首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Although it is widely acknowledged that a plant's tolerance of herbivore damage depends on resource availability in the plant's environment, there is no consensus on whether higher resource levels lead to greater or to lower tolerance. The prevailing model, the compensatory continuum hypothesis (CCH), predicts that tolerance of herbivory should be greater in high-resource or low-competition conditions. The main rival hypothesis, the growth rate model (GRM), makes the opposite prediction: tolerance of herbivory should be greater in more stressful conditions. The tolerance predictions of a recently introduced model, the limiting resource model (LRM), are more flexible and depend on the type of resource and herbivore under consideration. We reviewed 48 studies (from 40 published articles) of plant tolerance of leaf damage in conditions differing in levels of light, inorganic nutrients, water stress, or competition. The results of 31%, 48%, and 95% of the studies were consistent with the predictions of the CCH, GRM, and LRM, respectively. Thus, by considering which resource is primarily affected by herbivory and which resource is limiting a plant's fitness, the LRM offers a substantial advance in predicting how tolerance will be affected by environmental differences in resource availability.  相似文献   

2.
3.
Resource availability may limit plant tolerance of herbivory. To predict the effect of differential resource availability on plant tolerance, the limiting resource model (LRM) considers which resource limits plant fitness and which resource is mostly affected by herbivore damage. We tested the effect of experimental drought on tolerance of leaf damage in Ipomoea purpurea, which is naturally exposed to both leaf damage and summer drought. To seek mechanistic explanations, we also measured several morphological, allocation and gas exchange traits. In this case, LRM predicts that tolerance would be the same in both water treatments. Plants were assigned to a combination of two water treatments (control and low water) and two damage treatments (50% defoliation and undamaged). Plants showed tolerance of leaf damage, i.e., a similar number of fruits were produced by damaged and undamaged plants, only in control water. Whereas experimental drought affected all plant traits, leaf damage caused plants to show a greater leaf trichome density and reduced shoot biomass, but only in low water. It is suggested that the reduced fitness (number of fruits) of damaged plants in low water was mediated by the differential reduction of shoot biomass, because the number of fruits per shoot biomass was similar in damaged and undamaged plants. Alternative but less likely explanations include the opposing direction of functional responses to drought and defoliation, and resource costs of the damage-induced leaf trichome density. Our results somewhat challenge the LRM predictions, but further research including field experiments is needed to validate some of the preliminary conclusions drawn.  相似文献   

4.
Tolerance to apical meristem damage (AMD) is a form of plant defense against herbivory. Theoretical models come to different conclusions about the effects of inorganic soil nutrient levels on tolerance to AMD, and different plants have shown different relationships between these variables. To assign some order to these disparate patterns and to resolve conflicts among the models, the ‘limiting resources model’ (LRM) was developed. However, we believe that the LRM is actually comprised of several different models, which we describe. Our study marks the first comprehensive and simultaneous test of the entire LRM framework, treating it explicitly as separate models, which also evaluates the models’ underlying assumptions. We studied tolerance to AMD in laboratory‐reared natural populations of Arabidopsis thaliana from three different regions of Europe, spanning a wide latitudinal gradient. We show that, in different populations of this species, basic responses to nutrients and damage are best described by different models, which are based on different assumptions and make different predictions. This demonstrates the need for complexity in our explanations, and suggests that no one existing model can account for all relationships between tolerance to AMD and nutrients. Our results also demonstrate that fruit production can provide a misleading approximation of fitness in A. thaliana, contrary to the common assumption in the literature.  相似文献   

5.
The activation of dormant meristems following apical damage is an important mechanism for tolerance of herbivore damage, but its impact could vary with resource availability. Here, we examined central predictions of the limiting resource model (LRM), according to which high resource availability can support damage tolerance in plants with deterministic apical dominance, but will have limited or no effect in plants that are induced to increase branching by increased resource availability regardless of damage. We examined these predictions by studying the branching patterns of Medicago truncatula plants in response to both light and water availabilities and their effects on tolerance of apical damage. We used plants from environments that were predicted to select for different levels of apical dominance. Intact plants from the more productive and competitive population exhibited strong apical dominance and refrained from branching even under full light, whereas plants from the less productive and sparser population exhibited greater plasticity in apical dominance and readily branched under high water and light. In accordance with the LRM, these differences translated into differential responsiveness to apical damage: given abundant water, apical damage induced the activation of lateral meristems and increased pod and seed production in plants from the more productive environment, but not in plants from the less productive environment. These results suggest an adaptive association between deterministic inhibition of lateral meristems and compensatory ability, which supports the hypothesis that greater compensatory responsiveness to apical damage could be a derivative of adaptation to other environmental stresses, such as light competition.  相似文献   

