首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sunflower seed samples (N = 80) from different sunflower cultivars originating from different localities in South Africa were analyzed for 15 toxins produced by fungi of the genus Alternaria by means of a simple one-step extraction dilute-and-shoot HPLC-MS/MS approach. References for valine-tenuazonic acid (Val-TeA), altenusin (ALTS), and altenuisol (ALTSOH) were isolated from fungal culture extracts and spectroscopically characterized. Additionally, valine-tenuazonic acid was tested regarding its cytotoxicity in comparison with tenuazonic acid (TeA) and showed less activity on HT-29 cells. Furthermore, alternariol monomethyl ether-3-O-ß-D-glucoside (AME-3G) was produced by fermentation of alternariol monomethyl ether (AME) with the fungus Rhizopus oryzae. The seed samples were analyzed both with and without hulls. The method covers the AAL toxins TA1 and TA2, altenuene (ALT) and iso-altenuene (iso-ALT), altenuisol, altenusin, altertoxin I (ATX-I) and altertoxin II (ATX-II), alternariol (AOH) and alternariol monomethyl ether, alternariol monomethyl ether-3-O-ß-D-glucoside, tenuazonic acid, allo-tenuazonic acid (allo-TeA) and valine-tenuazonic acid, and tentoxin (TEN). More than 80% of the samples were positive for one or more analytes above the respective limit of detection (0.2–23 μg/kg). Alternariol, its monomethyl ether, tentoxin, tenuazonic acid, altenuisol, and valine-tenuazonic acid were found in quantifiable amounts. The highest prevalences were found for tentoxin (73% positive, mean content 13.2 μg/kg, maximum level 130 ± 0.9 μg/kg) followed by tenuazonic acid (51% positive, mean content 630 μg/kg, maximum level 6300 ± 560 μg/kg). The obtained data were further analyzed statistically to identify quantitative or qualitative relationships between the levels of Alternaria toxin in the samples.  相似文献   

2.
The occurrence ofAlternaria mycotoxins was investigated in 80 samples of tomato puree processed and sold in Argentina. Alternariol (AOH), alternariol monomethyl ether (AME) and tenuazonic acid (TA) were searched for by liquid chromatography. Thirty-nine of the 80 samples showed mycotoxin contamination. TA was found in 23 samples (39-4021 μg/kg), AOH in 5 samples (187-8756 μg/kg), and AME in 21 samples (84-1734 μg/kg). Co-occurrence of two of these toxins was detected in 10 samples. This is the first report of natural occurrence of AOH, AME and TA in tomato products in Argentina.  相似文献   

3.
The alternariol and alternariol monomethyl ether contamination in sunflower seeds was determined. The levels of alternariol found ranged between 35 to 792 µg/kg and 90 to 630 µg/kg for alternariol monomethyl ether. The fungicides showed different effect on the mycotoxin production depending on the substrate, strains and toxin analysed. Mercury phenyl acetate, Octave, Metiram, Thiram and Orthene inhibited alternariol monomethyl ether production while for alternariol production only Thiram, Metiram and Octave were effective.  相似文献   

4.
BackgroundMany Alternaria species have been studied for their ability to produce bioactive secondary metabolites, such as tentoxin (TEN), some of which have toxic properties. The main food contaminant toxins are tenuazonic acid, alternariol (AOH), alternariol monomethyl ether (AME), altenuene, and altertoxins i, ii and iii.AimsTo determine the profiles of secondary metabolites characteristic of Alternaria strains isolated from tomato for their chemotaxonomic classification.MethodsThe profiles of secondary metabolites were determined by HPLC MS.ResultsThe Alternaria isolates obtained from spoiled tomatoes belong, according to their morphological characteristics, to the species groups Alternaria alternata, Alternaria tenuissima and Alternaria arborescens, with A. tenuissima being the most frequent. The most frequent profiles of secondary metabolites belonging to the species groups A. alternata (AOH, AME, TEN), A. tenuissima (AOH, AME, TEN, tenuazonic acid) and A. arborescens (AOH, AME, TEN, tenuazonic acid) were determined, with some isolates of the latter being able to synthesize AAL toxins.ConclusionsSecondary metabolite profiles are a useful tool for the differentiation of small spored Alternaria isolates not easily identifiable by their morphological characteristics.  相似文献   

