首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This aim of this study was to examine the free hormone (in saliva) responses to squat workouts performed by recreationally weight-trained males, using either a power (8 sets of 6 reps, 45% 1 repetition maximum [1RM], 3-minute rest periods, ballistic movements), hypertrophy (10 sets of 10 reps, 75% 1RM, 2-minute rest periods, controlled movements), or maximal strength scheme (6 sets of 4 reps, 88% 1RM, 4-minute rest periods, explosive intent). To determine the relative importance of the different training variables, these schemes were equated by workout duration with the power and strength schemes also equated by load volume. Salivary testosterone (T) and cortisol (C) both increased following the hypertrophy scheme (P < 0.05), with little to no hormonal change across the power and maximal strength schemes (P > 0.05). In general, the postexercise T and C responses to the hypertrophy scheme exceeded the other two schemes (P < 0.05). The greater volume of load lifted in the hypertrophy protocol over the same workout duration may explain the endocrine differences observed. The similar T and C responses to the power and maximal strength schemes (of equal volume) support such a view and suggest that differences in load intensity, rest periods, and technique are secondary to volume. Because the acute hormonal responses to resistance exercise contribute to protein metabolism, then load volume may be the most important workout variable activating the endocrine system and stimulating muscle growth.  相似文献   

2.
This study examined the salivary hormone and immune responses of elite female athletes to 3 different resistance exercise schemes. Fourteen female basketball players each performed an endurance scheme (ES-4 sets of 12 reps, 60% of 1 repetition maximum (1RM) load, 1-minute rest periods), a strength-hypertrophy scheme (SHS-1 set of 5RM, 1 set of 4RM, 1 set of 3RM, 1 set of 2RM, and 1set of 1RM with 3-minute rest periods, followed by 3 sets of 10RM with 2-minute rest periods) and a power scheme (PS-3 sets of 10 reps, 50% 1RM load, 3-minute rest periods) using the same exercises (bench press, squat, and biceps curl). Saliva samples were collected at 07:30 hours, pre-exercise (Pre) at 09:30 hours, postexercise (Post), and at 17:30 hours. Matching samples were also taken on a nonexercising control day. The samples were analyzed for testosterone, cortisol (C), and immunoglobulin A concentrations. The total volume of load lifted differed among the 3 schemes (SHS > ES > PS, p < 0.05). Postexercise C concentrations increased after all schemes, compared to control values (p < 0.05). In the SHS, the postexercise C response was also greater than pre-exercise data (p < 0.05). The current findings confirm that high-volume resistance exercise schemes can stimulate greater C secretion because of higher metabolic demand. In terms of practical applications, acute changes in C may be used to evaluate the metabolic demands of different resistance exercise schemes, or as a tool for monitoring training strain.  相似文献   

3.
The purpose of the current study was to compare the effect of 3 different rest intervals on multiple sets of the bench press exercise performed with heavy vs. light loads. Sixteen resistance-trained men performed 2 testing sessions each week for 3 weeks. During the first testing session each week, 5 consecutive sets of the bench press were performed with 80% of 1 repetition maximum (1RM) and with a 1-, 2-, or 3-minute rest interval between sets. During the second testing session each week the same procedures were repeated with 50% of 1RM. The total repetitions completed and the sustainability of repetitions were compared between rest conditions and between loads. For each load, resting 3 minutes between sets resulted in significantly greater total repetitions vs. resting 2 minutes (p = 0.000) or 1 minute (p = 0.000) between sets. However, the sustainability of repetitions was not significantly different between loads (p = 0.849). These results can be applied to weekly bench press workouts that undulate between heavy (i.e., 80% 1RM) and light (i.e., 50% 1RM) intensities. When the training goal is maximal strength development, 3 minutes of rest should be taken between sets to avoid significant declines in repetitions. The ability to sustain repetitions while keeping the intensity constant may result in a higher training volume and consequently greater gains in muscular strength.  相似文献   