6.
A mechanistic understanding of the highly variable effects of herbivores on plant production in different ecosystems remains a major challenge. To explain these patterns, the compensatory continuum hypothesis (CCH) predicts plants to compensate for defoliation when resources are abundant, whereas the growth rate hypothesis (GRH) makes the opposite claim of high herbivory tolerance under resource‐poor conditions. The limiting resource model (LRM) tries to reconcile this dichotomy by incorporating the indirect effects of herbivores on plant resources and predicts that the potential for plant compensation is dependent upon whether, and how, herbivory influences limiting resources. Although extensively evaluated in laboratory monocultures, it remains uncertain whether these models can also explain the response of heterogeneous and multi‐species natural plant communities to defoliation. Here we investigate community‐wide plant response to defoliation and report data from a field experiment in the arid and primarily water‐limited Trans‐Himalayan grazing ecosystem in northern India involving clipping, irrigation and nutrient‐feedback with herbivore dung. Without nutrient‐feedback, plants compensated for defoliation in absence of irrigation but failed to compensate under irrigation. Whereas, in the presence of nutrient‐feedback plants compensated for defoliation when irrigated. This divergent pattern is not consistent with the CCH and GRH, and is only partially explained by the LRM. Instead, these pluralistic results are consistent with the hypothesis that herbivory may alter the relative strengths of water and nutrient limitation since irrigation increased root:shoot ratio in absence of fertilization in unclipped plots, but not in the corresponding clipped plots. So, herbivory appears to increase relative strength of nutrient‐limitation for plants that otherwise seem to be primarily water‐limited. Extending the LRM framework to include herbivore‐mediated transitions between water and nutrient‐limitation may clarify the underlying mechanisms that modulate herbivory‐tolerance under different environmental conditions.  相似文献   

7.
尚无证据表明顶端优势强的物种存在广义顶端优势潜在“成本”  相似文献   

8.
Resource availability is an important factor affecting the capacity of compensatory growth after grazing. We performed a greenhouse experiment with Poa bulbosa, a small perennial grass of the Mediterranean and Central Asian grasslands, to test the importance of nutrient availability for compensatory growth after clipping. We also compared the results with predictions of the limited resource model (LRM). Plants were grown at low and high fertilization levels and subjected to a clipping treatment. Contrary to the LMR, we found that in Poa plants compensatory growth occurred under the high fertilization level, while it did not occur under the low level. The LMR predicts a higher tolerance for grazing in the stressful environment. Our plants showed a significant decrease in their relative growth rates (RGR) after clipping. Although the plants allocated a 32–188% greater fraction of the mass to lamina growth after clipping, this greater allocation to the leaves did not fully compensate for the initial reduction in leaf area ratio (LAR). A sensitivity analysis showed for the clipped plants under the high fertilization treatment, that changes in leaf allocation (f lam) enabled the plants to compensate for a part of the potential loss caused by defoliation. Probably, the increased biomass allocation comes largely from the bulbs. We conclude that the inconsistency of the LRM with our results originates in the lack of compensatory mechanisms in the model. To better understand how environmental conditions affect tolerance to herbivory, the effects of compensatory growth should be taken into account.  相似文献   

