首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The effects of pH and ionic strength on the equilibrium constants and rate constants (binding and dissociation rate constants) between riboflavin binding protein (RBP) and flavins (riboflavin, 3-carboxymethylriboflavin [CMRF], and FMN) were studied by fluorometry. The equilibrium constant and the binding rate constant between RBP and riboflavin were pH-independent between pH 6 and 9, and both constants were also independent of the ionic strength, while the constants between RBP and CMRF or FMN were dependent on both pH and ionic strength. The dissociation rate constants between RBP and the flavins used here were not so dependent on pH and ionic strength in the pH region 6 to 9, and the patterns of pH profiles as a whole were similar to each other, although the constants for FMN were about 30-60 times larger than those for CMRF or riboflavin. RBP had lower affinity for FMN than for riboflavin in the neutral pH region, which is based on the small binding rate constant and the large dissociation rate constant for FMN. The former is due to an electrostatic repulsion force between negative net charges of RBP and the phosphate group of FMN, and the latter is due to steric interference by the phosphate group of FMN.  相似文献   

2.
Cyanide binding to a cytochrome c peroxidase (CcP) variant in which the distal histidine has been replaced by a leucine residue, CcP(H52L), has been investigated as a function of pH using spectroscopic, equilibrium, and kinetic methods. Between pH 4 and 8, the apparent equilibrium dissociation constant for the CcP(H52L)/cyanide complex varies by a factor of 60, from 135 microM at pH 4.7 to 2.2 microM at pH 8.0. The binding kinetics are biphasic, involving bimolecular association of the two reactants, followed by an isomerization of the enzyme/cyanide complex. The association rate constant could be determined up to pH 8.9 using pH-jump techniques. The association rate constant increases by almost 4 orders of magnitude over the pH range investigated, from 1.8 x 10(2) M(-1) s(-1) at pH 4 to 9.2 x 10(5) M(-1) s(-1) at pH 8.6. In contrast to wild-type CcP, where the binding of HCN is the dominant binding pathway, CcP(H52L) preferentially binds the cyanide anion. Above pH 8, cyanide binding to CcP(H52L) is faster than cyanide binding to wild-type CcP. Cyanide dissociates 4 times slower from the mutant protein although the pH dependence of the dissociation rate constant is essentially identical for CcP(H52L) and CcP. Isomerization of the CcP(H52L)/cyanide complex is observed between pH 4 and 8 and stabilizes the complex. The isomerization rate constant has a similar magnitude and pH dependence as the cyanide dissociation rate constant, and the two reactions are coupled at low cyanide concentrations. This isomerization has no counterpart in the wild-type CcP/cyanide complex.  相似文献   

3.
Angiotensin converting enzyme interacts with the chelator, 1,10-phenanthroline (OP) to form an OP-Zn-ACE ternary complex, which subsequently dissociates to OP-Zn and apoenzyme. The association and dissociation rate constants for the reaction OP + Zn-ACE in equilibrium OP-Zn-ACE have been determined and compared with those of known OP-metal complexes. Such constants were also used to calculate the rate constant for formation of the OP-Zn complex from OP-Zn-ACE. The rate of dissociation of zinc from ACE has been measured in the presence of EDTA (which acts only as a metal scavenger) as a function of chelator concentration, at different pH values, and with different buffers. The stability constant for the binding of zinc to apoACE log Kc = 8.2, determined by equilibrium dialysis using atomic absorption spectroscopy to assess metal concentration, is much smaller than that for Zn-carboxypeptidase A. Zn-thermolysin, or Zn-carbonic anhydrase. This weak binding is attributable to the zinc dissociation rate constant of ACE, 7.5 X 10(-3) sec-1 at pH 7.0, which is much greater than that of the other zinc metalloenzymes. These results lead to inferences regarding the metal binding site of ACE.  相似文献   

