首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The "Secondary Theorem of Natural Selection," an extension of Fisher's fundamental theorem, states that the rate of change in the mean of an arbitrary character in response to selection is proportional to the additive genetic covariance between the character and fitness. Here I derive an expression for the change in the mean value of a trait subject to both genetic and cultural transmission. I start with the one-locus case under generalized mating and cultural transmission from parents to offspring, then proceed to the two-locus case. My results support previous work on the effects of nongenetic inheritance by showing that (i) cultural transmission introduces a timelag in the population response to selection; (ii) with cultural transmission the effects of selection persist even after selection is relaxed; and (iii) cultural transmission can either enhance or retard phenotypic evolution relative to that obtained under purely genetic transmission.  相似文献   

2.
Heritable phenotypic traits under significant and consistent directional selection often fail to show the expected evolutionary response. A potential explanation for this contradiction is that because environmental conditions change constantly, environmental change can mask an evolutionary response to selection. We combined an "animal model" analysis with 36 years of data from a long-term study of great tits (Parus major) to explore selection on and evolution of a morphological trait: body mass at fledging. We found significant heritability of this trait, but despite consistent positive directional selection on both the phenotypic and the additive genetic component of body mass, the population mean phenotypic value declined rather than increased over time. However, the mean breeding value for body mass at fledging increased over time, presumably in response to selection. We show that the divergence between the response to selection observed at the levels of genotype and phenotype can be explained by a change in environmental conditions over time, that is, related both to increased spring temperature before breeding and elevated population density. Our results support the suggestion that measuring phenotypes may not always give a reliable impression of evolutionary trajectories and that understanding patterns of phenotypic evolution in nature requires an understanding of how the environment has itself changed.  相似文献   

3.
We analyze weak fluctuating selection on a quantitative character in an age-structured population not subject to density regulation. We assume that early in the first year of life before selection, during a critical state of development, environments exert a plastic effect on the phenotype, which remains constant throughout the life of an individual. Age-specific selection on the character affects survival and fecundity, which have intermediate optima subject to temporal environmental fluctuations with directional selection in some age classes as special cases. Weighting individuals by their reproductive value, as suggested by Fisher, we show that the expected response per year in the weighted mean character has the same form as for models with no age structure. Environmental stochasticity generates stochastic fluctuations in the weighted mean character following a first-order autoregressive model with a temporally autocorrelated noise term and stationary variance depending on the amount of phenotypic plasticity. The parameters of the process are simple weighted averages of parameters used to describe age-specific survival and fecundity. The "age-specific selective weights" are related to the stable distribution of reproductive values among age classes. This allows partitioning of the change in the weighted mean character into age-specific components.  相似文献   

4.
Van Tienderen recently published a method that links selection gradients between a phenotypic trait and multiple fitness components with the effects of these fitness components on the population growth rate (mean absolute fitness). The method allows selection to be simultaneously estimated across multiple fitness components in a population dynamic framework. In this paper we apply the method to a population of red deer living in the North Block of the Isle of Rum, Scotland. We show that (1) selection on birth date and birth weight can operate through multiple fitness components simultaneously; (2) our estimates of the response to selection are consistent with the observed change in trait values that we cannot explain with environmental and phenotypic covariates; (3) selection on both traits has fluctuated over the course of the study; (4) selection operates through different fitness components in different years; and (5) no environmental covariates correlate with selection because different fitness components respond to density and climatic variation in contrasting ways.  相似文献   

5.
Reproductive and early life-history traits can be considered aspects of either offspring or maternal phenotype, and their evolution will therefore depend on selection operating through offspring and maternal components of fitness. Furthermore, selection at these levels may be antagonistic, with optimal offspring and maternal fitness occurring at different phenotypic values. We examined selection regimes on the correlated traits of birth weight, birth date, and litter size in Soay sheep (Ovis aries) using data from a long-term study of a free-living population on the archipelago of St. Kilda, Scotland. We tested the hypothesis that selective constraints on the evolution of the multivariate phenotype arise through antagonistic selection, either acting at offspring and maternal levels, or on correlated aspects of phenotype. All three traits were found to be under selection through variance in short-term and lifetime measures of fitness. Analysis of lifetime fitness revealed strong positive directional selection on birth weight and weaker selection for increased birth date at both levels. However, there was also evidence for stabilizing selection on these traits at the maternal level, with reduced fitness at high phenotypic values indicating lower phenotypic optima for mothers than for offspring. Additionally, antagonistic selection was found on litter size. From the offspring's point of view it is better to be born a singleton, whereas maternal fitness increases with average litter size. The decreased fitness of twins is caused by their reduced birth weight; therefore, this antagonistic selection likely results from trade-offs between litter size and birth weight that have different optimal resolutions with respect to offspring and maternal fitness. Our results highlight how selection regimes may vary depending on the assignment of reproductive and early life-history traits to either offspring or maternal phenotype.  相似文献   