9.
Plant tolerance to herbivory may depend on local environmental conditions. Models predict both increased and decreased tolerance with increasing resources. Transgenerational effects of herbivory may result in cross-generation tolerance. We evaluated within- and potential between-generation consequences of deer browsing in light-gap and understory habitats in the forest-edge herb, Campanulastrum americanum. Plants were assigned to deer-browsed, simulated-herbivory, and control (undamaged) treatments in the two light environments. In light gaps, plants were eaten earlier, more frequently, and had less vegetative recovery relative to uneaten plants than in the understory. As a result, browsed light-gap plants had a greater reduction in flowers and fruit than understory plants. This reduced tolerance was in part because deer browsing damaged plants in light gaps more than those in the understory. However, in the simulated herbivory treatment, where damage levels were similar between light habitats, plants growing in high-resource light gaps also had reduced tolerance of herbivory relative to those in the forest understory. C. americanum’s reproductive phenology was delayed by reduced light and the loss of the apical meristem. As a result, deer-browsed plants in the light gap flowered slightly later than uneaten plants in the understory. C. americanum has a polymorphic life history and maternal flowering time influences the frequency of annual and biennial offspring. The later flowering of deer-browsed plants in light gaps will likely result in a reduced frequency of high-fitness annual offspring and an increase in lower fitness biennial offspring. Therefore, additional between-generation costs of herbivory are expected relative to those predicted by fruit number alone.  相似文献   

10.
Interactions between resource availability and enemy release in plant invasion   总被引:12,自引:0,他引:12  
Understanding why some exotic species become invasive is essential to controlling their populations. This review discusses the possibility that two mechanisms of invasion, release from natural enemies and increased resource availability, may interact. When plants invade new continents, they leave many herbivores and pathogens behind. Species most regulated by enemies in their native range have the most potential for enemy release, and enemy regulation may be strongest for high-resource species. High resource availability is associated with low defence investment, high nutritional value, high enemy damage and consequently strong enemy regulation. Therefore, invasive plant species adapted to high resource availability may also gain most from enemy release. Strong release of high-resource species would predict that: (i) both enemy release and resources may underlie plant invasion, leading to potential interactions among control measures; (ii) increases in resource availability due to disturbance or eutrophication may increase the advantage of exotic over native species; (iii) exotic species will tend to have high-resource traits relative to coexisting native species; and (iv) although high-resource plants may experience strong enemy release in ecological time, well-defended low-resource plants may have stronger evolutionary responses to the absence of enemies.  相似文献   

11.
We examined the effects of self-pollination and resource addition to maternal plants of Wild Lupine on seed production in the field, and on offspring performance in the greenhouse. Although 24% of flowers set fruits when open-pollinated, only 11% of flowers set fruits when self-pollinated. Self-pollination significantly reduced fruit and seed production per inflorescence and increased aborted seeds per fruit. Resource addition to maternal plants significantly increased fruit and seed number in the field. Moreover, selfed plants exhibited greater variability in seed production in the absence of resource addition to the maternal plant. We planted a total of 1,306 of the seeds from this experiment in the greenhouse. While self-pollination did not affect the proportion of seeds emerging, it slowed seedling emergence by 5–10%, and reduced offspring biomass by 25–35%. Interestingly, resource addition to the maternal plants significantly decreased proportion of seedlings surviving after 5 months. Moreover, offspring from maternal plants with resource addition expressed more inbreeding depression in the seedling stage compared to offspring from maternal plants without resource addition, for which more inbreeding depression occurred during seed maturation and emergence. These results indicate that conservation efforts using benign environments to increase number of seeds or offspring may face compensating reductions in survivorship at other life stages.  相似文献   

12.
Banta JA  Pigliucci M 《Heredity》2005,94(2):229-236
To examine the role of gibberellin hormones (GAs) in tolerance to apical meristem damage (AMD), we characterized the reaction norms of several GA-deficient and insensitive mutants of Arabidopsis thaliana in response to AMD and compared them to those of the wild type, Landsberg, from which they were derived. We included 'natural' genotypes of A. thaliana--accessions with shorter lab histories--in order to evaluate how representative Landsberg is of other genotypes. The GA mutations did not alter the level of tolerance to AMD, which was consistent with equal compensation for all genotypes. Generally, the reaction norms to AMD did not differ among the GA mutants themselves, or between the GA mutants and Landsberg. The GA mutations did affect the overall phenotypes of the plants, but these effects were not simply related to whether the mutation was early or late in the biochemical pathways. The GA-insensitive mutant was phenotypically different from the GA-deficient mutants and from Landsberg. The natural populations differed significantly from Landsberg, particularly in attributes related to size and inflorescence production, one more example of the need for researchers to be careful when generalizing the results of studies based upon laboratory strains. Our results indicate that early-flowering genotypes of A. thaliana can be remarkably tolerant to AMD, and that GA deficiency/insensitivity does not hinder tolerance to AMD, at least in this genetic background. Moreover, we confirm that mutations at regulatory loci can have noncatastrophic effects on fitness, as recently found by other investigators.  相似文献   

