首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The fibroblast growth factor receptor 2 gene is differentially spliced to encode two transmembrane tyrosine kinase receptor proteins that have different ligand-binding specificities and exclusive tissue distributions. We have used Cre-mediated excision to generate mice lacking the IIIb form of fibroblast growth factor receptor 2 whilst retaining expression of the IIIc form. Fibroblast growth factor receptor 2(IIIb) null mice are viable until birth, but have severe defects of the limbs, lung and anterior pituitary gland. The development of these structures appears to initiate, but then fails with the tissues undergoing extensive apoptosis. There are also developmental abnormalities of the salivary glands, inner ear, teeth and skin, as well as minor defects in skull formation. Our findings point to a key role for fibroblast growth factor receptor 2(IIIb) in mesenchymal-epithelial signalling during early organogenesis.  相似文献   

2.
Zhang Y  Gorry MC  Post JC  Ehrlich GD 《Gene》1999,230(1):69-79
The human fibroblast growth factor receptor (FGFR) genes play important roles in normal vertebrate development. Mutations in the human FGFR2 gene have been associated with many craniosynostotic syndromes and malformations, including Crouzon, Pfeiffer, Apert, Jackson-Weiss, Beare-Stevenson cutis gyrata, and Antley-Bixler syndromes, and Kleeblaatschadel (cloverleaf skull) deformity. The mutations identified to date are concentrated in the previously characterized region of FGFR2 that codes for the extracellular IgIII domain of the receptor protein. The search for mutations in other regions of the gene, however, has been hindered by lack of knowledge of the genomic structure. Using a combination of genomic library screening, long-range PCR, and genomic walking, we have characterized the genomic structure of nearly the entire human FGFR2 gene, including a delineation of the organization and size of all introns and exons and determination of the DNA sequences at the intron/exon boundaries. Comparative analysis of the human FGFR gene family reveals that the genomic organization of the FGFRs is relatively conserved. Moreover, alignment of the amino acid sequences shows that the four corresponding proteins share 46% identity overall, with up to 70% identity between individual pairs of FGFR proteins. However, the FGFR2 gene contains an additional exon not found in other members of the family, and it also has much larger intronic sequences throughout the gene. Remarkable similarities in genomic organization, intron/exon boundaries, and intron sizes are found between the human and mouse FGFR2 genes. Knowledge gained from this study of the human FGFR2 gene structure may prove useful in future screening studies designed to find additional mutations associated with craniosynostotic syndromes, and in understanding the molecular and cell biology of this receptor family.  相似文献   

3.
4.
Fibroblast growth factors (FGF) play a critical role in bone growth and development affecting both chondrogenesis and osteogenesis. During the process of intramembranous ossification, which leads to the formation of the flat bones of the skull, unregulated FGF signaling can produce premature suture closure or craniosynostosis and other craniofacial deformities. Indeed, many human craniosynostosis disorders have been linked to activating mutations in FGF receptors (FGFR) 1 and 2, but the precise effects of FGF on the proliferation, maturation and differentiation of the target osteoblastic cells are still unclear. In this report, we studied the effects of FGF treatment on primary murine calvarial osteoblast, and on OB1, a newly established osteoblastic cell line. We show that FGF signaling has a dual effect on osteoblast proliferation and differentiation. FGFs activate the endogenous FGFRs leading to the formation of a Grb2/FRS2/Shp2 complex and activation of MAP kinase. However, immature osteoblasts respond to FGF treatment with increased proliferation, whereas in differentiating cells FGF does not induce DNA synthesis but causes apoptosis. When either primary or OB1 osteoblasts are induced to differentiate, FGF signaling inhibits expression of alkaline phosphatase, and blocks mineralization. To study the effect of craniosynostosis-linked mutations in osteoblasts, we introduced FGFR2 carrying either the C342Y (Crouzon syndrome) or the S252W (Apert syndrome) mutation in OB1 cells. Both mutations inhibited differentiation, while dramatically inducing apoptosis. Furthermore, we could also show that overexpression of FGF2 in transgenic mice leads to increased apoptosis in their calvaria. These data provide the first biochemical analysis of FGF signaling in osteoblasts, and show that FGF can act as a cell death inducer with distinct effects in proliferating and differentiating osteoblasts.  相似文献   