6.
Variation in traits is essential for natural selection to operate and genetic and environmental effects can contribute to this phenotypic variation. From domesticated populations, we know that families can differ in their level of within‐family variance, which leads to the intriguing situation that within‐family variance can be heritable. For offspring traits, such as birth weight, this implies that within‐family variance in traits can vary among families and can thus be shaped by natural selection. Empirical evidence for this in wild populations is however lacking. We investigated whether within‐family variance in fledging weight is heritable in a wild great tit (Parus major) population and whether these differences are associated with fitness. We found significant evidence for genetic variance in within‐family variance. The genetic coefficient of variation (GCV) was 0.18 and 0.25, when considering fledging weight a parental or offspring trait, respectively. We found a significant quadratic relationship between within‐family variance and fitness: families with low or high within‐family variance had lower fitness than families with intermediate within‐family variance. Our results show that within‐family variance can respond to selection and provides evidence for stabilizing selection on within‐family variance.  相似文献   

7.
Rapid contemporary evolution due to natural selection is common in the wild, but it remains uncertain whether its effects are an essential component of community and ecosystem structure and function. Previously we showed how to partition change in a population, community or ecosystem property into contributions from environmental and trait change, when trait change is entirely caused by evolution (Hairston et al. 2005). However, when substantial non-heritable trait change occurs (e.g. due to phenotypic plasticity or change in population structure) that approach can mis-estimate both contributions. Here, we demonstrate how to disentangle ecological impacts of evolution vs. non-heritable trait change by combining our previous approach with the Price Equation. This yields a three-way partitioning into effects of evolution, non-heritable phenotypic change and environment. We extend the approach to cases where ecological consequences of trait change are mediated through interspecific interactions. We analyse empirical examples involving fish, birds and zooplankton, finding that the proportional contribution of rapid evolution varies widely (even among different ecological properties affected by the same trait), and that rapid evolution can be important when it acts to oppose and mitigate phenotypic effects of environmental change. Paradoxically, rapid evolution may be most important when it is least evident.  相似文献   

8.
The genealogical structure of neutral populations in which reproductive success is highly-skewed has been the subject of many recent studies. Here we derive a coalescent dual process for a related class of continuous-time Moran models with viability selection. In these models, individuals can give birth to multiple offspring whose survival depends on both the parental genotype and the brood size. This extends the dual process construction for a multi-type Moran model with genic selection described in Etheridge and Griffiths (2009). We show that in the limit of infinite population size the non-neutral Moran models converge to a Markov jump process which we call the Λ-Fleming-Viot process with viability selection and we derive a coalescent dual for this process directly from the generator and as a limit from the Moran models. The dual is a branching-coalescing process similar to the Ancestral Selection Graph which follows the typed ancestry of genes backwards in time with real and virtual lineages. As an application, the transition functions of the non-neutral Moran and Λ-coalescent models are expressed as mixtures of the transition functions of the dual process.  相似文献   

9.
We searched for quantitative trait loci (QTL) underlying fitness-related traits in a free-living pedigree of 588 Soay sheep in which a genetic map using 251 markers with an average spacing of 15 cM had been established previously. Traits examined included birth date and weight, considered both as maternal and offspring traits, foreleg length, hindleg length, and body weight measured on animals in August and jaw length and metacarpal length measured on cleaned skeletal material. In some cases the data were split to consider different age classes separately, yielding a total of 15 traits studied. Genetic and environmental components of phenotypic variance were estimated for each trait and, for those traits showing nonzero heritability (N= 12), a QTL search was conducted by comparing a polygenic model with a model including a putative QTL. Support for a QTL at genome-wide significance was found on chromosome 11 for jaw length; suggestive QTL were found on chromosomes 2 and 5 (for birth date as a trait of the lamb), 8 (birth weight as a trait of the lamb), and 15 (adult hindleg length). We discuss the prospects for refining estimates of QTL position and effect size in the study population, and for QTL searches in free-living pedigrees in general.  相似文献   

