首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ecological significance of architectural patterns for saplings ofFagus crenata andFagus japonica co-occurring in a secondary oak forest were evaluated by comparing the size and shape of leaves, trunks and crowns.Fagus japonica saplings were different fromF. crenata saplings in some architectural properties: (i) the leaf area and specific leaf area were larger; (ii) the ratio of sapling height to trunk length was lower, indicating greater leaning of the trunk; and (iii) the projection area of the crown was larger and the leaf area index lower indicating less mutual shading of leaves. These architectural features indicated thatF. japonica saplings were more shade tolerant thanF. crenata andF. crenata saplings were superior toF. japonica for growth in height and could, therefore, utilize sunlight in the upper layer. An erect trunk inF. crenata and a leaning trunk inF. japonica may be important characteristics associated with the regenerations patterns of each species; regeneration from seedlings under canopy gaps in the former and vegetative regeneration by sprouting in the latter.  相似文献   

2.
胡杨枝芽生长特征及其展叶物候特征   总被引:1,自引:0,他引:1  
郑亚琼  冯梅  李志军 《生态学报》2015,35(4):1198-1207
以5个不同发育阶段的胡杨(Populus euphratica Oliv.)个体为研究对象,观测记录了枝芽展叶物候、枝芽生长特征和叶形变化的空间分布规律。结果表明:不同发育阶段的胡杨个体以及同一个体树冠的不同层次,其枝芽生长及其展叶物候期表现出不同的时空特征。随着树龄的增加和树冠层次的增高(由基向顶),当年新生枝条长度、枝条叶片数和叶形指数逐渐减小,但叶面积和叶片干重逐渐增大。5个不同发育阶段胡杨个体均表现出展叶物候始于树冠顶层,依次向下结束于树冠基部;展叶物候期共性表现在枝芽萌动期均在4月上旬,起始展叶期集中在4月中旬,展叶终期则在5月上旬到下旬;树龄较大的个体其枝芽萌动期、起始展叶期、展叶终期较树龄较小的个体早;其枝芽萌动期到展叶终期的时间进程较树龄较小的个体短;不同发育阶段的个体枝芽萌动期出现的时间较为离散,起始展叶期和展叶终期出现的时间较为集中。相关分析表明,出叶周期与枝条长度、枝条叶片数量和叶形指数呈极显著正相关,与叶面积和叶片干重呈显著负相关。  相似文献   

3.
Artichoke (Cynara scolymus L.) leaf size and shape, glandular and covering trichomes, stomatal density, stomata shape, pore area and epicuticular waxes during micropropagation stages were studied by scanning electron microscopy (SEM) and morphometric analysis with the aim to improve the survival rate after transfer to greenhouse conditions. Leaves from in vitro shoots at the proliferation stage showed a spatular shape, ring-shaped stomata, a large number of glandular trichomes and juvenile covering hairs, but failed to show any epicuticular waxes. Leaves from in vitro plants at the root elongation stage showed a lanceolated elliptic shape with a serrated border, elliptical stomata, decreased pore area percentage, stomatal density, and mature covering trichomes. One week after transfer to ex vitro conditions, epicuticular waxes appeared on the leaf surface and stomata and pore area were smaller as compared to in vitro plants. Artichoke acclimatization may be improved by hormonal stimulation of root development, since useful morphological changes on leaves occurred during root elongation.  相似文献   

4.
Many plant species are miniaturized in the alpine region in Yakushima, Japan. To examine how these alpine dwarf plants are different from their related lowland ones of the same species, we analyzed two phylogenetically distinct species cytologically, genetically and morphologically: one is a fern species, Blechnum niponicum, and the other is an angiosperm species, Lysimachia japonica. The analysis shows that the alpine dwarf and the lowland plants in each of these species do not differ in chromosome number or genetic constitution. The organ-level comparison between the alpine dwarf and lowland plants of B. niponicum shows that the fertile leaf size correlates closely with the sterile one. By contrast, the flower size does not correlate with the leaf size in L. japonica. At the cell level, the leaf size of the alpine dwarf plants of B. niponicum consists of a smaller number of epidermal cells than that of the lowland plants of this species. On the other hand, the smaller leaf size of the alpine dwarf plants of L. japonica depends on both the smaller number and the smaller size of the epidermal cells. We conclude that plant dwarfism in Yakushima shows variation at both the organ and cell levels.  相似文献   