5.
A HPLC-MS/MS-based method for the quantification of nine mycotoxins produced by fungi of the genus Alternaria in various food matrices was developed. The method relies on a single-step extraction, followed by dilution of the raw extract and direct analysis. In combination with an analysis time per sample of 12 min, the sample preparation is cost-effective and easy to handle. The method covers alternariol (AOH), alternariol monomethyl ether (AME), tenuazonic acid (TeA), altenuene (ALT), iso-altenuene (isoALT), tentoxin (TEN), altertoxin-I (ATX-I), and the AAL toxins TA1 and TA2. Some Alternaria toxins which are either not commercially available or very expensive, namely AOH, AME, ALT, isoALT, and ATX-I, were isolated as reference compounds from fungal cultures. The method was extensively validated for tomato products, bakery products, sunflower seeds, fruit juices, and vegetable oils. AOH, AME, TeA, and TEN were found in quantifiable amounts and 92.1 % of all analyzed samples (n?=?96) showed low level contamination with one or more Alternaria toxins. Based on the obtained results, the average daily exposure to Alternaria toxins in Germany was calculated.  相似文献   

6.
The production of mycotoxins by Alternaria alternata in cellulosic ceiling tiles was examined with thin-layer chromatography and high-performance liquid chromatography procedures. Alternariol and alternariol monomethyl ether were found in ceiling tile extracts, whereas extracts of control rice cultures of all three isolates produced these mycotoxins plus altenuene and altertoxin I. Extensive fungal growth and mycotoxin production occurred in the ceiling tiles at relative humidities of 84–89% and 97%. Received 28 May 1997/ Accepted in revised form 06 October 1997  相似文献   

7.
Alternaria alternata is a common fungal parasite on fruits and other plants and produces a number of mycotoxins, including alternariol (3,7,9-trihydroxy-1-methyl-6H-dibenzo [b,d]pyran-6-one), alternariol monomethyl ether (3,7-dihydroxy-9-methoxy-1-methyl-6H-dibenzo[b,d]pyran-6-one), and the mutagen altertoxin I {[1S-(1α,12aβ,12bα)] 1,2,11,12,12a, 12b-hexahydro-1,4,9,12a-tetrahydroxy-3,10-perylenedione}. Alternariol and alternariol monomethyl ether have previously been detected in some samples of fruit beverages. Stability studies of these toxins as well as altertoxin I added to fruit juices and wine (10–100 ng/mL) were carried out. To include altertoxin I in the analysis, cleanup with a polymer-based Varian Abselut solid phase extraction column was used, as recoveries from C-18 columns were low. The stabilities of alternariol and alternariol monomethyl ether in a low acid apple juice containing no declared vitamin C were compared with those in the same juice containing added vitamin C (60 mg/175 ml); there were no apparent losses at room temperature over 20 days or at 80°C after 20 min. in either juice. Altertoxin I was moderately stable in pH 3 buffer (75% remaining after a two week period). Furthermore, altertoxin I was stable or moderately stable in three brands of apple juice tested over 1–27 day periods and in a sample of red grape juice over 7 days. It is concluded that altertoxin I is sufficiently stable to be found in fruit juices and should be included in methods for alternariol and alternariol monomethyl ether.  相似文献   

8.
Cereal, fruit and vegetable products were analyzed for contamination with the Alternaria mycotoxins alternariol (AOH) and alternariol monomethyl ether (AME) using stable isotope dilution assays (SIDAs). Both toxins were practically not detected in cereals and cereal products: AOH—one out of 13 samples at a content of 4.1 μg/kg; AME—two out of 13 samples at contents ranging between 0.2 and 0.6 μg/kg. However, if cereals for animal nutrition were analyzed, much higher values were found: AOH—five out of six samples (13–250 μg/kg); AME—six out of six samples (3–100 μg/kg). This finding may pose a potential problem concerning animal health. AOH and AME were frequently detected in vegetable products: AOH—5 out of 10 samples (2.6–25 μg/kg); AME—6 out of 10 samples (0.1–5 μg/kg). Tomato products were affected, especially. The highest content of AOH (25 μg/kg) and AME (5 μg/kg) were found in triple concentrated tomato paste. Special wines like “Trockenbeerenauslese” or “Spätlese” (affected by noble rot in the vineyard) contained AOH (4/6 samples; 1.2–4.9 μg/kg) and AME (4/6 samples; 0.1–0.3 μg/kg), but the values did not exceed the values of both toxins that were found generally in wines.  相似文献   