10.
Mating between relatives generally results in reduced offspring viability or quality, suggesting that selection should favor behaviors that minimize inbreeding. However, in natural populations where searching is costly or variation among potential mates is limited, inbreeding is often common and may have important consequences for both offspring fitness and phenotypic variation. In particular, offspring morphological variation often increases with greater parental relatedness, yet the source of this variation, and thus its evolutionary significance, are poorly understood. One proposed explanation is that inbreeding influences a developing organism’s sensitivity to its environment and therefore the increased phenotypic variation observed in inbred progeny is due to greater inputs from environmental and maternal sources. Alternatively, changes in phenotypic variation with inbreeding may be due to additive genetic effects alone when heterozygotes are phenotypically intermediate to homozygotes, or effects of inbreeding depression on condition, which can itself affect sensitivity to environmental variation. Here we examine the effect of parental relatedness (as inferred from neutral genetic markers) on heritable and nonheritable components of developmental variation in a wild bird population in which mate choice is often constrained, thereby leading to inbreeding. We found greater morphological variation and distinct contributions of variance components in offspring from highly related parents: inbred offspring tended to have greater environmental and lesser additive genetic variance compared to outbred progeny. The magnitude of this difference was greatest in late-maturing traits, implicating the accumulation of environmental variation as the underlying mechanism. Further, parental relatedness influenced the effect of an important maternal trait (egg size) on offspring development. These results support the hypothesis that inbreeding leads to greater sensitivity of development to environmental variation and maternal effects, suggesting that the evolutionary response to selection will depend strongly on mate choice patterns and population structure.  相似文献   

11.
This study extends the framework of adaptive dynamics to function-valued traits. Such adaptive traits naturally arise in a great variety of settings: variable or heterogeneous environments, age-structured populations, phenotypic plasticity, patterns of growth and form, resource gradients, and in many other areas of evolutionary ecology. Adaptive dynamics theory allows analysing the long-term evolution of such traits under the density-dependent and frequency-dependent selection pressures resulting from feedback between evolving populations and their ecological environment. Starting from individual-based considerations, we derive equations describing the expected dynamics of a function-valued trait in asexually reproducing populations under mutation-limited evolution, thus generalizing the canonical equation of adaptive dynamics to function-valued traits. We explain in detail how to account for various kinds of evolutionary constraints on the adaptive dynamics of function-valued traits. To illustrate the utility of our approach, we present applications to two specific examples that address, respectively, the evolution of metabolic investment strategies along resource gradients, and the evolution of seasonal flowering schedules in temporally varying environments.  相似文献   

12.
The phenotypic view of selection assumes that genetic responses can be predicted from selective forces and heritability — or in the classical quantitative genetic equation: R = h2S. However, data on selection in bird populations show that often no selection responses is found, despite consistent selective forces on phenotypes and significant heritable variation. Such discrepancies may arise due to the assumption that selection only acts on observed phenotypes. We derive a general selection equation that takes into account the possibility that some relevant (internal or external) traits are not measured. This equation shows that the classic equation applies if selection directly acts on the measured, phenotypic traits. This is not the case when, for instance, there are unknown internal genetic trade-offs, or unknown common environmental factors affecting both trait and fitness. In such cases, any relationship between phenotypic selection and genetic response is possible. Fortunately, the classical model can be tested by comparing phenotypic and genetic covariances between traits and fitness; an indication that important internal or external traits are missing can thus be obtained. Such an analysis was indeed found in the literature; for selection on fledging weight in Great Tits it yielded valuable extra information.  相似文献   