4.
The purpose of this study was to investigate the effects of rest interval (RI) length on bench press performance in subjects with disparity in maximum strength. Two cohorts of subjects performed 3 bench press protocols in random order consisting of 3 sets of up to 10 repetitions with 75% of 1-repetition maximum (1RM) using either 1-, 2-, or 3-minute RIs between sets. In the first cohort, 22 men and women were studied to investigate gender influence. In the second cohort, 23 men were tested for 1RM bench press strength and placed into a low 1RM (mean = 80.7 ± 7.5 kg) or high 1RM (mean = 140.6 ± 11.9 kg) experimental group. The number of successful repetitions completed, average power, and velocity for each set were recorded. Women performed significantly more repetitions than men with 1-minute (26.9 ± 4.4 vs. 21.1 ± 3.5), 2-minute (29.0 ± 2.0 vs. 24.0 ± 4.5), and 3-minute (29.7 ± 1.8 vs. 25.8 ± 5.1) RIs. The magnitude of decline in average velocity and power was significantly higher in men than in women. Total number of repetitions performed was significantly greater in the low 1RM group than in the high 1RM group at 1-minute (21.6 ± 5.0 vs. 18.1 ± 2.0) and 2-minute RIs (24.2 ± 5.4 vs. 21.3 ± 2.8). Significant negative correlations were observed between 1RM bench press and total number of repetitions completed for 1- and 2-minute RIs (r = -0.558 and -0.490, respectively). These data indicate that maximal strength plays a role in bench press performance with varying RIs and suggest that shorter RIs may suffice in women to attain a specific volume.  相似文献   

5.
Circuit training effectively reduces the time devoted to strength training while allowing an adequate training volume to be achieved. Nonetheless, circuit training has traditionally been performed using relatively low loads for a relatively high number of repetitions, which is not conducive to maximal muscle size and strength gain. This investigation compared physical performance parameters and cardiovascular load during heavy-resistance circuit (HRC) training to the responses during a traditional, passive rest strength training set (TS). Ten healthy subjects (age, 26 +/- 1.6 years; weight, 80.2 +/- 8.78 kg) with strength training experience volunteered for the study. Testing was performed once weekly for 3 weeks. On day 1, subjects were familiarized with the test and training exercises. On the subsequent 2 test days, subjects performed 1 of 2 strength training programs: HRC (5 sets x (bench press + leg extensions + ankle extensions); 35-second interset rest; 6 repetition maximum [6RM] loads) or TS (5 sets x bench press; 3-minute interset rest, 6RM loads). The data confirm that the maximum and average bar velocity and power and the number of repetitions performed of the bench press in the 2 conditions was the same; however, the average heart rate was significantly greater in the HRC compared to the TS condition (HRC = 129 +/- 15.6 beats x min(-1), approximately 71% maximum heart rate (HRmax), TS = 113 +/- 13.1 beats x min(-1), approximately 62% HRmax; P < 0.05). Thus, HRC sets are quantitatively similar to traditional strength training sets, but the cardiovascular load is substantially greater. HRC may be an effective training strategy for the promotion of both strength and cardiovascular adaptations.  相似文献   

6.
The purpose of this study was to determine the rate of recovery for recreational weight trainers between 2 sets of bench press to volitional exhaustion. Twenty-eight men performed 2 sets of the bench press at 75% of their previously determined 1 repetition maximum (1RM) to volitional exhaustion. Rest periods of 1, 3, or 5 minutes between sets were utilized on the 3 separate testing days. There was a significant decrease in the number of repetitions performed between the second sets at all rest periods. There were no significant differences in work performed (repetitions x weight) during the second set with the 3- and 5-minute rest periods, but the total work with a 1-minute rest period (1,389.1 +/- 529.9) was significantly less than both the 3- (1,494.9 +/- 451.0) and 5-minute (1,711.4 +/- 478.0) rest period. The data indicated that subjects were unable to fully recover between the first and second sets of maximal resistance exercise, regardless of the rest period. However, subjects were able to maintain a performance level of 8-12 repetitions and sustain the total work performed per set with as little as 3 minutes rest between sets.  相似文献   