5.
This study addresses the question of how size-related changes in leaf morphology and physiology influence light absorption and carbon gain of the epiphytic bromeliad Vriesea sanguinolenta. A geometrically based computer model, Y-plant, was used for the three-dimensional reconstruction of entire plants and for calculation of whole plant light interception and carbon gain. Plants of different sizes were reconstructed, and morphological and physiological attributes of young and old leaves, and small and large plants were combined to examine the individual effects of each factor on light absorption and carbon gain of the plant. The influence of phyllotaxis on light absorption was also explored. Departure of measured divergence angles between successive leaves from the ideal 137.5 degrees slightly decreased light absorption. The only morphological parameter that consistently changed with plant size was leaf shape: larger plants produced more slender foliage, which substantially reduced self-shading. Nevertheless, self-shading increased with plant size. While the maximum rate of net CO(2) uptake of leaves increased linearly with plant size by a factor of two from the smallest to the largest individual, the potential plant carbon gain (based on total foliage area) showed a curvilinear relationship, but with similar numerical variation. We conclude that leaf physiology has a greater impact on plant carbon gain than leaf and plant morphology in this epiphytic bromeliad.  相似文献   

6.
Shoot morphology at the emergence ofDioscorea japonica Thumb. could be classed into the following three types: (1) a seedling emergence with only one leaf (Se type), (2) a plant consisting of one stem and one leaf, which has emerged from a small tuber (rhizophore) or bulbil less than 50 mg in dry weight (S type) and (3) a twiner with many leaves, which has emerged from a tuber or a bulbil of more than 50 mg in dry weight (L type). The Se type failed to develop beyond the second leaf stage in 1.5% sunlight exposure. The effects of initial plant (seeds, bulbils and tubers) size and light intensity on plant growth were analyzed. The larger the initial plant size was, the greater the growth in height and leaf area was. The distribution ratio of assimilated substances in leaves was high in smaller plants at the early growth stage. The distribution ratio in the tubers of larger plants became high at the early stage of growth. In all three types at over 3% sunlight exposure, the switch-over from the vegetative to reproductive growth phase occurred simultaneously at a later growth stage, but the Se type at 1.5% sunlight exposure showed a very early switch-over in its development; this switch-over may be related to shade tolerance capacity. The L type showed shade avoidance by forming a large productive structure as a twiner  相似文献   

7.
The effect of variations in fertility level of the substrate on the self-thinning lines followed by populations of Ocimum basilicum L. was investigated experimentally by establishing populations over a range of densities at two fertility levels. Populations from each fertility level followed different self-thinning lines for shoot biomass. Self-thinning began at a lower biomass in populations grown at the higher fertility level; the subsequent slope of the thinning line was –0.5 for these stands on a log shoot biomass versus log density plot. The slope of the self-thinning line was flatter (–0.29) at the lower fertility level. Fitting the self-thinning line by the Structural Relationship rather than the Major Axis made little difference to line estimates. Biomass packing differed with fertility level, with plants from the higher fertility stands requiring more canopy volume for given shoot biomass than plants from lower fertility levels. Biologically, this would mean shoot competition intensified more rapidly at the higher fertility level as biomass accumulated in stands. The difference in slope between fertility levels was associated with changes above- and belowground. The radial extension of the canopy versus shoot mass relationships of individual plants differed with fertility level. Plants at the lower fertility level allocated more biomass to root growth, and had less leaf area per unit root length. The differences in slope of the self-thinning lines may have been because of differences in the radial extension of the canopy versus shoot mass relationships of individual plants at each fertility level, and/or to an increase in root competition at the lower fertility level.  相似文献   