5.
Fibroblast growth factors (FGFs) are upstream activators of the mitogen-activated protein kinase pathway and mitogens in a wide variety of cells. However, whether the mitogen-activated protein kinase pathway solely accounts for the induction of cell cycle or antiapoptotic activity of the FGF receptor (FGFR) tyrosine kinase is not clear. Here we report that cell cycle inducer Cks1, which triggers ubiquitination and degradation of p27(Kip1), associates with the unphosphorylated form of FGFR substrate 2 (FRS2), an adaptor protein that is phosphorylated by FGFR kinases and recruits downstream signaling molecules. FGF-dependent activation of FGFR tyrosine kinases induces FRS2 phosphorylation, causes release of Cks1 from FRS2, and promotes degradation of p27(Kip1) in 3T3 cells. Since degradation of p27(Kip1) is a key regulatory step in activation of the cyclin E/A-Cdk complex during the G(1)/S transition of the cell cycle, the results suggest a novel mitogenic pathway whereby FGF and other growth factors that activate FRS2 directly activate cyclin-dependent kinases.  相似文献   

6.
Fibroblast growth factor receptors (FGFRs) play an important role in development and tumorigenesis. Mutations in FGFR2 cause more than five craniosynostosis syndromes. The FGFR2 genomic structure is the largest of the FGFR family. We have refined and extended the genomic organization of the FGFR2 gene by sequencing more than 119 kb of PACs, cosmids, and PCR products and assembling a region of approximately 175 kb. Although the gene structure has been reported to include only 20 exons, we have verified the presence of at least 22 exons, some of which are alternatively spliced. The sizes of six exons differed from those reported previously. Comparison of our sequence and those in the NCBI database detected more than 300 potential single nucleotide polymorphisms (SNPs). However, sequencing regions containing 52 of these potential SNPs verified only 14 in PCR products generated from 16 CEPH alleles. In contrast, direct sequencing of the CEPH DNAs revealed 21 other polymorphisms. Only one SNP was found in the 2,926 bp of coding sequence. Twenty-seven SNPs, two insertion polymorphisms and five microsatellite polymorphisms are contained in approximately 16.6 kb of non-coding sequence. These data yield an average of one polymorphism for approximately 488 bp of non-coding sequence examined. This collection of SNP, insertion, and repeat polymorphisms will aid future association studies between the FGFR2 gene and human disease and will enhance mutation detection.  相似文献   

7.
Identification of a new fibroblast growth factor receptor, FGFR5.   总被引:9,自引:0,他引:9  
  相似文献   

8.
Fibroblast growth factor (FGF) 21, a structural relative of FGF23 that regulates phosphate homeostasis, is a regulator of insulin-independent glucose transport in adipocytes and plays a role in the regulation of body weight. It also regulates ketogenesis and adaptive responses to starvation. We report that in a reconstituted receptor activation assay system using BaF3 cells, which do not endogenously express any type of FGF receptor (FGFR) or heparan sulfate proteoglycan, FGF21 alone does not activate FGFRs and that betaKlotho is required for FGF21 to activate two specific FGFR subtypes: FGFR1c and FGFR3c. Coexpression of betaKlotho and FGFR1c on BaF3 cells enabled FGF21, but not FGF23, to activate receptor signaling. Conversely, coexpression of FGFR1c and Klotho, a protein related to betaKlotho, enabled FGF23 but not FGF21 to activate receptor signaling, indicating that expression of betaKlotho/Klotho confers target cell specificity on FGF21/FGF23. In all of these cases, heparin enhanced the activation but was not essential. In 3T3-L1 adipocytes, up-regulation of glucose transporter (GLUT) expression by FGF21 was associated with expression of betaKlotho, which was absent in undifferentiated 3T3-L1 fibroblasts. It is thus suggested that betaKlotho expression is a crucial determinant of the FGF21 specificity of the target cells upon which it acts in an endocrine fashion.  相似文献   