7.
The purpose of this study was to investigate the importance of training leading to repetition failure in the performance of 2 different tests: 6 repetition maximum (6RM) bench press strength and 40-kg bench throw power in elite junior athletes. Subjects were 26 elite junior male basketball players (n = 12; age = 18.6 +/- 0.3 years; height = 202.0 +/- 11.6 cm; mass = 97.0 +/- 12.9 kg; mean +/- SD) and soccer players (n = 14; age = 17.4 +/- 0.5 years; height = 179.0 +/- 7.0 cm; mass = 75.0 +/- 7.1 kg) with a history of greater than 6 months' strength training. Subjects were initially tested twice for 6RM bench press mass and 40-kg Smith machine bench throw power output (in watts) to establish retest reliability. Subjects then undertook bench press training with 3 sessions per week for 6 weeks, using equal volume programs (24 repetitions x 80-105% 6RM in 13 minutes 20 seconds). Subjects were assigned to one of two experimental groups designed either to elicit repetition failure with 4 sets of 6 repetitions every 260 seconds (RF(4 x 6)) or allow all repetitions to be completed with 8 sets of 3 repetitions every 113 seconds (NF(8 x 3)). The RF(4 x 6) treatment elicited substantial increases in strength (7.3 +/- 2.4 kg, +9.5%, p < 0.001) and power (40.8 +/- 24.1 W, +10.6%, p < 0.001), while the NF(8 x 3) group elicited 3.6 +/- 3.0 kg (+5.0%, p < 0.005) and 25 +/- 19.0 W increases (+6.8%, p < 0.001). The improvements in the RF(4 x 6) group were greater than those in the repetition rest group for both strength (p < 0.005) and power (p < 0.05). Bench press training that leads to repetition failure induces greater strength gains than nonfailure training in the bench press exercise for elite junior team sport athletes.  相似文献   

8.
The purpose of this research was to compare differences between 3 different rest intervals on the squat and bench press volume completed during a workout. Fifteen college-aged men volunteered to participate in this study (age 20.73 +/- 2.60 years; body mass 80.73 +/- 10.80 kg). All subjects performed 3 testing sessions, during which 4 sets of the squat and bench press were performed with an 8 repetition maximum (8RM) load. During each testing session, the squat and bench press were performed with a 1, 2, or 5-minute rest interval between sets. Volume was defined as the total number of repetitions completed over 4 sets for each rest condition. Statistical analysis was conducted separately for the squat and bench press. One-way repeated analyses of variance with Bonferroni post hocs demonstrated significant differences between each rest condition for both exercises tested (p < 0.05). The 5-minute rest condition resulted in the highest volume completed, followed in descending order by the 2- and 1-minute rest conditions. The ability to perform a higher volume of training with a given load may stimulate greater strength adaptations.  相似文献   

9.
The purpose of this study was to examine acute hormonal and neuromuscular responses in men and women to 3 heavy resistance but clearly different exercise protocols: (a) submaximal heavy resistance exercise (SME), (b) maximal heavy resistance exercise (HRE), and (c) maximal explosive resistance exercise (EE). HRE included 5 sets of 10 repetition maximum (10RM) sit-ups, bench press, and bilateral leg extensions (David 210 machine) with a 2-minute recovery between the sets. In SME, the load was 70%, and in EE, the load was 40% from that used in HRE. A significant increase (p < 0.05) in serum growth hormone (GH) was observed after HRE both in men and women, but the increase was greater (p < 0.05) in men than in women. Serum testosterone (T) increased significantly (p < 0.05) only during HRE in men. Since GH and T are anabolic hormones, the acute exercise-induced response during HRE may play an important role in the long-term anabolic adaptation processes related to muscle hypertrophy and maximal strength development.  相似文献   