9.
A total of 181 wheat flour and 142 wheat-based foods including dried noodle, steamed bread and bread collected in China were analyzed for alternariol (AOH), alternariol monomethyl ether (AME), tentoxin (TEN) and tenuazonic acid (TeA) by ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. TeA was the predominant toxin found in 99.4% wheat flour samples at levels ranging from 1.76 μg/kg to 520 μg/kg. TEN was another Alternaria toxin frequently detected in wheat flour samples (97.2%) at levels between 2.72 μg/kg and 129 μg/kg. AOH and AME were detected in 11 (6.1%) samples at levels ranging from 16.0 μg/kg to 98.7 μg/kg (AOH) and in 165 (91.2%) samples with a range between 0.320 μg/kg and 61.8 μg/kg (AME). AOH was quantified at higher levels than AME with the ratio of AOH/AME ranging from 1.0 to 3.7. Significant linear regressions of correlation in toxin concentrations were observed between AOH and AME, AME and TeA, TEN and TeA, AOH+AME and TeA. At an average and 95th percentile, dietary exposure to AOH and AME in the Chinese general population and different age subgroups exceeded the relevant threshold value of toxicological concern (TTC), with the highest exposure found in children which deserves human health concern. TEN and TeA seem unlikely to be health concerns for the Chinese via wheat-based products but attention should be paid to synergistic or additive effects of TeA with AOH, AME, TEN and a further assessment will be performed once more data on toxicity-guided fractionation of the four toxins are available. It is necessary to conduct a systemic surveillance of Alternaria toxins in raw and processed foods in order to provide the scientific basis for making regulations on these toxins in China.  相似文献   

10.
The genusAlternaria is responsible for different plant diseases such as tobacco brown spot, tomato blight, and citrus seedling chlorosis but can also be present during storage of grain. The objective of the present paper is to summarize the knowledge concerning regulation of secondary metabolism inAlternaria, particularA alternata (A tenuis). The paper mainly deals with regulation of polyketide biosynthesis, one of the major pathways leading to the biosynthesis of mycotoxins inAlternaria. The mostly studiedAlternaria mycotoxins are dibenzopyrones such as alternariol (AOH) and alternariol monomethyl ether (AME) and altenuene along with the tetramic acid tenuazonic acid. The biosynthesis ofAlternaria mycotoxins has been reviewed by Stinson (12). Most information is available for the biosynthesis of the polyketides AOH / AME while a few biosynthetic studies have been accomplished for tenuazonic acid (11).  相似文献   

11.
The Alternaria mycotoxin tenuazonic acid (TA) was quantified in fruit juices (n = 50), cereals (n = 12) and spices (n = 38) using a recently developed stable isotope dilution assay (SIDA). [13 C6,15 N]-TA was used as the internal standard. Method validation revealed low limits of detection (LODs) of 0.15 μg/kg (fruit juices), 1.0 μg/kg (cereals) and 17 μg/kg (spices). The respective limits of quantitation were about three times higher. Recovery was about 100% for all matrices. The precision (relative standard deviation of replicate analyses of naturally contaminated samples) was 4.2% (grape juice; 1.7 μg/kg), 3.5% (whole wheat flour; 36 μg/kg) and 0.9% (curry powder; 215 μg/kg). The median content of TA in the analyzed samples was 1.8 μg/kg (fruit juices), 16 μg/kg (cereals) and 500 μg/kg (spices). Positive samples amounted to 86% (fruit juices), 92% (cereals) and 87% (spices).  相似文献   

12.
Analysis of wines, grape juices and cranberry juices forAlternaria toxins   总被引:1,自引:0,他引:1  
Sixty six samples of red and white wine from Ontario (VQA), British Columbia (VQA), Québec (“vins artisanaux”), imported wines (from Italy, South America and USA) and Canadian and US grape and cranberry juices were analysed for theAlternaria mycotoxins alternariol (AOH) and alternariol monomethyl ether (AME). After cleanup on aminopropyl SPE columns, AOH and AME were initially determined by reversed phase LC with UV detection. Positive sample extracts were re-analysed by LC-tandem negative ion electrospray mass spectrometry (MS/MS) in multiple reaction mode. Overall mean method recoveries measured by LC-UV were 93% for AOH and 81% for AME. Limits of detection in wine (and juice) by LC-UV for AOH were 0.8 (0.4) ng/ml and for AME were 0.5 (0.4) ng/ml; they were below 0.01 ng/ml by LC-MS/MS. As determined by LC-MS/MS, AOH was found in 13/17 Canadian red wines at levels of 0.03 to 5.02 ng/ml and in 7/7 imported red wines at 0.27–19.4 ng/ml, usually accompanied by lower concentrations of AME. Red grape juices (5 positive/10 samples) contained only sub ng/ml levels of AOH or AME except for one sample (39 ng AME/ml). White wines (3/23 samples), white grape juices (0/4 samples) and cranberry juices (1/5 samples) contained little AOH/AME (≤1.5 ng/ml). Presented at the World Mycotoxin Forum, Noordwijk, The Netherlands, November 10–11, 2005  相似文献   