13.
Whitefish, genus Coregonus, show exceptional levels of phenotypic diversity with sympatric morphs occurring in numerous postglacial lakes in the northern hemisphere. Here, we studied the effects of human‐induced eutrophication on sympatric whitefish morphs in the Swiss lake, Lake Thun. In particular, we addressed the questions whether eutrophication (i) induced hybridization between two ecologically divergent summer‐spawning morphs through a loss of environmental heterogeneity, and (ii) induced rapid adaptive morphological changes through changes in the food web structure. Genetic analysis based on 11 microsatellite loci of 282 spawners revealed that the pelagic and the benthic morph represent highly distinct gene pools occurring at different relative proportions on all seven known spawning sites. Gill raker counts, a highly heritable trait, showed nearly discrete distributions for the two morphs. Multilocus genotypes characteristic of the pelagic morph had more gill rakers than genotypes characteristic of benthic morph. Using Bayesian methods, we found indications of recent but limited introgressive hybridization. Comparisons with historical gill raker data yielded median evolutionary rates of 0.24 haldanes and median selection intensities of 0.27 for this trait in both morphs for 1948–2004 suggesting rapid evolution through directional selection at this trait. However, phenotypic plasticity as an alternative explanation for this phenotypic change cannot be discarded. We hypothesize that both the temporal shifts in mean gill raker counts and the recent hybridization reflect responses to changes in the trophic state of the lake induced by pollution in the 1960s, which created novel selection pressures with respect to feeding niches and spawning site preferences.  相似文献   

14.
Arbuscular mycorrhizal fungi (AMF) are among the most abundant symbionts of plants, improving plant productivity and diversity. They are thought to mostly grow vegetatively, a trait assumed to limit adaptability. However, AMF can also harbor genetically different nuclei (nucleotypes). It has been shown that one AMF can produce genotypically novel offspring with proportions of different nucleotypes. We hypothesized that (1) AMF respond rapidly to a change of environment (plant host) through changes in the frequency of nucleotypes; (2) genotypically novel offspring exhibit different genetic responses to environmental change than the parent; and (3) genotypically novel offspring exhibit a wide range of phenotypic plasticity to a change of environment. We subjected AMF parents and offspring to a host shift. We observed rapid and large genotypic changes in all AMF lines that were not random. Genotypic and phenotypic responses were different among offspring and their parents. Even though growing vegetatively, AMF offspring display a broad range of genotypic and phenotypic changes in response to host shift. We conclude that AMF have the ability to rapidly produce variable progeny, increasing their probability to produce offspring with different fitness than their parents and, consequently, their potential adaptability to new environmental conditions. Such genotypic and phenotypic flexibility could be a fast alternative to sexual reproduction and is likely to be a key to the ecological success of AMF.  相似文献   

15.
The expression of sexual signals is often phenotypically plastic and also evolves rapidly. Few studies have considered the possibility that proximate determination -- the pathway between genes and trait expression -- may also be subject to both phenotypic plasticity and evolutionary change. We examined long-term patterns in size, condition- and age-dependence, repeatability and heritability of forehead patch size, a sexually selected plumage trait in male collared flycatchers. We also estimated survival and sexual selection on the phenotypic value of the trait. Forehead patch size linearly declined during the 15 years, probably due to the significantly negative survival selection. In addition, the expression of genetic variation for the ornament apparently underwent an age-limited change, which implies a change in the information content of the signal to receivers. The persistent lack of condition-dependence makes phenotypic plasticity an unlikely explanation to our results. This raises the possibility of a microevolutionary change of both expression and proximate determination during the study period.  相似文献   

16.
Viability selection and fecundity of size-related traits has been demonstrated to be strong in vertebrates. In small mammals, both offspring and adult size are important for viability and fecundity, respectively. We studied the role of early phenotypic selection on size attributes and female fecundity in the leaf-eared mouse (Phyllotis darwini). Our results support that larger females produce more offspring, and since the likelihood of attaining adulthood is similar for different sizes of the females, those larger females also produce more offspring that attain sexual maturity. From the offspring perspective, larger pups at birth have significantly more probability of attaining sexual maturity. However, weaning mass and growth rate did not show any differential survival. Our study suggests that early selection could be important and could prevent further episodes of selection by early culling of the distribution of sizes, and that “effective” fecundity is strongly dependent on the size of the female.  相似文献   

