首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.

Background

Biological invasions are fundamentally biogeographic processes that occur over large spatial scales. Interactions with soil microbes can have strong impacts on plant invasions, but how these interactions vary among areas where introduced species are highly invasive vs. naturalized is still unknown. In this study, we examined biogeographic variation in plant-soil microbe interactions of a globally invasive weed, Centaurea solstitialis (yellow starthistle). We addressed the following questions (1) Is Centaurea released from natural enemy pressure from soil microbes in introduced regions? and (2) Is variation in plant-soil feedbacks associated with variation in Centaurea''s invasive success?

Methodology/Principal Findings

We conducted greenhouse experiments using soils and seeds collected from native Eurasian populations and introduced populations spanning North and South America where Centaurea is highly invasive and noninvasive. Soil microbes had pervasive negative effects in all regions, although the magnitude of their effect varied among regions. These patterns were not unequivocally congruent with the enemy release hypothesis. Surprisingly, we also found that Centaurea generated strong negative feedbacks in regions where it is the most invasive, while it generated neutral plant-soil feedbacks where it is noninvasive.

Conclusions/Significance

Recent studies have found reduced below-ground enemy attack and more positive plant-soil feedbacks in range-expanding plant populations, but we found increased negative effects of soil microbes in range-expanding Centaurea populations. While such negative feedbacks may limit the long-term persistence of invasive plants, such feedbacks may also contribute to the success of invasions, either by having disproportionately negative impacts on competing species, or by yielding relatively better growth in uncolonized areas that would encourage lateral spread. Enemy release from soil-borne pathogens is not sufficient to explain the success of this weed in such different regions. The biogeographic variation in soil-microbe effects indicates that different mechanisms may operate on this species in different regions, thus establishing geographic mosaics of species interactions that contribute to variation in invasion success.  相似文献   

2.
Legumes, especially acacias, are considered amongst the most successful invaders globally. However there is still very little known about the role of soil microbial communities in their invasion success in novel ranges. We examined the role of the soil microbial community in the invasion success of four Acacia species (A. cyclops, A. longifolia, A. melanoxylon and A. saligna) and a close relative Paraserianthes lophantha, introduced into novel regions within Australia using a “black-box” approach. Seed and soil material were collected from multiple populations within each species’ native and introduced range within Australia and used in a plant-soil feedback experiment to assess the effect of the soil microbial community on plant growth and nodulation. We found no effect, either positive or negative, of soil origin on species’ performance, however there was a significant interaction between species and seed origin. Seed origin had a significant effect on the biomass of two species, A. cyclops and A. saligna. A. cyclops plants from the native range performed better across all soils than plants from the introduced range. The opposite trend was observed for A. saligna, with plants from the introduced range performing better overall than plants from the native range. Seed or soil origin did not have a significant effect on the presence and number of nodules suggesting that rhizobia do not constrain the invasion success of these legumes. Our results suggest that plant-soil feedbacks are unlikely to have played a significant role in the invasion success of these five species introduced into novel regions within Australia. This may be due to the widespread occurrence of acacias and their associated soil microbial communities throughout the Australian continent.  相似文献   

3.
Aim Our aim in this study was to document the global biogeographic variation in the effects of soil microbes on the growth of Centaurea solstitialis (yellow starthistle; Asteraceae), a species that has been introduced throughout the world, but has become highly invasive only in some introduced regions. Location  To assess biogeographic variation in plant–soil microbe interactions, we collected seeds and soils from native Eurasian C. solstitialis populations and introduced populations in California, Argentina and Chile. Methods To test whether escape from soil‐borne natural enemies may contribute to the success of C. solstitialis, we compared the performance of plants using seeds and soils collected from each of the biogeographic regions in greenhouse inoculation/sterilization experiments. Results  We found that soil microbes had pervasive negative effects on plants from all regions, but these negative effects were significantly weaker in soils from non‐native ranges in Chile and California than in those from the non‐native range in Argentina and the native range in Eurasia. Main conclusions The biogeographic differences in negative effects of microbes in this study conformed to the enemy‐release hypothesis (ERH) overall, but the strong negative effect of soil biota in Argentina, where C. solstitialis is invasive, and weaker effects in Chile where it is not, indicated that different factors influencing invasion are likely to occur in large scale biogeographic mosaics of interaction strengths.  相似文献   