4.
The binding of oxygen by the haemocyanin of the gastropod Lymnaea stagnalis was studied by equilibrium and kinetic methods. The studies were performed under conditions in which the haemocyanin molecule was in the native state. Over the pH range 6.8-7.6, in the presence of 10mM-CaCl2 the haemocyanin bound O2 cooperatively. Over this pH range the haemocyanin molecule displayed a normal Bohr effect whereby the O2 affinity of the molecule decreased with a fall in the pH of the solution. The maximum slope of the Hill plot (hmax.) was 3.5, obtained at pH 7.5. An increase in the CaCl2 concentration from 5 to 20 mM at pH 6.8 resulted in a slight increase in the oxygen affinity, with hmax. remaining virtually unchanged. At constant pH and CaCl2 concentration, an increase in NaCl concentration from 0 to 50 mM resulted in a small decrease in O2 affinity, but a significant increase in the value of hmax. from 3.5 to 8.6. Temperature-jump relaxation experiments over a range of O2 concentrations produced single relaxation times. The dependence of the relaxation time on the reactant concentrations indicated a simple bimolecular binding process. The calculated association and dissociation rate constants for this process at pH 7.5 are 29.5 X 10(6) M-1 X S-1 and 49 S-1 respectively. The association rate constant kon was found to be essentially independent of pH and CaCl2 concentration. The dissociation rate constant, koff, however, increased with a decrease in the pH, but was also independent of CaCl2 concentration. These results indicate that the stability of the haemocyanin-O2 complex is determined by the dissociation rate constant.  相似文献   

5.
Mei H  Geren L  Miller MA  Durham B  Millett F 《Biochemistry》2002,41(12):3968-3976
The interaction of yeast iso-1-cytochrome c (yCc) with the high- and low-affinity binding sites on cytochrome c peroxidase compound I (CMPI) was studied by stopped-flow spectroscopy. When 3 microM reduced yCc(II) was mixed with 0.5 microM CMPI at 10 mM ionic strength, the Trp-191 radical cation was reduced from the high-affinity site with an apparent rate constant >3000 s(-1), followed by slow reduction of the oxyferryl heme with a rate constant of only 10 s(-1). In contrast, mixing 3 microM reduced yCc(II) with 0.5 microM preformed CMPI *yCc(III) complex led to reduction of the radical cation with a rate constant of 10 s(-1), followed by reduction of the oxyferryl heme in compound II with the same rate constant. The rate constants for reduction of the radical cation and the oxyferryl heme both increased with increasing concentrations of yCc(II) and remained equal to each other. These results are consistent with a mechanism in which both the Trp-191 radical cation and the oxyferryl heme are reduced by yCc(II) in the high-affinity binding site, and the reaction is rate-limited by product dissociation of yCc(III) from the high-affinity site with apparent rate constant k(d). Binding yCc(II) to the low-affinity site is proposed to increase the rate constant for dissociation of yCc(III) from the high-affinity site in a substrate-assisted product dissociation mechanism. The value of k(d) is <5 s(-1) for the 1:1 complex and >2000 s(-1) for the 2:1 complex at 10 mM ionic strength. The reaction of horse Cc(II) with CMPI was greatly inhibited by binding 1 equiv of yCc(III) to the high-affinity site, providing evidence that reduction of the oxyferryl heme involves electron transfer from the high-affinity binding site rather than the low-affinity site. The effects of CcP surface mutations on the dissociation rate constant indicate that the high-affinity binding site used for the reaction in solution is the same as the one identified in the yCc*CcP crystal structure.  相似文献   

6.
The binding characteristics of the inhibitor of anion transport in human red cells, 4,4'-dibenzamido-2,2'-disulfonic stilbene (DBDS), to the anion transport protein of red cell ghost membranes in buffer containing 150 mM NaCl have been measured over the temperature range 0-30 degrees C by equilibrium and stopped-flow fluorescence methods. The equilibrium dissociation constant Keq, increased with temperature. No evidence of a 'break' in the ln(Keq) vs. 1/T plot was found. The standard dissociation enthalpy and entropy changes calculated from the temperature dependence are 9.1 +/- 0.9 kcal/mol and 3.2 +/- 0.3 e.u., respectively. Stopped-flow kinetic studies resolve the overall binding into two steps: a bimolecular association of DBDS with the anion transport protein, followed by a unimolecular rearrangement of the DBDS-protein complex. The rate constants for the individual steps in the binding mechanism can be determined from an analysis of the concentration dependence of the binding time course. Arrhenius plots of the rate constants showed no evidence of a break. Activation energies for the individual steps in the binding mechanism are 11.6 +/- 0.9 kcal/mol (bimolecular, forward step), 17 +/- 2 kcal/mol (bimolecular, reverse step), 6.4 +/- 2.3 kcal/mol (unimolecular, forward step), and 10.6 +/- 1.9 kcal/mol (unimolecular, reverse step). Our results indicate that there is an appreciable enthalpic energy barrier for the bimolecular association of DBDS with the transport protein, and appreciable enthalpic and entropic barriers for the unimolecular rearrangement of the DBDS-protein complex.  相似文献   