13.
Alison K. Brody  Rebecca E. Irwin 《Oikos》2012,121(9):1424-1434
The ability of plants to tolerate, or compensate for, herbivore damage is highly variable and has been the subject of much research. Although many plants can compensate for herbivore damage, and some even overcompensate, we cannot yet generalize about the conditions that promote a positive response to damage. Here, we asked how abiotic resources (i.e. plant nutrient status) coupled with biotic interactions – i.e. subsequent interactions with pollinators, seed predators and nectar robbing bumble bees – affect the compensatory ability of Ipomopsis aggregata, a monocarpic herb that has been the subject of much previous debate. We hypothesized that compensation to herbivore damage in I. aggregata (Polemoniaceae) would depend first on plants having an ample supply of resources and, second, on the outcome of subsequent interactions with mutualist pollinators and enemy pre‐dispersal seed predators and nectar robbing bumble bees. We used a fully‐factorial experiment in which plants were watered, fertilized or left as unmanipulated controls, crossed with clipping to simulate herbivore damage to the apical meristem. Resource addition enhanced both male and female components of fitness, but resource enhancement did not provide the means for plants to fully compensate for simulated herbivory. Clipped plants produced significantly more inflorescences, but at the expense of a delay in flowering and fewer total flowers. Clipping significantly reduced losses to dipteran pre‐dispersal seed predators by delaying flowering time, but early flowering plants produced higher numbers of seeds despite incurring higher rates of predation. Clipped plants incurred a higher risk to nectar robbers in one of two years. Overall, clipped plants suffered severe reductions (a nearly 50% reduction in total seed set) in female success, but clipping combined with nutrient addition enhanced male function through increases in per‐flower pollen production. However, because clipped plants produced significantly fewer flowers than unclipped plants, whole‐plant pollen production was significantly reduced by clipping. Pollinator visitation and nectar robbing were variable between clipping treatments and between years and (nectar robbing) among sites. Our results demonstrate that the variability in plant response to herbivory can, at least in part, be driven by plant interactions with mutualists and enemies. Thus, accounting for such interactions and their variability is important to fully understanding plant compensation for herbivore damage and will likely go far to explain variation in plant response that appears to be independent of resources.  相似文献   

14.
The reserve meristem hypothesis predicts that latent meristems may act as a bet-hedging strategy given high-cost, predictable herbivory. Under this hypothesis, damage to a plant should elicit greater branching. This prediction was tested in Verbascum thapsus with three experiments manipulating the intensity and type of damage to reproductive tissue. In the first experiment, seed set was prevented in the treatment group by stigma excision and lanolin application to 80% of the flowers of each plant. In the second experiment, a minimum of two mating pairs of weevils were added to treated plants prior to the onset of flowering. In the third experiment, all fruits were sliced lengthwise twice. All three treatments significantly reduced seed set. In the first two experiments, treated plants significantly increased degree of branching (branch number and total branch length). This supports the reserve meristem hypothesis as an explanation for greater branching in larger plants of V. thapsus. Interestingly, the fruit destruction experiment failed to elicit a branching response, which suggests that the timing of damage is important.  相似文献   

15.
The hypothesis that flower maintenance requires resources that would be used to support other plant functions (i.e. a cost of floral maintenance) was tested by experimentally manipulating floral longevity. Plants of Clarkia tembloriensis, a species with pollination-induced flower senescence, received either early or late pollinations (long and short longevities, respectively). We examined the effect of this manipulation on (1) per-flower allocation to nectar production and (2) flower, fruit and seed production per plant under two levels of resource availability. The direct costs of floral longevity measured in terms of nectar sugar were high: flowers that were maintained 35% longer invested proportionately more in nectar sugar (30%). At the whole-plant level, a cost of floral longevity was manifested as reduced seed production, but the magnitude of this cost varied with resource level. While plants with longer-lived flowers showed a 12% reduction in seed production, those that experienced reduced resource levels via partial defoliation, showed a decrement in seed production that was almost three times larger (34%). These differences were not brought about by changes in the number of flowers and fruits, but by significant alterations in their sizes. A model that expresses the cost of flower maintenance as a trade-off between floral longevity and seed production shows that an optimal flower longevity is determined by both the rate of fitness accrual and the cost of floral maintenance.  相似文献   