4.
Interactions between introduced plants and soils they colonize are central to invasive species success in many systems. Belowground biotic and abiotic changes can influence the success of introduced species as well as their native competitors. All plants alter soil properties after colonization but, in the case of many invasive plant species, it is unclear whether the strength and direction of these soil conditioning effects are due to plant traits, plant origin, or local population characteristics and site conditions in the invaded range. Phragmites australis in North America exists as a mix of populations of different evolutionary origin. Populations of endemic native Phragmites australis americanus are declining, while introduced European populations are important wetland invaders. We assessed soil conditioning effects of native and non‐native P. australis populations on early and late seedling survival of native and introduced wetland plants. We further used a soil biocide treatment to assess the role of soil fungi on seedling survival. Survival of seedlings in soils colonized by P. australis was either unaffected or negatively affected; no species showed improved survival in P. australis‐conditioned soils. Population of P. australis was a significant factor explaining the response of seedlings, but origin (native or non‐native) was not a significant factor. Synthesis: Our results highlight the importance of phylogenetic control when assessing impacts of invasive species to avoid conflating general plant traits with mechanisms of invasive success. Both native (noninvasive) and non‐native (invasive) P. australis populations reduced seedling survival of competing plant species. Because soil legacy effects of native and non‐native P. australis are similar, this study suggests that the close phylogenetic relationship between the two populations, and not the invasive status of introduced P. australis, is more relevant to their soil‐mediated impact on other plant species.  相似文献   

5.
Biotic interactions involving exotic plants in their introduced ranges may differ from those of co‐occurring plant species and from interactions in their native ranges. When interactions are less negative, or more positive compared to native plant species, this may increase invasion success, and differences among ranges may cause changes in exotic plant traits. Here, we investigated arbuscular mycorrhizae (AM) associated with Triadica sebifera seedlings from populations in native (China) and introduced ranges (US) and with seedlings from US and China species within three co‐occurring genera (Liquidambar, Ulmus, Celtis) grown in multiple common gardens in both ranges. No general pattern of higher or lower AM colonization was found in the introduced range for China and US Celtis, Liquidambar, or Ulmus species. However, AM colonization was significantly higher for Triadica than for other genera, particularly in the introduced range, suggesting AM may improve Triadica's invasion success. Triadica AM colonization was higher in US than China gardens, decreased with increasing soil nitrogen in China, but was independent of soil nitrogen in the US. This might reflect a different effect of soil fertility on this mutualism among ranges. Introduced Triadica populations had higher AM colonization than native populations, particularly in US gardens, implying a possible advantage from greater AM association in the introduced range. This is the first field study demonstrating post‐introduction changes in mycorrhizal colonization of an invasive species. It indicates that there are ecological and evolutionary components to the effect of positive interactions on plant invasions.  相似文献   

6.
The Eurasian herb Centaurea maculosa Lam. has invaded millions of hectares of semi-arid grasslands in western North America. Its success may reflect that it may be more competitive than native species, it is not grazed by large herbivores, it was introduced without its native enemies, it may interfere with native species via allelopathy, or most likely some combination of these factors. Greater competitive ability could include greater use of limiting soil resources, such as water, or more efficient use of soil water, thereby inhibiting establishment, survival, and reproduction of native species. We measured water use and water-use efficiency of Centaurea and three native grasses, Pseudoroegneria spicata [Scribn. and Smith] A. Love, Pascopyrum smithii [Rybd.] A. Love, and Festuca idahoensis Elmer, in a glasshouse. Water-use efficiency was determined by the traditional measure of biomass produced per mass of water used, and by carbon-isotope discrimination (). Centaurea did not use the most water, or use water more efficiently (based on biomass (g)/ water (kg) and carbon-isotope discrimination) than all three native grasses. We also determined carbon-isotope discrimination of Centaurea and dominant native grasses during the 1999 and 2000 growing seasons at three field sites. Centaurea rosettes had the lowest water-use efficiency (greatest carbon-isotope discrimination), followed by mature plants of Centaurea, and then native grasses. Water-use efficiency of mature Centaurea plants and native grasses was greater in late summer than early summer. Centaurea's success as an invasive species in North America cannot be attributed to greater use of soil water or greater water-use efficiency than native grasses.  相似文献   