10.
The purpose of this study was to compare the strength and neuromuscular adaptations for dynamic constant external resistance (DCER) training and dynamic accentuated external resistance (DAER) training (resistance training employing an accentuated load during eccentric actions). Male subjects active in resistance training were assigned to either a DCER training group (n = 10) or a DAER training group (n = 8) for 9 weeks. Subjects in the DCER group performed 4 sets of 10 repetitions with a load of 75% concentric 1 repetition maximum (RM). Subjects in the DAER group performed 3 sets of 10 repetitions with a concentric load of 75% of 1RM and an eccentric load of approximately 120% of concentric 1RM. Three measures reflecting adaptation of elbow flexors and extensors were recorded pretraining and posttraining: concentric 1RM, muscle cross-sectional area (CSA), and specific tension. Strength was assessed at midtraining periods. No significant changes in muscle CSA were observed in either group. Both training groups experienced significant increases in concentric 1RM and specific tension of both the elbow flexors and extensors, but compared with DCER training, DAER training produced significantly greater increases in concentric 1RM of the elbow extensors. These results suggest that, for some exercises, DAER training may be more effective than DCER training in developing strength within a 9-week training phase. However, for trained subjects, neither protocol is effective in eliciting muscle hypertrophy.  相似文献   

11.
The purpose of this study was to compare the effect of 3 different rest intervals on the sustainability of squat and bench press repetitions over 5 consecutive sets performed with a 15 repetition maximum (RM)-load. Fifteen college-age men with previous resistance training experience were tested weekly over a period of 3 weeks. During each testing session, 5 consecutive sets of the squat and the bench press were performed with a 30-second, 1-minute, or 2-minute rest interval between sets. For each exercise, significant declines in repetitions occurred between the first and the fifth sets (p = 0.000). For the squat, a significant difference in the ability to sustain repetitions occurred between the 30-second and 2-minute rest condition (p = 0.003). However, differences were not significant between the 30-second and 1-minute rest conditions (p = 0.986) and between the 1-minute and 2-minute rest conditions (p = 0.042). For the bench press, significant differences in the ability to sustain repetitions occurred between the 30-second and 2-minute rest conditions (p = 0.000) and between the 1-minute and 2-minute rest conditions (p = 0.000). However, differences were not significant between the 30-second and 1-minute rest conditions (p = 0.019). For each exercise, the number of repetitions completed on the first set was not sustained over subsequent sets, irrespective of the rest condition. These results suggest that when short rest intervals are used to develop muscular endurance, the intensity should be lowered over subsequent sets to sustain repetitions within the range conducive to this training goal.  相似文献   

12.
ABSTRACT: Barroso, R, Tricoli, V, dos Santos Gil, S, Ugrinowitsch, C, and Roschel, H. Maximal strength, number of repetitions, and total volume are differently affected by static-, ballistic-, and proprioceptive neuromuscular facilitation stretching. J Strength Cond Res 26(9): 2432-2437, 2012-Stretching exercises have been traditionally incorporated into warm-up routines before training sessions and sport events. However, the effects of stretching on maximal strength and strength endurance performance seem to depend on the type of stretching employed. The objective of this study was to compare the effects of static stretching (SS), ballistic stretching (BS), and proprioceptive neuromuscular facilitation (PNF) stretching on maximal strength, number of repetitions at a submaximal load, and total volume (i.e., number of repetitions × external load) in a multiple-set resistance training bout. Twelve strength-trained men (20.4 ± 4.5 years, 67.9 ± 6.3 kg, 173.3 ± 8.5 cm) volunteered to participate in this study. All of the subjects completed 8 experimental sessions. Four experimental sessions were designed to test maximal strength in the leg press (i.e., 1 repetition maximum [1RM]) after each stretching condition (SS, BS, PNF, or no-stretching [NS]). During the other 4 sessions, the number of repetitions performed at 80% 1RM was assessed after each stretching condition. All of the stretching protocols significantly improved the range of motion in the sit-and-reach test when compared with NS. Further, PNF induced greater changes in the sit-and-reach test than BS did (4.7 ± 1.6, 2.9 ± 1.5, and 1.9 ± 1.4 cm for PNF, SS, and BS, respectively). Leg press 1RM values were decreased only after the PNF condition (5.5%, p < 0.001). All the stretching protocols significantly reduced the number of repetitions (SS: 20.8%, p < 0.001; BS: 17.8%, p = 0.01; PNF: 22.7%, p < 0.001) and total volume (SS: 20.4%, p < 0.001; BS: 17.9%, p = 0.01; PNF: 22.4%, p < 0.001) when compared with NS. The results from this study suggest that, to avoid a decrease in both the number of repetitions and total volume, stretching exercises should not be performed before a resistance training session. Additionally, strength-trained individuals may experience reduced maximal dynamic strength after PNF stretching.  相似文献   