7.
Porter DJ  Short SA 《Biochemistry》2000,39(38):11788-11800
The catalytically active form of monofunctional yeast orotidine-5'-phosphate decarboxylase was a dimer (E(2)). The dimer equilibrium dissociation constant was 0.25 microM in 0.01 M MOPS Na(+) at pH 7.2. The bimolecular rate constant for dimer formation was 1.56 microM(-1) s(-1). The dimeric form of the enzyme was stabilized by NaCl such that the enzyme was E(2) in 100 mM NaCl at all concentrations of enzyme tested. The kinetics of binding of OMP to E(2) was governed by two ionizations (pK(1) = 6.1 and pK(2) = 7.7). From studies with substrate analogues, the higher pK was assigned to a group on the enzyme that interacted with the pyrimidinyl moiety. The value of the lower pK was dependent on the substrate analogue, which suggested that it was not exclusively the result of ionization of the phosphoryl moiety. During the decarboxylation of OMP, the fluorescence of E(2) was quenched over 20%. The enzymatic species with reduced fluorescence was a catalytically competent intermediate that had kinetic properties consistent with it being the initial enzyme-substrate complex. The stoichiometry for binding of OMP to E(2) was one OMP per enzyme monomer. The value of the first-order rate constant for conversion of the enzyme-substrate complex to free enzyme (36 s(-1)) calculated from a single turnover experiment ([E] > [S]) was slightly greater than the value of k(cat), 20 s(-1) (corrected for stoichiometry), calculated from steady-state data. In the single turnover experiments, the enzyme was E(2)*S, whereas in the steady-state turnover the experiment enzyme was E(2)*S(2). The similarity of these values suggested that the subunits were catalytically independent such that E(2)*S(2) could be treated as E*S and that conversion of the enzyme-substrate complex to E was k(cat). Kinetic data for the approach to the steady-state with OMP and E(2) yield a bimolecular association rate complex of 62 microM(-1) s(-1)and a dissociation rate constant for E*S of 60 s(-1). The commitment to catalysis was 0.25. By monitoring the effect of carbonic anhydrase on [H(+)] changes during a single turnover experiment, the initial product of the decarboxylation reaction was shown to be CO(2) not HCO(3-). UMP was released from the enzyme concomitantly with CO(2) during the conversion of E*S to E. Furthermore, the enzyme removed an enzyme equivalent of H(+) from solvent during this step of the reaction. The bimolecular rate constants for association of 6-AzaUMP and 8-AzaXMP, substrate analogues with markedly different nucleobases, had association rate constants of 112 and 130 microM(-1) s(-1), respectively. These results suggested that the nucleobase did not contribute significantly to the success of formation of the initial enzyme-substrate complex.  相似文献   

8.
S Loo  J E Erman 《Biochemistry》1975,14(15):3467-3470
The rate of the reaction between cytochrome c peroxidase and hydrogen peroxide was investigated using the stopped-flow technique. The apparent bimolecular rate constant was determined between pH 3.3 and pH 11 as a function of ionic strength. The pH dependence of the apparent bimolecular rate constant can be explained by assuming that two ionizable groups on the enzyme strongly influence the rate of the reaction. At 0.1 M ionic strength, a group with a pKa of 5.5 must be unprotonated and a group with a pKa of 9.8 must be protonated for the enzyme to react rapidly with hydrogen peroxide. The apparent acid dissociation constants depend upon the ionic strength. The true bimolecular rate constant has a value of (4.5 +/- 0.3) X 10(7) M-1 sec-1 and is independent of ionic strength.  相似文献   