13.
The occurrence of aflatoxin B1 (AFB1) in chilies from Pakistan was determined by using HPLC in work undertaken in Pakistan. Whole (n = 22) and powdered (n = 22) chilies were analyzed. Sixteen (73.0%) and 19 (86.4%) samples of whole and ground chilies, respectively, were contaminated. The mean concentration in powdered chilies (32.20 μg/kg) was higher statistically than in whole chilies (24.69 μg/kg). Concentrations ranged from 0.00 to 89.56 μg/kg for powdered chilies, compared with 0.00–96.3 μg/kg for whole chilies. The limits of detection and quantification were 0.05 μg/kg and 0.53 μg/kg, respectively. The concentrations were high in general and greater than the statutory limit set by the European Union. There is considerable scope for improvements in chili production in Pakistan.  相似文献   

14.
Among 27 mold isolates from decaying tomatoes, culture filtrates or ethyl acetate extracts of 8 isolates grown in yeast extract-sucrose medium were markedly toxic (mortality, greater than 50%) to brine shrimp larvae. The toxicity of six of these isolates could be attributed to the presence of citrinin, tenuazonic acid, or T-2 toxin. Ethyl acetate extracts of five Alternaria isolates and one Fusarium isolate were mutagenic for Salmonella typhimurium strains. In ripe tomatoes inoculated with toxin-producing isolates and incubated at 25 degrees C, one Alternaria alternata isolate produced tenuazonic acid in seven of seven tomatoes at levels of up to 106 micrograms/g and alternariol methyl ether in one of the seven tomatoes at 0.8 microgram/g. Another A. alternata isolate produced tenuazonic acid or alternariol methyl ether at much lower levels in only three of seven tomatoes. Patulin and citrinin were produced by a Penicillium expansum isolate at levels of up to 8.4 and 0.76 microgram/g, respectively. In tomatoes incubated at 15 degrees C, a Fusarium sulphureum isolate produced T-2 toxin, HT-2 toxin, and neosolaniol at levels of up to 37.5, 37.8 and 5.6 micrograms/g, respectively. If these mycotoxins are thermostable, they may occur at detectable levels in tomato products whenever partially moldy tomatoes are used as raw material.  相似文献   

15.
Toxins of molds from decaying tomato fruit.   总被引:4,自引:4,他引:0       下载免费PDF全文
Among 27 mold isolates from decaying tomatoes, culture filtrates or ethyl acetate extracts of 8 isolates grown in yeast extract-sucrose medium were markedly toxic (mortality, greater than 50%) to brine shrimp larvae. The toxicity of six of these isolates could be attributed to the presence of citrinin, tenuazonic acid, or T-2 toxin. Ethyl acetate extracts of five Alternaria isolates and one Fusarium isolate were mutagenic for Salmonella typhimurium strains. In ripe tomatoes inoculated with toxin-producing isolates and incubated at 25 degrees C, one Alternaria alternata isolate produced tenuazonic acid in seven of seven tomatoes at levels of up to 106 micrograms/g and alternariol methyl ether in one of the seven tomatoes at 0.8 microgram/g. Another A. alternata isolate produced tenuazonic acid or alternariol methyl ether at much lower levels in only three of seven tomatoes. Patulin and citrinin were produced by a Penicillium expansum isolate at levels of up to 8.4 and 0.76 microgram/g, respectively. In tomatoes incubated at 15 degrees C, a Fusarium sulphureum isolate produced T-2 toxin, HT-2 toxin, and neosolaniol at levels of up to 37.5, 37.8 and 5.6 micrograms/g, respectively. If these mycotoxins are thermostable, they may occur at detectable levels in tomato products whenever partially moldy tomatoes are used as raw material.  相似文献   