9.
Binding of the fibroblast growth factor (FGF) to the FGF receptor (FGFR) tyrosine kinase leads to receptor tyrosine autophosphorylation as well as phosphorylation of multiple downstream signaling molecules that are recruited to the receptor either by direct binding or through adaptor proteins. The FGFR substrate 2 (FRS2) family consists of two members, FRS2alpha and FRS2beta, and has been shown to recruit multiple signaling molecules, including Grb2 and Shp2, to FGFR1. To better understand how FRS2 interacted with FGFR1, in vivo binding assays with coexpressed FGFR1 and FRS2 recombinant proteins in mammalian cells were carried out. The results showed that the interaction of full-length FRS2alpha, but not FRS2beta, with FGFR1 was enhanced by activation of the receptor kinase. The truncated FRS2alpha mutant that was comprised only of the phosphotyrosine-binding domain (PTB) bound FGFR1 constitutively, suggesting that the C-terminal sequence downstream the PTB domain inhibited the PTB-FGFR1 binding. Inactivation of the FGFR1 kinase and substitutions of tyrosine phosphorylation sites of FGFR1, but not FRS2alpha, reduced binding of FGFR1 with FRS2alpha. The results suggest that although the tyrosine autophosphorylation sites of FGFR1 did not constitute the binding sites for FRS2alpha, phosphorylation of these residues was essential for optimal interaction with FRS2alpha. In addition, it was demonstrated that the Grb2-binding sites of FRS2alpha are essential for mediating signals of FGFR1 to activate the FiRE enhancer of the mouse syndecan 1 gene. The results, for the first time, demonstrate the specific signals mediated by the Grb2-binding sites and further our understanding of FGF signal transmission at the adaptor level.  相似文献   

10.
Pfeiffer syndrome is a skeletal disorder characterized by craniosynostosis associated with foot and hand anomalies. Mutations in the genes encoding fibroblast growth factor receptors 1 and 2 (FGFR1 and FGFR2) have recently been implicated in the aetiology of such a syndrome, as well as of other craniosynostotic conditions. We now report a novel missense mutation, a G to C transversion at position 1049 (exon IIIa) of FGFR2, detected in a patient with severe Pfeiffer clinical features. The mutation results in the substitution of a cysteine for tryptophan-290 in the third immunoglobulin-like domain and affects both spliceoforms of FGFR2. Mutations causing replacement of tryptophan-290 have also been reported previously in Crouzon syndrome, a similar but clinically distinct craniosynostotic disorder. This finding confirms the involvement of mutations of FGFR2 exon IIIa in Pfeiffer syndrome, and emphasizes both the extensive heterogeneity of the FGFR2 mutations that result in the Pfeiffer phenotype and the perturbations caused by unpaired cysteine residues in receptor dimerization and transduction of the FGFs signal. Received: 15 August 1996 / Revised: 19 October 1996  相似文献   

11.
Previous studies indicate that astrocytes are the brain cells that express acidic fibroblast growth factor (aFGF) and that the expression is increased upon activation. However, there has been no study investigating the significance of this phenomenon. Here we report that aFGF treatment of IFNγ-stimulated human astrocytes, and LPS/IFNγ-stimulated human microglia, enhances their secretion of inflammatory cytokines and other materials toxic to human neuroblastoma SH-SY5Y cells. The mechanism of aFGF enhancement involves stimulation of the receptor FGFR2 IIIb. We show by RT-PCR that this receptor, but not other FGF receptors, is robustly expressed by astrocytes and microglia. We establish by Western blotting, and immunohistochemistry on postmortem human brain tissue that the FGFR2 IIIb protein is expressed by both of these glial cell types. We blocked the inflammatory stimulant action of aFGF by transfecting microglia and astrocytes with a small inhibitory RNA (siRNA) to FGFR2 IIIb as well as by removal of aFGF using an anti-aFGF antibody. Treatment with bFGF in combination with the stimulants was without effect, but together with aFGF, it partially counteracted the action of aFGF, indicating that it may be a weak antagonist of FGFR2 IIIb. The inflammatory effect was also attenuated by treatment with inhibitors of protein kinase C, Src tyrosine kinase, and MEK-1/2 indicating the involvement of these intracellular pathways. Our data suggest that inhibition of expression or release of aFGF could have therapeutic potential by inhibiting inflammation in neurodegenerative diseases such as Alzheimer disease where many neuroinflammatory molecules are prominently expressed.  相似文献   