8.
We examined leaf dynamics and leaf age gradients of photosynthetic capacity and nitrogen concentration in seedlings of the tropical pioneer tree, Heliocarpus appendiculatus, grown in a factorial design under controlled conditions with two levels each of nutrients, ambient light (light levels incident above the canopy), and self-shading (the gradient of light levels from upper to lower leaves on the shoot). Correlations among these parameters were examined in order to determine the influence of self-shading, and the regulation of standing leaf numbers, on leaf longevity and its association with leaf photosynthetic capacity. Leaf longevity and the number of leaves on the main shoot were both reduced in high light, while in the low light environment, they were reduced in the steeper self-shading gradient. In high nutrients, leaf longevity was reduced whereas leaf number increased. Leaf initiation rates were higher in the high nutrient treatment but were not influenced by either light treatment. Maximum-light saturated photosynthetic rate, on an area basis, was greater in the high light and nutrient treatments, while the decline in photosynthetic capacity in realtion to leaf position on the shoot was more rapid in high light and in low nutrients. Leaf longevity was negatively correlated among treatments with initial photosynthetic capacity. The leaf position at which photosynthetic capacity was predicted to reach zero was positively correlated with the number of leaves on the shoot, supporting the hypothesis that leaf numbers are regulated by patterns of self-shading. The negative association of longevity and initial photosynthetic capacity apparently arises from different associations among gradients of photosynthetic capacity, leaf numbers and leaf initiation rates in relation to light and nutrient availability. The simultaneous consideration of age and position of leaves illuminates the role of self-shading as an important factor influencing leaf senescence and canopy structure and dynamics.  相似文献   

9.
Canopy structure and light interception were measured in an 18-m tall, closed canopy deciduous forest of sugar maple (Acer saccharum) in southwestern Wisconsin, USA, and related to leaf structural characteristics, N content, and leaf photosynthetic capacity. Light attenuation in the forest occurred primarily in the upper and middle portions of the canopy. Forest stand leaf area index (LAI) and its distribution with respect to canopy height were estimated from canopy transmittance values independently verified with a combined leaf litterfall and point-intersect method. Leaf mass, N and A max per unit area (LMA, N/area and A max/area, respectively) all decreased continuously by over two-fold from the upper to lower canopy, and these traits were strongly correlated with cumulative leaf area above the leaf position in the canopy. In contrast, neither N concentration nor A max per unit mass varied significantly in relation to the vertical canopy gradient. Since leaf N concentration showed no consistent pattern with respect to canopy position, the observed vertical pattern in N/area is a direct consequence of vertical variation of LMA. N/area and LMA were strongly correlated with A max/area among different canopy positions (r2=0.81 and r2=0.66, respectively), indicating that vertical variation in area-based photosynthetic capacity can also be attributed to variation in LMA. A model of whole-canopy photosynthesis was used to show that observed or hypothetical canopy mass distributions toward higher LMA (and hence higher N/area) in the upper portions of the canopy tended to increase integrated daily canopy photosynthesis over other LMA distribution patterns. Empirical relationships between leaf and canopy-level characteristics may help resolve problems associated with scaling gas exchange measurements made at the leaf level to the individual tree crown and forest canopy-level.  相似文献   

10.
11.
Carex acutiformis and Brachypodium pinnatum were grown with a uniform distribution of photosynthetic photon flux density (PFD) with height, and in a vertical PFD gradient similar to the PFD gradient in a leaf canopy. Distribution of organic leaf N and light-saturated rates of photosynthesis were determined. These parameters were also determined on plants growing in a natural vegetation stand. The effect of a PFD gradient was compared with the effect of a leaf canopy. In Brachypodium, plants growing in a vegetation stand had increasing leaf N with plant height. However, distribution of leaf N was not influenced by the PFD gradient treatment. The gradient of leaf N in plants growing in a leaf canopy was not due to differences within the long, mostly erect, leaves but to differences between leaves. In Carex, however, the PFD gradient caused a clear increase of leaf N with height in individual leaves and thus also in plants. The leaf N gradient was similar to that of plants growing in a leaf canopy. Leaf N distribution was not affected by nutrient availability in Carex. In most cases, photosynthesis was positively related to leaf N. Hence, lightsaturated rates of photosynthesis increased towards the top of the plants growing in leaf canopies in both species and, in Carex, also in the PFD gradient, thus contributing to increased N use efficiency for photosynthesis of the whole plant. It is concluded that in Carex the PFD gradient is the main environmental signal for leaf N allocation in response to shading in a leaf canopy, but one or more other signals must be involved in Brachypodium.  相似文献   