13.
The purpose of this study was to determine the change in weight training repetition power output as a consequence of interrepetition rest intervals. Twenty-six elite junior male basketball and soccer players performed bench presses using a 6 repetition maximum (6RM) load. The power output for each repetition was recorded using a linear encoder sampling each 10 ms (100 Hz). Subjects were assigned to 1 of 3 intervention groups, differentiated by the arrangement of rest intervals within the 6 repetitions: 6 x 1 repetition with 20-second rest periods between each repetition (Singles); 3 x 2 repetitions with 50 seconds between each pair of repetitions (Doubles); or 2 x 3 repetitions with 100 seconds of rest between each 3 repetitions (Triples). A timer was used to ensure that the rest interval and duration to complete all interrepetition interventions was equated across groups (118 seconds). Significantly (p < 0.05) greater repetition power outputs (25-49%) were observed in the later repetitions (4-6) of the Singles, Doubles, and Triples loading schemes. Significantly greater total power output (21.6-25.1%) was observed for all interrepetition rest interventions when compared to traditional continuous 6RM total power output. No significant between-group differences were found (p = 0.96). We conclude that utilizing interrepetition rest intervals enables greater repetition and total power output in comparison to traditional loading parameters.  相似文献   

14.
The effects of concentric (CON) and eccentric (ECC) contractions on Delta plasma volume (PV), heart rate (HR), and lactate in responses to protocols in different body positions were investigated. CON or ECC contractions were performed in either a single-exercise (6 sets of 12 repetitions of leg extensions completed at 80% of 12 repetition maximum [12RM] with 3-minute rest periods) or multiexercise (4 sets of 10 repetitions for both CON and ECC trials of bench press, leg extension, military press, and leg curl at 80% of 10RM with 90-second rest periods) protocols. HR and lactate increased significantly for both protocols from pre- to postexercise for CON but not ECC trials. DeltaPV was greater following both CON single-exercise (-11.48 +/- 1.38%) and multiexercise (-4.64 +/- 0.33%) trials vs. ECC single-exercise (-1.62 +/- 1.69%) and multiexercise (-1.26 +/- 1.20) trials. Data demonstrate ECC exercise in response to single and multiexercise protocols at the same absolute workload as CON exercise produces less cardiovascular stress.  相似文献   

15.
The purpose of this study was to compare the effects of 2 different rest period lengths during a resistance training session with the number of repetitions completed per set of each exercise, the volume completed over 3 sets of each exercise, and the total volume during a training session. Fourteen experienced, weight-trained men volunteered to participate in the study. All subjects completed 2 experimental training sessions. Both sessions consisted of 3 sets of 8 repetitions with an 8 repetition maximum resistance of 6 upper body exercises performed in a set manner (wide grip lat pull-down, close grip pull-down, machine seated row, barbell row lying on a bench, dumbbell seated arm curl, and machine seated arm curl). The 2 experimental sessions differed only in the length of the rest period between sets and exercises: 1 session with a 1-minute and the other with a 3-minute rest period. For all exercises, results demonstrate a significantly lower total number of repetitions for all 3 sets of an exercise when 1-minute rest periods were used (p < or = 0.05). The 3- and 1-minute protocols both resulted in a significant decrease from set 1 to set 3 in 4 of the 6 exercises (p < or = 0.05), whereas the 1-minute protocol also demonstrated a significant decrease from set 1 to set 2 in 2 of the 6 exercises (p < or = 0.05). The results indicate that, during a resistance training session composed of all upper body exercises, 1-minute rest periods result in a decrease in the total number of repetitions performed compared with 3-minute rest periods between sets and exercises.  相似文献   