16.
Tomato is considered as one of the most important sources of nutrients such as lycopene, β-carotene, flavonoids, ascorbic acid (vitamin C) and hydroxyl-cinnamic acid derivatives. The quality and quantity of nutrients in tomato fruits were decreased during the severe infection of Alternaria alternata. The present study deals with the estimation of lycopene, β-carotene, phenolic and ascorbic acid content in tomato fruits which were infected with A. alternata and its toxins such as tenuazonic acid (TeA), alternariol (AOH) and alternariol monomethyl ether (AME). The lycopene, β-carotene, ascorbic acid and phenolic content were found lowest in pathogen-infected fruits i.e. (0.66 ± 0.03 mg/g), (0.14 ± 0.01 mg/g), (1.89 ± 0.2 mg/g) and (0.58 ± 0.05 mg/g), respectively, followed by toxins-treated samples as compared to the control. The results concluded that A. alternata mostly affects the nutritional values of tomato fruits due to the combined effect of the toxins.  相似文献   

17.
A HPLC method for the determination of ergometrine, ergotamine, ergocristine, α-ergocryptine and ergocornine in cereals for animal feed and in mixed feed with high cereal content was developed. Samples were extracted under acidic conditions using a mixture of phosphoric acid and acetonitrile, the extract purified with solid phase extraction cartridges (strong cation exchange), and ergot alkaloids detected after gradient elution on a C18 column by HPLC with fluorescence detection. Detection and determination limits for each individual alkaloid were at 5 (μ/kg and 10 (μg/kg, respectively. With this method, high recovery (82–120%) and good reproducibility was achieved for wheat, rye and mixed feeds, at a sum of total determined alkaloids of < 500 (μg/kg. This method was used to analyse Bavarian feeds (n=124) over three years (2005–2007), and ergot alkaloids were detected in 91 % of the samples. The majority of positive samples had ergot alkaloid contents of < 250 μg/kg, the median alkaloid level was at 70 (μg/kg. The maximum sum of total determined alkaloids exceeded 1000 (μg/kg in wheat, triticale, rye, and mixed feeds, the highest result was obtained for mixed feed (4880 (μg/kg). Parts presented at the Feed Safety Conference, Namur, Belgium, Nov 27–28, 2007  相似文献   

18.
Light inhibits production of the mycotoxins alternariol and alternariol monomethyl ether, both polyketids produced by Alternaria alternata. This effect seems to be general because seven isolates of A. alternata with different alternariol- and alternariol monomethyl ether-producing abilities all respond to continuous light with reduced levels of alternariol and alternariol monomethyl ether when the mycotoxins were calculated on a microgram-per-milligram (dry weight) basis. Blue light inhibited alternariol and alternariol monomethyl ether production 69 and 77%, respectively. Red light gave no reduction of toxin levels. Total lipids were increased 25% when mycelium was grown in blue light as compared with red light or darkness. In white or blue light, but not in red light or darkness, a red-brown pigment accumulated by the mycelium.  相似文献   

19.
Light inhibits production of the mycotoxins alternariol and alternariol monomethyl ether, both polyketids produced by Alternaria alternata. This effect seems to be general because seven isolates of A. alternata with different alternariol- and alternariol monomethyl ether-producing abilities all respond to continuous light with reduced levels of alternariol and alternariol monomethyl ether when the mycotoxins were calculated on a microgram-per-milligram (dry weight) basis. Blue light inhibited alternariol and alternariol monomethyl ether production 69 and 77%, respectively. Red light gave no reduction of toxin levels. Total lipids were increased 25% when mycelium was grown in blue light as compared with red light or darkness. In white or blue light, but not in red light or darkness, a red-brown pigment accumulated by the mycelium.  相似文献   

20.
A previously unknown metabolite was isolated from four week old cultured of the fungus, Alternaria tenuis. The compound shows cytotoxic activity against five bacteria tested by the paper-disc agar-plate method. After purification by column chromatography on silica gel, the metabolite crystallized from acetone: hexane mixtures as colorless neddles neddles that melted at 190–191° (corr.). High resolution mass spectrometry indicated a parent ion with mol. wt. 292.0938, which identified the empirical formula as C15H16O6. Structural assignments based on infrared, proton magnetic resonance, and ultraviolet spectra established the structure of the compound as 2′,3′,4′,5′-tetrahydro-3,3′,4′-trihydroxy-5-methoxy-6′-mehyl-dibenzo-α-pyrone to which we have given the trival name, altenuene. Altenuene is structurally related to two previously characterized A. tenius metabolites, alternariol and alternariol monomethyl ether.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号