9.
The binding of pyridoxal 5'-phosphate to human serum albumin   总被引:1,自引:0,他引:1  
Most of the pyridoxal 5'-phosphate (PLP) in plasma is bound to protein, primarily albumin. Binding to protein is probably important in transporting PLP in the circulation and in regulating its metabolism. The binding of PLP to human serum albumin (HSA) was studied using absorption spectral analysis, equilibrium dialysis, and inhibition studies. The kinetics of the changes in the spectrum of PLP when mixed with an equimolar concentration of HSA at pH 7.4 followed a model for two-step consecutive binding with rate constants of 7.72 mM-1 min-1 and 0.088 min-1. The resulting PLP-HSA complex had absorption peaks at 338 and 414 nm and was reduced by potassium borohydride. The 414-nm peak is probably due to a protonated aldimine formed between PLP and HSA. The binding of PLP to bovine serum albumin (BSA) at equimolar concentrations at pH 7.4 occurred at about 10% the rate of its binding to HSA. The final PLP-BSA complex absorbed maximally at 334 nm and did not appear to be reduced with borohydride. Equilibrium dialysis of PLP and HSA indicated that there were more than one class of binding sites of HSA for PLP. There was one high affinity site with a dissociation constant of 8.7 microM and two or more other sites with dissociation constants of 90 microM or greater. PLP binding to HSA was inhibited by pyridoxal and 4-pyridoxic acid. It was not inhibited appreciably by inorganic phosphate or phosphorylated compounds. The binding of PLP to BSA was inhibited more than its binding to HSA by several compounds containing anionic groups. It is concluded that PLP binds differently to HSA than it does to BSA.  相似文献   

10.
J A Cognet  B G Cox  G G Hammes 《Biochemistry》1983,22(26):6281-6287
The kinetics of reduced nicotinamide adenine dinucleotide phosphate (NADPH) binding to fatty acid synthase from chicken liver and of the reduction of enzyme-bound acetoacetyl by NADPH (beta-ketoacyl reductase) and the steps leading to formation of the acetoacetyl-enzyme have been studied in 0.1 M potassium phosphate-1 mM ethylenediaminetetraacetic acid (EDTA), pH 7.0, at 25 degrees C by monitoring changes in NADPH fluorescence with a stopped-flow apparatus. Improved fluorescence detection has permitted the use of NADPH concentrations as low as 20 nM. The kinetics of the binding of NADPH to the enzyme is consistent with a simple bimolecular binding mechanism and four equivalent sites on the enzyme (presumably two beta-ketoacyl reductase sites and two enoyl reductase sites). The bimolecular rate constant is 12.7 X 10(6) M-1 s-1, and the dissociation rate constant is 76.7 s-1, which gives an equilibrium dissociation constant of 6.0 microM. The formation of the acetoacetyl-enzyme and its subsequent reduction by NADPH could be analyzed as two consecutive pseudo-first-order reactions by mixing enzyme-NADPH with acetyl-CoA and malonyl-CoA under conditions where [acetyl-CoA], [malonyl-CoA] much greater than [enzyme] much greater than [NADPH]. From the dependence of the rate of reduction of aceto-acetyl-enzyme by NADPH on enzyme concentration, an independent estimate of the equilibrium dissociation constant for NADPH binding to the enzyme of 5.9 microM is obtained, and the rate constant for the reduction is 17.5 s-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The ionization of 4-nitroimidazole to 4-nitroimidazolate was investigated as a function of ionic strength. The apparent pKa varies from 8.99 to 9.50 between 0.001 and 1.0 M ionic strength, respectively, at 25 degrees C. The ionic strength dependence of this ionization is anomalous. The binding of 4-nitroimidazole by horse metmyoglobin was studied between pH 5.0 and 11.5 and as a function of ionic strength between 0.01 and 1.0 M. The association rate constant is pH-dependent, varying from 24 M(-1)s(-1) at pH 5 to a maximum value of 280 M(-1)s(-1) at pH 9.5 and then decreasing to 10 M(-1)s(-1) at pH 11.5 in 0.1 M ionic strength buffers. The dissociation rate constant has a much smaller pH dependence, varying from 0.082 s(-1) at low pH to 0.035 s(-1) at high pH, with an apparent pKa of 6.5. The binding affinity of 4-nitroimidazole to horse metmyoglobin is about 2.5 orders of magnitude stronger than that for imidazole and this increased affinity is attributed to the much slower dissociation rate for 4-nitroimidazole compared to that of imidazole. Although the ionic strength dependence of the binding rate is small and secondary kinetic salt effects can account for the ionic strength dependence of the association rate constant, the pH dependence of the rate constants and microscopic reversibility arguments indicate that the anionic form of the ligand binds more rapidly to all forms of metmyoglobin than does the neutral form of the ligand. However, the spectrum of the complex is similar to model complexes involving neutral imidazole and not imidazolate. The latter observation suggests that the initial metmyoglobin/4-nitroimidazolate complex rapidly binds a proton and the neutral form of the bound ligand is stabilized, probably through hydrogen binding with the distal histidine.  相似文献   