7.
Differences in morphological or ecological traits expressed by exotic species between their native and non-native ranges are often interpreted as evidence for adaptation to new conditions in the non-native ranges. In turn this adaptation is often hypothesized to contribute to the successful invasion of these species. There is good evidence for rapid evolution by many exotic invasives, but the extent to which these evolutionary changes actually drive invasiveness is unclear. One approach to resolving the relationship between adaptive responses and successful invasion is to compare traits between populations from the native and non-native ranges for both exotic invaders and congeners that are exotic but not invasive. We compared a suite of morphological traits that are commonly tested in the literature in the context of invasion for three very closely related species of Centaurea, all of which are sympatric in the same native and non-native ranges in Europe and North America. Of these, C. solstitialis is highly invasive whereas C. calcitrapa and C. sulphurea are not. For all three species, plants from non-native populations showed similar shifts in key traits that have been identified in other studies as important putative adaptive responses to post-introduction invasion. For example, for all three species plants from populations in non-native ranges were (i) larger and (ii) produced seeds that germinated at higher rates. In fact, the non-invasive C. calcitrapa showed the strongest trait shift between ranges. Centaurea solstitialis was the only species for which plants from the non-native range increased allocation to defensive spines, and allocated proportionally less resources to reproduction, patterns contrary to what would be predicted by theory and other empirical studies to enhance invasion. Our results suggest caution when interpreting the commonly observed increase in size and reproductive capacity as factors that cause exotics to become invaders.  相似文献   

8.
Quantitative comparisons of distribution and abundance of exotic species in their native and non‐native ranges represent a first step when studying invaders. However, this approach is rarely applied 2 particularly to tree species. Using biogeographical contrasts coupled with regional dispersal surveys, we assessed whether two exotic maple tree species, Acer negundo and Acer platanoides, can be classified as invasive in the non‐native regions surveyed. We also examined the importance of biogeography in determining the degree of invasion by exotic species using this reciprocal approach. Local‐scale surveys were conducted in a total of 34 forests to compare density, relative abundance, age structure of native and introduced populations, and whether the two introduced maple species negatively affected native tree species density. Regional‐scale surveys of a total of 136 forests were then conducted to assess distribution in the introduced regions. Introduced populations of A. negundo were denser than populations measured in their native range and negatively related to native tree species density. Age structure did not differ between regions for this species. At the regional scale, this species has invaded most of the riparian corridors sampled in France. Conversely, the density of A. platanoides introduced populations was similar to that of native populations and was not related to native tree species density. Although seedling recruitment was higher away than at home, this species has invaded only 9% of the forests sampled in southern Ontario, Canada. Although reported invasive, these two exotic maple species differed in their relative demographic parameters and regional spread. Acer negundo is currently invasive in southern France while A. platanoides is not aggressively invasive in southern Ontario. Importantly, this study effectively demonstrates that biogeography through structured contrasts provide a direct means to infer invasion of exotic species.  相似文献   