12.
Osada N  Takeda H  Kitajima K  Pearcy RW 《Oecologia》2003,137(2):181-187
For a shade-tolerant SE Asian tropical tree, Elateriospermum tapos (Euphorbiaceae), we studied field-established saplings in gaps and the shaded understory to test the hypothesis that differences in leaf demography and leaf life span under contrasting light regimes should be functionally correlated with architecture, self-shading and nitrogen distribution within the sapling crown. Rates of leaf production and net leaf gain were greater for saplings in gaps than those in the understory. Median leaf life span was approximately 26 months in the gap saplings, while it was estimated to be greater than 38 months in the understory saplings. Consequently, gap saplings had a greater standing leaf number and experienced greater degrees of self-shading than understory saplings. Light availability at individual leaves, estimated by a combination of canopy photos and a three-dimensional architecture model, were negatively correlated with leaf age in gap saplings but not so in understory saplings. Leaf nitrogen content per unit area (Narea) was influenced more by light availability than by leaf age in the gap saplings. In contrast, in understory saplings, Narea was neither correlated with light availability nor with leaf age, and did not decrease significantly before 38 months in leaf age. We conclude that saplings of this shade-tolerant species apparently prolong their leaf life span in the shaded understory through slower rates of leaf production, lower standing number of leaves and lower degrees of self shading than in gap, and that the rate of decline of Narea with leaf age depends on architecture and self-shading regimes that respond to changes in light regimes.  相似文献   

13.
Summary Seasonal gas exchange and canopy structure were compared among 9-year-old loblolly pine (Pinus taeda L.), pitch pine (Pinus rigida Mill.), and pitch x loblolly hybrids (Pinus rigida x taeda) growing in an F2 plantation located in Critz, Va., USA. Leaf net photosynthesis, conductance, internal CO2 concentration (ci), water use efficiency (WUE; photosynthesis/conductance), dark respiration and the ratio of net photosynthesis/respiration did not vary among or within the three taxa. Significant differences in volume production, crown length, total crown leaf surface area and the silhouette area of shade shoots among the taxa were observed. The loblolly-South Carolina source had greater volume and crown surface area than the pitch pine, and the hybrid taxa were intermediate between the two. Although the silhouette area ratio of shade foliage varied among taxa, it was not related to volume. A strong relationship between total leaf surface area and volume was observed. Leaf conductance, ci, WUE and leaf water potential were the physiological parameters significantly and positively correlated with volume. This study suggests that the amount of needle surface in the canopy is more important in early stand volume growth than the leaf carbon exchange rate and the degree of needle self-shading in the lower canopy.  相似文献   

14.
Adult Japanese beetles, Popillia japonica Newman (Coleoptera: Scarabaeidae), tend to aggregate and feed most heavily in the upper canopy of host plants, defoliating them from the top down. We examined characteristics of linden (Tilia cordata L.) foliage from different canopy zones and tested two hypotheses that might account for vertical stratification of feeding by this vagile, polyphagous folivore. In the field, P. japonica caused 4–12 times more damage to upper canopy leaves in full sunlight than to lower canopy leaves in sun or shade. However, this within-tree pattern apparently cannot be explained by differences in nutritional parameters (protein, water, and sugar content) or defensive properties (toughness, tannins) of leaves. Furthermore, beetles did not discriminate between foliage from different canopy zones in laboratory choice tests, nor were fecundity or longevity higher for beetles fed upper canopy, sun-exposed leaves. Clonal grape plants suspended from vertical posts in the field at 3.65, 1.83 or 0 m above ground showed a top-down defoliation pattern identical to that seen in linden trees. This suggests that the height of foliage per se strongly affects initial orientation and attack by P. japonica. Recent related studies have shown that both sexes of P. japonica are strongly attracted to host volatiles induced by feeding of conspecific beetles. We suggest that Japanese beetles begin to feed in the upper canopy for reasons unrelated to host nutritional variation (e.g., behavioral thermoregulation, visual orientation to the host silhouette), and that top-down defoliation follows as additional beetles are attracted to feeding-induced volatiles acting as aggregation kairomones.  相似文献   