12.
The single thiol of yeast phosphoglycerate kinase was labelled with the chromophoric sulfhydryl reagent, 2-chloromercuri-4-nitrophenol. Sequential additions of individual anions to this modified enzyme brought about a decrease in absorbance at 410 nm that reflected the degree of saturation of the enzyme with anion. The binding curves were analyzed to determine the dissociation constants of a number of anions with charges varying from--1 to--4.1. A linear relationship was found between the charge of the anion and the negative logarithm of the dissociation constant for the labelled enzyme-anion complex. The highly charged anions, such as ATP, bound more tightly than did anions with less charge, such as Cl-. The average number of binding sites for those anions for which accurate results could be obtained was 1.06 mol per 47000 g of enzyme. Several lines of evidence suggested that titration of the active center was not being monitored. Anions bound to phosphoglycerate kinase decreased the rate of reaction between the enzyme thiol and 5,5'-dithiobis(2-nitrobenzoic acid). The relationship between the degree of saturation of the anion binding site and the reaction rate constant was used to calculate the dissociation constant between anion and enzyme. Dissociation constants determined in this manner were in good agreement with those determined by titration of the enzyme-mercurial complex.  相似文献   

13.
A study of the single turnover kinetics of the reaction between oxycytochrome P-450cam and reduced putidaredoxin was performed using the inhibitor metyrapone to trap the cytochrome immediately after release of the product, 5-exo-hydroxycamphor. EPR determinations of the concentrations of reduced putidaredoxin and ferric metyrapone-bound cytochrome at the same time points showed that there is no time lag between the oxidation of reduced putidaredoxin and the appearance of metyrapone-bound cytochrome. This implies that the rate constant for electron transfer is smaller than the rate constant for the later processes involved in product formation and release, lumped into a single step. Taking this restriction into account and doing computer simulation of absorbance versus time curves, previously obtained at various putidaredoxin concentrations using stopped-flow spectrophotometry, allowed bounds to be determined for rate constants of the processes within the reaction. At 4 degrees C in buffer at pH 7.4 with 0.50 M KCl, the rate constant for the bimolecular association of the two enzymes is between 3 and 20/microM.s; the rate constant for dissociation is between 12 and 600/s; the rate constant for electron transfer is between 60 and 100/s; and the rate constant for the later processes is at least 200/s.  相似文献   

14.
Biochemical and ultrastructural studies of insulin binding and cellular processing by cultured H4IIEC3 hepatoma cells were performed. Insulin binding and intracellular accumulation were rapid and after 30 min at 37 degrees C, 65% of the total cell-associated 125I-insulin was in an acid-stable compartment. Chloroquine had no significant effect on the amount of total cell-associated insulin or the percentage of insulin in the acid-stable compartment or cell-associated insulin degradation under those conditions, but after 60-min incubations, it slightly decreased the rate of dissociation of internalized hormone. Ultrastructural analysis revealed that monomeric ferritin-insulin (Fm-I) initially bound to single or paired receptors on microvilli. Within 5 min occupied insulin receptors microaggregated and migrated to the intervillous cell surface. During the next 5-10 min occupied receptors aggregated into large clusters on the plasma membrane. Large amounts of insulin were internalized by macropinocytosis and the majority of internalized Fm-I was found in phagosomes. Less than 10% of the membrane-bound insulin was associated with pinocytotic invaginations or coated pits and less than 5% of the total cell-associated insulin was found in lysosomes. Chloroquine had no detectable effect on the amount of Fm-I or its distribution among the intracellular organelles. These studies demonstrated that, compared to previous studies with rat adipocytes or 3T3-L1 adipocytes, insulin interalization and intracellular processing in this hepatoma cell were unique. These differences provide further evidence that insulin binding and processing may be controlled by cell-specific mechanisms and that substantial heterogeneity exists in pathways previously presumed to be similar for all cell types.  相似文献   