9.
Distributions of exotic plants in eastern Asia and North America   总被引:3,自引:0,他引:3  
Guo Q  Qian H  Ricklefs RE  Xi W 《Ecology letters》2006,9(7):827-834
Although some plant traits have been linked to invasion success, the possible effects of regional factors, such as diversity, habitat suitability, and human activity are not well understood. Each of these mechanisms predicts a different pattern of distribution at the regional scale. Thus, where climate and soils are similar, predictions based on regional hypotheses for invasion success can be tested by comparisons of distributions in the source and receiving regions. Here, we analyse the native and alien geographic ranges of all 1567 plant species that have been introduced between eastern Asia and North America or have been introduced to both regions from elsewhere. The results reveal correlations between the spread of exotics and both the native species richness and transportation networks of recipient regions. This suggests that both species interactions and human-aided dispersal influence exotic distributions, although further work on the relative importance of these processes is needed.  相似文献   

10.
The role of preadaptation in ecology and evolution is determined by how the traits evolved by a species in one environment allow it to be successful in novel environments. This concept bears directly on modern biological invasions, as species are introduced to new locations beyond their historical borders. In this study, we used a phylogenetically-controlled analysis of the flowering plant genus Silene (Caryophyllaceae) to show that native geographic range size, along with a suite of life history traits affecting plant growth and reproduction, have preadapted some species for the invasion of new ranges. Using a path analytic approach, we further show that some of the covariance between life history traits and invasiveness is indirect, caused by mutual associations with native range size. Specifically, we found that reproductive traits such as the number of flowers per inflorescence and length of the flowering season directly preadapt species for invasion, while plant height is indirectly associated with invasion through a correlation with native range size. Other traits such as ovule number and leaf size are both directly and indirectly associated with invasion success. Our results reveal the importance of accounting for correlations among plant traits and geographic range size when predicting preadaptation for invasiveness. We also highlight that the traits predictive of invasion success among species of Silene are often those found to be rapidly evolving within introduced populations, suggesting common forces of selection operating at these different biological scales of organization during invasion.  相似文献   

11.
Despite their recognized importance in the literature, the contribution of native-range species interactions to invasion success has been inadequately studied. Previous authors have suggested that biases in the sampling of propagules from the native range might influence invasion success, but most contemporary invasion hypotheses focus on the development of novel interactions or a release from native consumers and competitors. When ecotypic variation exists in native host-consumer associations, the specific pattern of sampling across ecotypes could determine invasion success, especially when the genetic diversity among exotic propagules is low. The South American cactus moth, Cactoblastis cactorum (Berg), is an oligophagous consumer whose larvae feed on prickly pear cacti (subfamily Opuntioideae). The moth was collected from a small geographic area along the Argentina-Uruguay border in 1925 and was introduced to multiple continents as a biological control species, which has subsequently invaded North America. Here we show that groups defined by genetic structure in this species’ native range are concordant with distinct patterns of host association and larval morphology. Furthermore, in Florida populations, morphological traits have diverged from those found in the native range, and patterns of host association suggest that strong biases in host preference also occur in invasive populations. The documented history of C. cactorum introductions confirms that multiple attempts were made to export the moth, but that only a single ecotype was exported successfully. Additional work will be necessary to determine whether the observed host biases in North America reflect a rapid adaptation to naïve hosts or a conservation of traits related to specific aspects of the host-consumer association.  相似文献   

12.
Invasive plant species have been suggested to change the composition of the soil community in a way that results in a positive feedback for them and a negative feedback for the native plant community. Carpobrotus edulis, a species native to South Africa, is one of the most aggressive exotic species in Mediterranean Europe. Although several aspects of its invasion biology have been studied, the occurrence of plant-soil feedback has been scarcely investigated. We first checked for the existence of biotic resistance in soils from two invaded sites of Mediterranean Europe and one site in the native area. Secondly, we evaluated the effects of soil conditioning on the germination and plant growth of C. edulis and two key species of native dunes. Finally, we tested the effects of short- and long-term soil conditioning on the performance and reproductive effort of C. edulis. Our results show that at first there is a natural resistance to invasion by the soil biota. Later, biotic resistance in invaded soil is suppressed by the establishment of a soil community that enhances the growth of C. edulis and that negatively influences the growth and survival of the native plants. Long-term soil conditioning in the field resulted in shifts in the balance between vegetative growth and sexual reproduction. Long-term invasion was also reflected in high levels of endophyte colonization by chytrids in roots, although the physiological consequences of this colonization remain unknown. The results obtained illustrate a mechanism that explains how C. edulis breaks the initial biotic resistance of newly-invaded landscapes. Finally, this study highlights the importance of studying plant-soil interactions on different members of the plant community and temporal stages in order to fully understand invasion.  相似文献   