15.
An experiment was carried out to study whether low-light-induced damage to the photosynthetic system in leaves of cotton (Gossypium hirsutum cv. Deltapine) which are below the compensation point in the canopy can be arrested and reversed by increased illumination. In addition it was intended to find out whether the photosynthetic system in leaves of shade plants show a greater resistance to low-light-induced damage than leaves of plants from more exposed habitats. The plants were grown at high density, and increased illumination to the shade leaves in the canopy was achieved by thinning the stand. Thinning was carried out at two stages and its effects on the decline in the photosynthetic capacity of the 4th leaf were followed. An early thinning was carried out shortly after the 4th leaf dropped below the compensation point and a late thinning 2 weeks later. Comparison was also made between the low-light-induced damage to the photosynthetic capacity of the 4th leaf in plants grown under two light regimes during the progressive increase in self-shading of the 4th leaf within the canopy. It was observed that both types of thinning arrested the low-light-induced damage to the photosynthetic system in shade leaves. The decline in photosynthetic capacity of the 4th leaf was stopped after both early and late thinning. The dry weight of the shoot system in the early and late thinned plants was not significantly different. It was double that of the control plants. The plants thinned early did not have higher shoot weight than the late thinned plants since there was a rapid shedding of flowers and fruits after early thinning. The 4th leaf in the early thinned plants showed a 30% increase in chlorophyll content and dry weight per unit leaf area. It is suggested that shedding of flowers and fruits, and increases in chlorophyll and dry weight per unit leaf area in the early thinned plants were caused by a change in the hormonal balance of the plants. The photosynthetic system in leaves of shade plants showed a greater resistance to damage by low light intensity than the photosynthetic system in leaves of plants grown at higher light intensities.  相似文献   

16.
The corn rootworm complex is the most damaging insect pest of corn (Zea mays L.). This study was conducted to determine the efficacy of whorl and pollen-shed stage applications of a granular formulation of Beauveria bassiana (Balsamo) Vuillemin for control of adult western corn rootworm (Diabrotica virgifera virgifera Le Conte). The effect of application time (whorl-stage, pollen-shed) and plant surface exposed (leaves and leaf collars; silks; leaves, leaf collars, and silks) on level of beetle fungal infection were investigated. In addition, the number of colony forming units of B. bassiana in the corn leaf collar area was quantified. In the three years (1998–2000) of the study, application of B. bassiana at whorl-stage did not significantly increase beetle fungal infection. Beauveria bassiana applied to plants at pollen-shed in 1998 resulted in a significant increase in beetle infection with 51% of beetles from treated plants infected and 6.0% from control plants. Similar applications at pollen-shed in 1999 and 2000 resulted in very low infection levels. Beauveria bassiana application at pollen-shed stage significantly increased the number of colony forming units per leaf collar during all years of the study. Beetle infection with B. bassiana did not differ consistently among plant surface to which beetles were exposed for either application. Increased fungal load in leaf collars was not correlated with increased levels of adult infection. Increased rates of B. bassiana and application when beetles are present on the plants are likely needed to significantly increase infection rates.  相似文献   

17.
We used path analysis to ask whether leaf position or leaf light level was a better predictor of within-plant variation in leaf nitrogen concentration in five species of rain forest pioneer trees (Cecropia obtusifolia, Ficus insipida, Heliocarpus appendiculatus, Piper auritum, and Urera caracasana) from the Los Tuxtlas Biological Station, Veracruz, Mexico. Three hundred seventy-five leaves on 28 plants of the five species were analyzed for leaf nitrogen concentration, leaf mass per area, and leaf light interception at different positions (= nodes) along a shoot. Mean values of leaf nitrogen concentration ranged from 0.697 to 0.993 g/m2 in the five species, and varied by as much as 2.24 g/m2 among leaves on individual plants. Leaf position on the shoot explained significantly more of the within-plant variation in leaf nitrogen concentration than did leaf light level in four of the five species: Cecropia obtusifolia, Heliocarpus appendiculatus, Piper auritum (branch leaves only), and Urera caracasana. However, individual species differed considerably in the patterns of nitrogen allocation and leaf mass per area among leaves on a shoot. These results suggest that leaf nitrogen deployment in these plants is, in part, developmentally constrained and related to the predictability of canopy light distribution associated with plant growth form.  相似文献   