15.
Kinetics of the NO binding and removal reaction of recombinant Prolixin-S (rProlixin-S) were analyzed using stopped-flow spectrophotometry. The reaction was observed as a biphasic process. The rate constant of the fast phase increased linearly as NO concentration increased. The rate constant at the slow phase increased as NO concentrations increased at low NO concentration, then reached a plateau at high NO concentration. These NO dependencies of the reaction are characteristic of a bimolecular two-step consecutive reaction. The reaction consisted of the fast NO binding reaction of rProlixin-S and the following slow structural change of NO-protein complex. Kinetic studies revealed that the NO binding rate constant was independent of pH, but the rate constant of the NO removal reaction increased as pH increased. The apparent NO dissociation constant (Kd) of rProlixin-S was also calculated from the values of the kinetic parameters obtained in this work. The Kd value increased as pH and temperature increased. The Kd value of rProlixin-S and NO was 10-300 nM in regular physiological condition, which is 103 higher and 103 lower than those of the other ferric and ferrous hemoproteins and NO, respectively. These results indicate that Prolixin-S is one of NO transport proteins regulating blood pressure.  相似文献   

16.
The binding of cyanide to ferroperoxidase   总被引:1,自引:1,他引:0       下载免费PDF全文
1. The equilibrium and kinetics of cyanide binding to ferroperoxidase were investigated. At pH9.1 the equilibrium and kinetic measurements agree closely and disclose a single process with an affinity constant of 1.1x10(3)m(-1) and combination and dissociation velocity constants of 29m(-1).s(-1) and 2.5x10(-2)s(-1) respectively. 2. At pH values below 8 the affinity constant falls until at pH6.0 the ferroperoxidase.cyanide complex is no longer formed. This is shown to be associated with the formation of ferriperoxidase.cyanide complex in the mixture even in the presence of excess of sodium dithionite. 3. Rapid-pH-jump experiments show a fast pseudo-first-order interconversion between ferroperoxidase.cyanide complex at pH9.1 and ferriperoxidase.cyanide complex at pH6.0. 4. The kinetics of binding of cyanide to dithionite-reduced peroxidase at pH6.0 are complicated and radically different from those observed at pH9.1. 5. Above pH8 the change of affinity constant with pH is consistent with the undissociated species, HCN, being bound by the ferroperoxidase. The enthalpy for this process measured both by equilibrium and kinetic methods is about -8kcal/mol. 6. The binding of cyanide to reconstituted peroxidases, proto, meso and deutero, was investigated. 7. The results are discussed in relation to known data on cyanide binding to other haemoproteins.  相似文献   

17.
The submillisecond kinetics for phloretin binding to unilamellar phosphatidylcholine (PC) vesicles was investigated using the temperature-jump technique. Spectrophotometric studies of the equilibrium binding performed at 328 nm demonstrated that phloretin binds to a single set of independent, equivalent sites on the vesicle with a dissociation constant of 8.0 microM and a lipid/site ratio of 4.0. The temperature of the phloretin-vesicle solution was jumped by 4 degrees C within 4 microseconds producing a monoexponential, concentration-dependent relaxation process with time constants in the 30--200-microseconds time range. An analysis of the concentration dependence of relaxation time constants at pH 7.30 and 24 degrees C yielded a binding rate constant of 2.7 X 10(8) M-1 s-1 and an unbinding constant of 2,900 s-1; approximately 66 percent of total binding sites are exposed at the outer vesicle surface. The value of the binding rate constant and three additional observations suggest that the binding kinetics are diffusion limited. The phloretin analogue, naringenin, which has a diffusion coefficient similar to phloretin yet a dissociation constant equal to 24 microM, bound to PC vesicle with the same rate constant as phloretin did. In addition, the phloretin-PC system was studied in buffers made one to six times more viscous than water by addition of sucrose or glycerol to the differ. The equilibrium affinity for phloretin binding to PC vesicles is independent of viscosity, yet the binding rate constant decreases with the expected dependence (kappa binding alpha 1/viscosity) for diffusion-limited processes. Thus, the binding rate constant is not altered by differences in binding affinity, yet depends upon the diffusion coefficient in buffer. Finally, studies of the pH dependence of the binding rate constant showed a dependence (kappa binding alpha [1 + 10pH-pK]) consistent with the diffusion-limited binding of a weak acid.  相似文献   