16.
The purpose of this study was to investigate the acute effects of a heavy dynamic preload, consisting of 1 set of 5 repetition maximum (5RM) back squats, on countermovement vertical jump (VJ) and horizontal jump (HJ) performance. The study also investigated the ability of subjects to learn to apply the effects of the preload over subsequent training sessions. Nineteen (N = 19) resistance-trained men (age = 25.0 +/- 4.8 years; weight = 79.3 +/- 6.6 kg) participated in the study. Each subject took part in 4 practice and 4 testing sessions. The 4 practice sessions were included to allow for any learning effects of VJ and HJ to stabilize and to establish a true 5RM back squat. The 4 testing sessions were included to see if subjects were able to capitalize on the repeat exposure to the protocol. One practice session consisted of a 10-minute warm-up (5 minutes of cycling and 5 minutes of stretching), 2 sets of VJ and HJ (each set of VJ and HJ consisted of 4 jump repetitions) with a 5-minute rest between sets, progressive 5RM back squat evaluation, and 2 final sets of VJ and HJ. Both VJ and HJ increased approximately 2% over the 4 practice sessions, and 5RM back squat strength improved from 164.2 +/- 25.1 kg to 196.9 +/- 23.0 kg (p < or = 0.05). The 4 testing sessions each consisted of the standardized warm-up, 1 set of 4 VJs and HJs, a 5-minute rest, 5RM back squat, a 5-minute rest, and the final set of VJs and HJs. Pre- and post-5RM VJ and HJ order was randomly assigned. The results indicated no significant differences occurred between the mean or maximal values for either VJ or HJ as a consequence of the dynamic preload exercise. In addition, the results reflected an inability of subjects to benefit from the repeated exposure to the heavy dynamic preload exercise protocol.  相似文献   

17.
Research has indicated that multiple sets are superior to single sets for maximal strength development. However, whether maximal strength gains are achieved may depend on the ability to sustain a consistent number of repetitions over consecutive sets. A key factor that determines the ability to sustain repetitions is the length of rest interval between sets. The length of the rest interval is commonly prescribed based on the training goal, but may vary based on several other factors. The purpose of this review was to discuss these factors in the context of different training goals. When training for muscular strength, the magnitude of the load lifted is a key determinant of the rest interval prescribed between sets. For loads less than 90% of 1 repetition maximum, 3-5 minutes rest between sets allows for greater strength increases through the maintenance of training intensity. However, when testing for maximal strength, 1-2 minutes rest between sets might be sufficient between repeated attempts. When training for muscular power, a minimum of 3 minutes rest should be prescribed between sets of repeated maximal effort movements (e.g., plyometric jumps). When training for muscular hypertrophy, consecutive sets should be performed prior to when full recovery has taken place. Shorter rest intervals of 30-60 seconds between sets have been associated with higher acute increases in growth hormone, which may contribute to the hypertrophic effect. When training for muscular endurance, an ideal strategy might be to perform resistance exercises in a circuit, with shorter rest intervals (e.g., 30 seconds) between exercises that involve dissimilar muscle groups, and longer rest intervals (e.g., 3 minutes) between exercises that involve similar muscle groups. In summary, the length of the rest interval between sets is only 1 component of a resistance exercise program directed toward different training goals. Prescribing the appropriate rest interval does not ensure a desired outcome if other components such as intensity and volume are not prescribed appropriately.  相似文献   