18.
The objective of this work was to construct a model of aerialdevelopment of clover that takes into account morphogeneticresponses to the light environment, and to use it to analyseand understand these processes in terms of signal perceptionand integration. The plant model was interfaced with a MonteCarlo model that determines photosynthetically active radiation(PAR) and red/far-red ratio (R/FR) throughout the canopy, takinginto account the absorption, reflection and transmission oflight by individual leaves. Light intensity and quality weresensed by the plant model at discrete time intervals and atdiscrete sites of perception: apices, emerging internodes andpetiole tips. This input regulated the final size of internodesand leaves, the vertical positioning of leaves, and the branchingdelay. The empirical relations (regression functions) quantifyingthis regulation were derived from data reported in the literatureand original measurements. Simulations produced realistic visualizationsand quantitative characterizations of the modelled plants fordifferent light treatments. These results were in general agreementwith observations of real plants growing under similar conditions,suggesting that the dependence of organ size and position onlight treatments can be regarded as an integration of the responsesof individual plant organs to their local light environment.The model is used to describe the regulation of branch appearanceand the impact of self-shading on plant morphogenesis as a functionof local light environment. Copyright 2000 Annals of BotanyCompany Clover, Trifolium repens L, photomorphogenesis, plant architecture, L-system, modelling, Monte-Carlo method, competition for light, red : far-red ratio, irradiance, light quality, leaf size, self-shading  相似文献   

19.
The adaptive significance of the emergence mode ofDioscorea japonica was studied with respect to initial plant size (seed, bulbil and tuber) and light intensity, using mathematical simulation based on Yokoi's (1976) model. Under 1.5% full sunlight conditions, plants emerging with only one leaf did not develop a shoot system throughout the growing period (Hori and Oshima, 1986). Simulation indicated that, for this species of plant under poor productive conditions, the optimal time for switch-over from the vegetative to reproductive growth phase to maximize the tuber weight at the end of the growing period, occurred immediately following the start of autotrophic growth. By means of shoot growth patterns, small and large size plants acquired the ability of shade tolerance and shade avoidance, respectively. Further, the life history ofD. japonica could be expressed as a flow chart based on plant size and light intensity data.  相似文献   

20.
The effect of leaf shape variation on plant-herbivore interactions has primarily been studied from the perspective of host seeking behavior. Yet for leaf shape to affect plant-herbivore coevolution, there must be reciprocal effects of leaf shape variation on herbivore consumption and performance. We investigated whether alternative leaf morphs affected the performance of three generalist insect herbivores by taking advantage of a genetic polymorphism and developmental plasticity in leaf shape in the Ivyleaf morning glory, Ipomoea hederacea. Across four experiments, we found variable support for an effect of leaf shape genotype on insects. For cabbage loopers (Trichoplusia ni) and corn earworms (Helicoverpa zea) we found opposing, non-significant trends: T. ni gained more biomass on lobed genotypes, while H. zea gained more biomass on heart-shaped genotypes. For army beetworms (Spodoptera exigua), the effects of leaf shape genotype differed depending on the age of the plants and photoperiod of growing conditions. Caterpillars feeding on tissue from older plants (95 days) grown under long day photoperiods had significantly greater consumption, dry biomass, and digestive efficiency on lobed genotypes. In contrast, there were no significant differences between heart-shaped and lobed genotypes for caterpillars feeding on tissue from younger plants (50 days) grown under short day photoperiods. For plants grown under short days, we found that S. exigua consumed significantly less leaf area when feeding on mature leaves than juvenile leaves, regardless of leaf shape genotype. Taken together, our results suggest that the effects of leaf shape variation on insect performance are likely to vary between insect species, growth conditions of the plant, and the developmental stage and age of leaves sampled. Handling editor: May Berenbaum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号