12.
13.
Islet amyloid polypeptide (IAPP; also known as amylin) is responsible for islet amyloid formation in type 2 diabetes, and IAPP-induced toxicity is believed to contribute to the loss of β-cell mass associated with the late stages of type 2 diabetes. Islet amyloid formation may also play a role in graft failure after transplantation. IAPP is produced as a prohormone, pro-islet amyloid polypeptide (proIAPP), and processed in the secretory granules of the pancreatic β-cells. Partially processed forms of proIAPP are found in amyloid deposits; most notable is a 48-residue intermediate, proIAPP1-48, which includes the N-terminal pro-extension, but which has been properly processed at the C-terminus. Incomplete processing may play a role in islet amyloid formation by promoting interactions with sulfated proteoglycans of the extracellular matrix, which, in turn, promote amyloid formation. We show that acid fuchsin (3-(1-(4-amino-3-methyl-5-sulphonatophenyl)-1-(4-amino-3-sulphonatophenyl)methylene)cyclohexa-1,4-dienesulphonic acid), a simple sulfonated triphenyl methyl derivative, is a potent inhibitor of amyloid formation by the proIAPP1-48 intermediate. The more complicated triphenyl methane derivative fast green FCF {ethyl-[4-[[4-[ethyl-[(3-sulfophenyl)methyl]amino]phenyl]-(4-hydroxy-2-sulfophenyl)methylidene]-1-cyclohexa-2,5-dienylidene]-[(3-sulfophenyl)methyl]azanium} also inhibits amyloid formation by IAPP and the proIAPP processing intermediate. Both compounds inhibit amyloid formation by mixtures of the proIAPP intermediate and the model glycosaminoglycan heparan sulfate. Acid fuchsin also inhibits glycosaminoglycan-mediated amyloid formation by mature IAPP. The ability to inhibit amyloid formation is not simply due to the compounds being sulfonated, since the sulfonated inhibitor of amyloid-β, tramiprosate, is not an inhibitor of amyloid formation by proIAPP1-48.  相似文献   

14.
15.
16.
17.
Non-syndromic trigonocephaly is a heterogeneous entity; in most cases the origin is unknown. Rare cases with autosomal dominant and recessive inheritance exist. Here the mutational screening of ten patients in the FGFR1, 2, and 3 genes and the TWIST gene causative of autosomal dominant craniosynostosis syndromes was reported. In one girl an unusual FGFR1 mutation was found.  相似文献   

18.
19.
Ligand-dependent signalling pathways have been characterised as having morphogen properties where there is a quantitative relationship between receptor activation and response, or threshold characteristics in which there is a binary switch in response at a fixed level of receptor activation. Here we report the use of a bacterial artificial chromosome (BAC)-based transgenic system in which a hypermorphic mutation has been introduced into the murine Fgfr1 gene. These mice exhibit cranial suture and sternal fusions that are exacerbated when the BAC copy number is increased. Surprisingly, increasing mutant BAC copy number also leads to the de novo appearance of digit I polydactyly in the hind limb and transformations of the vertebrae. Polydactyly is accompanied by a reduction of programmed cell death in the developing hind limb. Candidate gene analysis reveals downregulation of Dkk1 in the digit I field and upregulation of Wnt5a and Hoxd13. These findings show that Fgfr1-mediated developmental pathways exhibit differing signalling dynamics, whereby development of the cranial sutures and sternum follows a morphogen mode, whereas development of the vertebral column and the hind limbs has threshold signalling properties.  相似文献   

20.
We previously reported that serotonin (5-HT) increased glial cell line-derived neurotrophic factor (GDNF) release in a 5-HT2 receptor (5-HT2R) and mitogen-activated protein kinase kinase/extracellular signal-related kinase (MEK/ERK)-dependent manner in rat C6 glioma cells (C6 cells), a model of astrocytes. We herein found that 5-HT-induced rapid ERK phosphorylation was blocked by 5-HT2R antagonists in C6 cells. We therefore examined 5-HT-induced ERK phosphorylation to reveal the mechanism of 5-HT-induced GDNF mRNA expression. As 5-HT-induced ERK phosphorylation was blocked by inhibitors for Gαq/11 and fibroblast growth factor receptor (FGFR), but not for second messengers downstream of Gαq/11, 5-HT2R-mediated FGFR transactivation was suggested to be involved in the ERK phosphorylation. Although FGFR1 and 2 were functionally expressed in C6 cells, 5-HT selectively phosphorylated FGFR2. Indeed, small interfering RNA for FGFR2, but not for FGFR1, blocked 5-HT-induced ERK phosphorylation. As Src family tyrosine kinase inhibitors and microtubule depolymerizing agents blocked 5-HT-induced FGFR2 phosphorylation, Src family tyrosine kinase and stabilized microtubules were suggested to act upstream of FGFR2. Finally, 5-HT-induced GDNF mRNA expression was also inhibited by the blockade of 5-HT2R, FGFR, and Src family tyrosine kinase. In conclusion, our findings suggest that 5-HT induces GDNF mRNA expression via 5-HT2R-mediated FGFR2 transactivation in C6 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号