18.
Acute and long-term hormonal and neuromuscular adaptations to hypertrophic strength training were studied in 13 recreationally strength-trained men. The experimental design comprised a 6-month hypertrophic strength-training period including 2 separate 3-month training periods with the crossover design, a training protocol of short rest (SR, 2 minutes) as compared with long rest (LR, 5 minutes) between the sets. Basal hormonal concentrations of serum total testosterone (T), free testosterone (FT), and cortisol (C), maximal isometric strength of the leg extensors, right leg 1 repetition maximum (1RM), dietary analysis, and muscle cross-sectional area (CSA) of the quadriceps femoris by magnetic resonance imaging (MRI) were measured at months 0, 3, and 6. The 2 hypertrophic training protocols used in training for the leg extensors (leg presses and squats with 10RM sets) were also examined in the laboratory conditions at months 0, 3, and 6. The exercise protocols were similar with regard to the total volume of work (loads x sets x reps), but differed with regard to the intensity and the length of rest between the sets (higher intensity and longer rest of 5 minutes vs. somewhat lower intensity but shorter rest of 2 minutes). Before and immediately after the protocols, maximal isometric force and electromyographic (EMG) activity of the leg extensors were measured and blood samples were drawn for determination of serum T, FT, C, and growth hormone (GH) concentrations and blood lactate. Both protocols before the experimental training period (month 0) led to large acute increases (p < 0.05-0.001) in serum T, FT, C , and GH concentrations, as well as to large acute decreases (p < 0.05-0.001) in maximal isometric force and EMG activity. However, no significant differences were observed between the protocols. Significant increases of 7% in maximal isometric force, 16% in the right leg 1RM, and 4% in the muscle CSA of the quadriceps femoris were observed during the 6-month strength-training period. However, both 3-month training periods performed with either the longer or the shorter rest periods between the sets resulted in similar gains in muscle mass and strength. No statistically significant changes were observed in basal hormone concentrations or in the profiles of acute hormonal responses during the entire 6-month experimental training period. The present study indicated that, within typical hypertrophic strength-training protocols used in the present study, the length of the recovery times between the sets (2 vs. 5 minutes) did not have an influence on the magnitude of acute hormonal and neuromuscular responses or long-term training adaptations in muscle strength and mass in previously strength-trained men.  相似文献   

19.
The purpose of this investigation was to compare the effects of single-set strength training and 3-set strength training during the early phase of adaptation in 18 untrained male subjects (age, 20-30 years). After initial testing, subjects were randomly assigned to either the 3L-1U group (n = 8), which trained 3 sets in leg exercises and 1 set in upper-body exercises, or the 1L-3U group (n = 10), which trained 1 set in leg exercises and 3 sets in upper-body exercises. Testing was conducted at the beginning and at the end of the study and consisted of 2 maximal isometric tests (knee extension and bench press) and 6 maximal dynamic tests (1 repetition maximum [1RM] tests). Subjects trained 3 days per week for 6 weeks. After warm-up, subjects performed 3 leg exercises and 4 upper-body exercises. In both groups, each set consisted of 7 repetitions (reps) with the load supposed to induce muscular failure after the seventh rep (7RM load). After 6 weeks of training, 1RM performance in all training exercises was significantly increased (10-26%, p < 0.01) in both groups. The relative increase in 1RM load in the 3 leg exercises was significantly greater in the 3L-1U group than in the 1L-3U group (21% vs. 14%, p = 0.01). However, the relative increase in 1RM load in the 3 upper-body exercises was similar in the 3L-1U group (16%) and the 1L-3U group (14%). These results show a superior adaptation to 3-set strength training, compared with 1-set strength training, in leg exercises but not in upper-body exercises during the early phase of adaptation.  相似文献   

20.
The purpose of this study was to compare hormonal, neuromuscular, and aerobic performance changes between a constant 2-minute interset recovery time and an interset recovery time based on individual heart rate (HR) responses during a 7-week (3 sessions per week, 3 × 10 repetition maximum [RM]) hypertrophic strength training period. The HR-dependent recovery time was determined with a Polar FT80 HR monitor, whereas the control groups used constant 2-minute periods between sets. From 24 male subjects who were divided in 2 equal groups, 21 completed the study (FT80, n = 12; CONTROL, n = 9). Serum blood samples analyzed for testosterone (TES) and cortisol (COR) were taken before and after the 7-week training period at rest. Concentric knee extension 1RM was measured before, after 4 weeks, and at the end of the training period. Concentric knee extension and knee flexion 10RM, central activation ratio (CAR), and maxVO2 were measured before and after the training. Serum TES concentrations were significantly higher after the training period in FT80 (p < 0.001), whereas no significant changes were observed in the CONTROL. Serum COR and maxVO2 were unchanged in both groups. In FT80 (p < 0.001), the increase in 10RM was higher (p < 0.05) than in CONTROL (p < 0.001). Central activation ratio increased in both groups, with the significant increase observed in FT80 (p < 0.05). The higher TES responses, 10RM, and CAR development in FT80 suggest that an HR-based recovery period system of the FT80 may be more efficient in this type of hypertrophic strength training (3 × 10RM). The protocol in this study may be considered as a metabolic training cycle that coaches and trainers can use within a longer periodized training program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号