mechanism, since P. stutzeri CCP undergoes an undesirable interaction with the pyrolytic graphite surface. This interaction, previously reported for the Paracoccus pantotrophus CCP, induces the formation of a non-native conformation state of the electron-transferring haem, which has a redox potential 200 mV lower than that of the native state and maintains peroxidatic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号