18.
S Quay  V Massey 《Biochemistry》1977,16(15):3348-3354
The kinetic and equilibrium dissociation constants of the reversible binding of benzoate to hog kidney D-amino acid oxidase (DAAO) were studied at 19 degrees C over the pH range 5.3-10.5 by means of a stopped-flow apparatus and spectrophotometric titrations. A simple bimolecular reaction of the form second order-first order was observed; a two-step reaction was seen. Analysis of the pH dependence of the bimolecular rate constants and equilibrium dissociation constants is consistent with three ionizable groups which are important for benzoate binding. The pK values of the enzyme-related ionization are 6.3, 9.2, and 9.6. Analysis of the change in extinction coefficient at 360 nm indicates the pK of 9.6 can be assigned to the 3-imino group of the enzyme-bound flavin. The effect of benzoate on the apparent pK for the ionization of the 3-imino group of the enzyme-bound Fad has been reexamined. The presence of benzoate causes an apparent shift of this ionization from a pK value of 9.6 to 10.7.  相似文献   

19.
The kinetics of binding of glucocorticoids to the soluble, specific binding protein of mouse fibroblasts has been examined. The rate at which both potent and weak glucocorticoids achieve binding equilibrium is very slow. Second order rate constants of association range from 3 times 10-5 M- minus 1 min- minus 1 for cortisol to 6.7 times 10-5 M- minus 1 min- minus 1 for triamcinolone acetonide. Studies of the rates of binding at high steroid concentrations suggest that the slow rate of binding may be explained by a two-step mechanism. Active glucocorticoids, regardless of their potency, bind initially in a rapid manner to form a weak complex with the binding protein. The dissociation constant for the weak binding reaction is 0.87 times 10- minus 7 M for triamcinolone acetonide and 2.4 times 10- minus 7 M for cortisol. The weak binding complex becomes converted slowly to a tight complex. The first order rate constants for this conversion and the rate constants of dissociation from the tight complex have been determined for cortisol, dexamethasone and triamcinolone acetonide. The binding affinity of steroids of different biological potency is correlated with their rate of dissociation from this second tight binding state.  相似文献   

20.
The binding of multisubstrate analogue inhibitor - 2-amino-9-[2-(phosphonomethoxy)ethyl]-6-sulfanylpurine (PME-6-thio-Gua) to purine nucleoside phosphorylase from Cellulomonas sp. at 20 degrees C, in 20 mM Hepes buffer with ionic strength adjusted to 50 mM using KCl, at several pH values between 6.5 and 8.2, was investigated using a stopped-flow spectrofluorimeter. The kinetic transients registered after mixing a protein solution with ligand solutions of different concentrations were simultaneously fitted by several association reaction models using nonlinear least-squares procedure based on numerical integration of the chemical kinetic equations appropriate for given model. It is concluded that binding of a PME-6-thio-Gua molecule by each of the binding sites is sufficiently well described by one-step process, with a model assuming interacting binding sites being more probable than a model assuming independent sites. The association rate constants derived from experimental data, assuming one step binding and independent sites, are decreasing with an increase in pH, changing from 30 to 6 microM(-1)s(-1) per binding site. The dissociation rate constants are in the range of 1-3 s(-1), and they are rather insensitive of changes in pH. Interestingly, for each pH value, the one-step binding model with interacting sites results in the association rate constant per site 1.5-4 times smaller for the binding of the first ligand molecule than that for the binding of the second one. Decrease of association constants with pH indicate that the enzyme does not prefer binding of the naturally occurring anionic form of the 6-thioguanine ring (pK(a) 8.7) resulting from a dissociation of N(1)-H. This finding supports the mechanism in which hydrogen bond interaction of N(1)-H with Glu204 (Glu 201 in mammalian PNPs) is crucial in the catalytic process. Results obtained also indicate that, in contrast to transition-state analogues, for which binding is followed by a conformational change, binding of multisubstrate analogue inhibitors to trimeric PNPs is a one-step process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号