13.
Positive feedback between invasive and native plants may contribute to invasive species dominance, although this pattern may not be general for all invasions and has not been well explored in woodland systems. We examined the pairwise feedback relationship between Euonymus fortunei, an emerging invader of North American deciduous forests, and Asarum canadense, a co-occuring native groundcover, to determine whether positive feedback might contribute to Euonymus dominance. In a greenhouse in Bloomington, Indiana, USA, we conditioned live woodland soil via growth with either Euonymus or Asarum, then used conditioned soils to inoculate monocultures and pairwise mixtures of each species. After eight weeks, we harvested plants and measured percent growth. We found evidence for positive plant-soil feedback between Euonymus and Asarum. Euonymus grew better in soil conditioned by conspecifics than in soil conditioned by Asarum, whereas total Asarum growth was not different in soil conditioned by conspecifics vs. Euonymus. These results held whether Euonymus and Asarum grew in monoculture or pairwise competition. This study supports a role for positive plant-soil feedback as a driving factor behind the invasion of Euonymus fortunei. Future work should examine the role of abiotic vs. biotic factors in mediating feedback between Euonymus and Asarum. Furthermore, researchers should examine pairwise feedback between Euonymus and other native species in order to better understand the role of positive feedback in Euonymus invasion. By evaluating the importance of this and other possible invasion mechanisms, we can improve our understanding of invasion ecology while facilitating management of harmful invasive species.  相似文献   

14.
Alien invasive plants threaten biodiversity, productivity and ecosystem functioning throughout the world. We examined the effect of Fallopia japonica on two native grassland species (Trifolium repens, Lolium perenne). We hypothesized that its negative effects on the native species are dependent on three mechanisms: (i) allelochemicals released and accumulated in soil with a history of invasion, (ii) altered soil biota and (iii) direct resource competition. We measured the response of the native species as the difference in their functional traits when grown under the three conditions. Our results demonstrate that neither allelochemicals nor soil biota from soil with history of F. japonica invasion had measurable effects on either species. Competition with the invader strongly reduced height, biomass and specific leaf area (SLA) of T. repens, while it had a lower effect on L. perenne. Furthermore, our results reveal that F. japonica took advantage of a positive plant–soil and plant–plant interaction. The results show that the prominent mechanism underpinning the invasion success of F. japonica in the grassland was the direct resource competition. This prominent role is also confirmed by the significant interactions between competition, allelochemicals and soil biota from soils with history of invasion of F. japonica on SLA of the native species.  相似文献   

15.
Interrelated causes of plant invasion have been gaining increasing recognition. However, research on this subject has mainly focused around conceptual models. Here we explore whether plant–soil biota feedbacks and disturbance, two major factors capable of facilitating invasive plants in introduced ranges, interact to preferentially benefit exotics compared to native plants. We investigated the influence of fire disturbance on plant–soil biota interactions for the invasive Acacia longifolia and two dominant natives (Cytisus striatus and Pinus pinaster) in Portuguese dune systems. In the first experiment, we grew exotic and native plants in soil inoculated with soil biota from unburned or recently burned soils collected in an area with small invasion intensity by A. longifolia. Soil biota effects on the exotic legume A. longifolia changed from neutral to positive after fire, whereas the opposite outcome was observed in the native legume C. striatus, and a change from negative to neutral effects after fire occurred in the native P. pinaster. Fire reduced mycorrhizal colonization in all species and rhizobial colonization in C. striatus but not in A. longifolia. In the second experiment, we grew the exotic and native plants with conspecific and heterospecific soil biota from undisturbed soils (area with low invasion intensity by A. longifolia), and from post‐fire soils (area affected by a fire ~12 years ago and currently heavily invaded by A. longifolia). The exotic benefited more from post‐fire than from undisturbed soil biota, particularly from those associated with natives. Natives did not experience detrimental effects with invasive‐associated soil biota. Our results show that fire disturbance affected the functional interactions between soil biota and plants that may benefit more the exotic than some native species. Disturbance may open a window of opportunity that promotes invader success by altering soil enemy and mutualistic impacts.  相似文献   