17.
Genetic assimilation emerges from selection on phenotypic plasticity. Yet, commonly used quantitative genetics models of linear reaction norms considering intercept and slope as traits do not mimic the full process of genetic assimilation. We argue that intercept–slope reaction norm models are insufficient representations of genetic effects on linear reaction norms and that considering reaction norm intercept as a trait is unfortunate because the definition of this trait relates to a specific environmental value (zero) and confounds genetic effects on reaction norm elevation with genetic effects on environmental perception. Instead, we suggest a model with three traits representing genetic effects that, respectively, (i) are independent of the environment, (ii) alter the sensitivity of the phenotype to the environment and (iii) determine how the organism perceives the environment. The model predicts that, given sufficient additive genetic variation in environmental perception, the environmental value at which reaction norms tend to cross will respond rapidly to selection after an abrupt environmental change, and eventually becomes equal to the new mean environment. This readjustment of the zone of canalization becomes completed without changes in genetic correlations, genetic drift or imposing any fitness costs of maintaining plasticity. The asymptotic evolutionary outcome of this three‐trait linear reaction norm generally entails a lower degree of phenotypic plasticity than the two‐trait model, and maximum expected fitness does not occur at the mean trait values in the population.  相似文献   

18.
The aim of this study was to test how genetic gain for a trait not measured on the nucleus animals could be obtained within a genomic selection pig breeding scheme. Stochastic simulation of a pig breeding program including a breeding nucleus, a multiplier to produce and disseminate semen and a production tier where phenotypes were recorded was performed to test (1) the effect of obtaining phenotypic records from offspring of nucleus animals, (2) the effect of genotyping production animals with records for the purpose of including them in a genomic selection reference population or (3) to combine the two approaches. None of the tested strategies affected genetic gain if the trait under investigation had a low economic value of only 10% of the total breeding goal. When the relative economic weight was increased to 30%, a combination of the methods was most effective. Obtaining records from offspring of already genotyped nucleus animals had more impact on genetic gain than to genotype more distant relatives with phenotypes to update the reference population. When records cannot be obtained from offspring of nucleus animals, genotyping of production animals could be considered for traits with high economic importance.  相似文献   

19.
1. In structured populations, phenotypic change can result from changes throughout an individual's lifetime (phenotypic plasticity, age-related changes), selection and changes in population composition (environment- or density-driven fluctuations in age-structure). 2. The contribution of population dynamics to phenotypic change has often been ignored. However, for understanding trait dynamics, it is important to identify both the individual- and population-level mechanisms responsible for trait change, because they potentially reinforce or counteract each other. 3. We use 22 years of field data to investigate the dynamics of a sexually selected phenological trait, the timing of nuptial moult in superb fairy-wrens Malurus cyaneus. 4. We show that trait expression is both climate- and age-dependent, but that phenotypic plasticity in response to climate variability also varies with age. Old males can acquire nuptial plumage very early after high rainfall, but 1- to 2-year-olds cannot. However, males of all ages that defer moult to later in the year acquire nuptial plumage earlier when conditions are warmer. 5. The underlying mechanism appears to be that old males may risk moulting in the most challenging period of the year: in autumn, when drought restricts food abundance and during the cold winter. By contrast, young males always moult during the spring transition to benign - warmer and generally wetter - conditions. Temperature changes dominate this transition that heralds the breeding season, thereby causing both young and late-moulting older birds to be temperature sensitive. 6. Climate and age also affect trait dynamics via a population dynamical pathway. The same high rainfall that triggers early moulting in old males concurrently increases offspring recruitment and thereby reduces the average age of males in the population. Consequently, effects of rainfall on trait dynamics through phenotypic plasticity of old males are dampened by synchronous rejuvenation of the age-structure. 7. A long-term trend towards drier environments prompted phenotypic change because of plasticity, but this was masked by climate-driven demographic change (causing apparent stasis). This suggests a novel explanation for why trait change may fail to reflect the observed pattern of directional selection or phenotypic plasticity.  相似文献   

20.
The evolution of a quantitative genetic trait under stabilizing viability selection and sexual selection is modeled for a polygynous species in which female mating preferences are acquired by sexual imprinting on the parents and by exposure to the surviving population at large. Stabilizing viability selection acts equally on both sexes in the case of a sexually monomorphic trait and on males only in the case of a dimorphic trait. A genetically fixed sensory or perceptual bias defines the origin of the scale on which the trait is measured, and the possibility is incorporated that female preferences may deviate asymmetrically from the familiar-either toward or away from this origin. When viability selection is strong relative to sexual selection, the models predict that the mean trait value will evolve to the viability optimum. With intermediate ratios of the strength of viability to sexual selection, a stable equilibrium can occur on either side of this viability optimum, depending on the direction of asymmetry in female preferences. When viability selection is relatively weak and certain other conditions are also satisfied, runaway selection is predicted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号