16.
Introduced species, which establish in novel environments, provide an opportunity to explore trait evolution and how it may contribute to the distribution and spread of species. Here, we explore trait changes of the perennial herb Lupinus polyphyllus based on 11 native populations in the western USA and 17 introduced populations in Finland. More specifically, we investigated whether introduced populations outperformed native populations in traits measured in situ (seed mass) and under common garden conditions during their first year (plant size, flowering probability, and number of flowering shoots). We also explored whether climate of origin (temperature) influenced plant traits and quantified the degree to which trait variability was explained collectively by country and temperature as compared to other population‐level differences. Three out of four plant traits differed between the native and introduced populations; only seed mass was similar between countries, with most of its variation attributed to other sources of intraspecific variation not accounted for by country and temperature. Under common garden conditions, plants originating from introduced populations were larger than those originating from native populations. However, plants from the introduced range flowered less frequently and had fewer flowering shoots than their native‐range counterparts. Temperature of a population''s origin influenced plant size in the common garden, with plant size increasing with increasing mean annual temperature in both native and introduced populations. Our results of the first year reveal genetic basis for phenotypic differences in some fitness‐related traits between the native and introduced populations of L. polyphyllus. However, not all of these trait differences necessarily contribute to the invasion success of the species and thus may not be adaptive, which raises a question how persistent the trait differences observed in the first year are later in individuals’ life for perennial herbs.  相似文献   

17.
Qiang Yang  Bo Li  Evan Siemann 《Oikos》2015,124(2):216-224
Exotic plant species may exhibit abiotic niche expansions that enable them to persist in a greater variety of habitat types in their introduced ranges than in their native ranges. This may reflect variation in limitation by different abiotic niche dimensions (realized niche shift) or phenotypic effects of biotic interactions that vary among ranges (realized niche expansion). Novel abiotic and biotic environments in the introduced range may also lead to genetic changes in exotic plant traits that enhance their abiotic stress tolerance (fundamental niche expansion). Here, we investigated how biotic interactions (aboveground herbivory and soil organisms) affect plant salinity tolerance using the invasive species Triadica sebifera from China (native range) and US (introduced range) populations grown in common gardens in both ranges. Simulated herbivory significantly reduced survival in saline treatments with reductions especially large at low salinity. Soil sterilization had a negative effect on survival at low salinity in China but had a positive effect on survival at low salinity in the US. Triadica survival and biomass were higher for US populations than for China populations, particularly in China but salinity tolerance did not depend on population origin. On average, arbuscular mycorrhizal (AM) colonization was higher for US populations, US soils and low salinity. These factors had a significant, positive, non‐additive interaction so that clipped seedlings from US populations in low saline US soils had high levels of AM colonization. Overall, our results show that phenotypic biotic interactions shape Triadica's salinity tolerance. Positive and negative biotic interactions together affected plant performance at intermediate stress levels. However, only aboveground damage consistently affected salinity tolerance, suggesting an important role for enemy release in expanding stress tolerance.  相似文献   

18.
Biogeographical comparisons of native and non-native populations allow researchers to understand the degree to which traits contributing to invasion success are intrinsic or change during the invasion process. Here, we investigate whether traits underlying interspecific competition change following invasion and whether these alter the impacts of two crayfish congeners that have invaded into each other’s native ranges. Specifically, we compared native and non-native populations of rusty (Faxonius rusticus) and virile crayfish (F. virilis). We compared native and non-native populations of each species using laboratory assays to examine aggression and large mesocosms with the congeners in sympatry to examine growth and survival as well as impacts on lower trophic levels. We found that non-native virile crayfish were more aggressive in response to a threat than native virile crayfish and exhibited greater growth and survival in sympatry with rusty crayfish. These intraspecific differences were large enough to alter coexistence between species in the mesocosm experiment, which is consistent with patterns of coexistence between these species in the field. We did not observe differences in traits between native and non-native rusty crayfish, but rusty crayfish were consistently competitively dominant over virile crayfish in paired laboratory assays. Non-native populations of both species had greater impacts on lower trophic levels than native populations. Taken together, these findings provide new evidence that trait changes during invasions may enhance ecological impacts of invasive animals and their ability to compete with closely related native species.  相似文献   

19.
Soil pathogens are believed to be major contributors to negative plant–soil feedbacks that regulate plant community dynamics and plant invasions. While the theoretical basis for pathogen regulation of plant communities is well established within the plant–soil feedback framework, direct experimental evidence for pathogen community responses to plants has been limited, often relying largely on indirect evidence based on above‐ground plant responses. As a result, specific soil pathogen responses accompanying above‐ground plant community dynamics are largely unknown. Here, we examine the oomycete pathogens in soils conditioned by established populations of native noninvasive and non‐native invasive haplotypes of Phragmites australis (European common reed). Our aim was to assess whether populations of invasive plants harbor unique communities of pathogens that differ from those associated with noninvasive populations and whether the distribution of taxa within these communities may help to explain invasive success. We compared the composition and abundance of pathogenic and saprobic oomycete species over a 2‐year period. Despite a diversity of oomycete taxa detected in soils from both native and non‐native populations, pathogen communities from both invaded and noninvaded soils were dominated by species of Pythium. Pathogen species that contributed the most to the differences observed between invaded and noninvaded soils were distributed between invaded and noninvaded soils. However, the specific taxa in invaded soils responsible for community differences were distinct from those in noninvaded soils that contributed to community differences. Our results indicate that, despite the phylogenetic relatedness of native and non‐native P. australis haplotypes, pathogen communities associated with the dominant non‐native haplotype are distinct from those of the rare native haplotype. Pathogen taxa that dominate either noninvaded or invaded soils suggest different potential mechanisms of invasion facilitation. These findings are consistent with the hypothesis that non‐native plant species that dominate landscapes may “cultivate” a different soil pathogen community to their rhizosphere than those of rarer native species.  相似文献   

20.
Rapid evolutionary adaptations and phenotypic plasticity have been suggested to be two important, but not mutually exclusive, mechanisms contributing to the spread of invasive species. Adaptive evolution in invasive plants has been shown to occur at large spatial scales to different climatic regions, but local adaptation at a smaller scale, e.g. to different habitats within a region, has rarely been studied. Therefore, we performed a case study on invasive Mahonia populations to investigate whether local adaptation may have contributed to their spread. We hypothesized that the invasion success of these populations is promoted by adaptive differentiation in response to local environmental conditions, in particular to the different soils in these habitats. To test this hypothesis, we carried out a reciprocal transplantation experiment in the field using seedlings from five Mahonia populations in Germany that are representative for the range of habitats invaded, and a greenhouse experiment that specifically compared the responses to the different soils of these habitats. We found no evidence for local adaptation of invasive Mahonia populations because seedlings from all populations responded similarly to different habitats and soils. In a second greenhouse experiment we examined genetic variation within populations, but seedlings from different maternal families did not vary in their responses to soil conditions. We therefore suggest that local adaptation of seedlings does not play a major role for the invasion success of Mahonia populations and that phenotypic plasticity, instead, could be an important trait in this stage of the life cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号