16.
Fitness consequences of branching in Verbascum thapsus (Scrophulariaceae)   总被引:1,自引:0,他引:1  
The reserve meristem hypothesis proposes that strong apical dominance suppresses lateral meristems and branches to escape from predictable damage (herbivory). This hypothesis was tested for Verbascum thapsus and its seed predator the weevil Gynmnetron tetrum by two mensurative experiments. The following predictions were made under this hypothesis: the proportion of individuals branched within a population will increase with increased damage, the main stalk of branched plants will be more damaged, and branching increases net seed production. Fifty populations of V. thapsus were extensively surveyed, and one pair of similar-sized individuals (branched vs. unbranched) were selected from each population to determine damage patterns and measure seed production. Two of the predictions of the reserve meristem hypothesis were clearly supported. The proportion of fruits damaged on the main stalk of branched plants was significantly greater than unbranched plants, and branched plants produced significantly more seeds. Hence, the reserve meristem hypothesis is supported as an adaptive interpretation of apical dominance in this species. This study is a potential example of overcompensation following granivory in the field.  相似文献   

17.
Herbivory and resource interact to influence plant regrowth following grazing, but few detailed investigations on grazing tolerance at population levels are available. We conducted two pot experiments along a simulated grazing gradient (0%, 25%, 50% and 75% of shoot removal) at three water or nutrient levels to determine the interaction of resource and herbivory on Leymus chinensis, a perennial, dominant species in the eastern Eurasian steppes. Interactions between water availability and clipping intensity on the relative height growth rate (RHGR) and bud number were significant. Significant interactions between nutrient and clipping on RHGR, total biomass and specific leaf area (SLA) were also found. Total biomass and bud number, showing a unimodal curve along the clipping gradient in resource-rich environments, were highest at light clipping level, suggesting that this species has the plastic compensatory responses from under- to overcompensation. Interactions between herbivory and water or nutrient were opposite to each other. The “cooperative” interactions between water and herbivory magnified the difference in grazing tolerance of L. chinensis between high and low water treatments. The “antagonistic” interactions between nutrient and herbivory, on the other hand, were reflected in the lower tolerance to heavy clipping in the high nutrient than low nutrient treatments. Results partly support the limiting resource model (LRM). A modified and simplified graphic model of the LRM was proposed based on our results. The new LRM clearly demonstrated that “cooperative” interactions between varying water levels and clipping intensities aggravate the detrimental impacts of herbivores on plant growth and reproduction, whereas “antagonistic” interactions between nutrient and grazing alleviate the negative effects of herbivores. Biomass compensation and density compensation were identified as main mechanisms of herbivory tolerance in this clonal species.  相似文献   

18.
In the cases where overcompensation has been observed in monocarpic herbs, overcompensation is associated with an apically dominant shoot architecture of intact plants, increased lateral branching following herbivory, and increased reproductive success as a consequence of damage. The compensatory continuum hypothesis expects overcompensation to be more prevalent in resource rich environments compared to poor environments. This is paradoxical since in resource rich conditions the intact plants should branch most vigorously and hence any further increase in branch number should lead to lower seed yield. An explanation could be that apical dominance is rather insensitive to changes in resource availability, and that overcompensation is possible in conditions where plants experience meristem limitation (due to apical dominance) in relation to available resources. We explored the branching patterns and fitness responses of tall wormseed mustard (Erysimum strictum) to simulated browsing, soil nutrients, and competition in common garden. Competition increased apical dominance and reduced plant fitness whereas fertilization had the reverse effects. Simulated browsing increased lateral branching and had little impact on plant fitness. Fitness overcompensation was observed only among plants grown in competition and in the absence of fertilization – the most resource poor treatment combination in the experiment. The results contradict both with the compensation continuum and the assumption that apical dominance shows no or very little plasticity in relation to growing conditions. Because directional selection gradients on branch number were invariantly positive irrespective of growing conditions, we propose that, in spite of phenotypic plasticity of apical dominance, the plants appear to be meristem rather than resource limited, and that meristem limitation is strongest in conditions where intact plants produce fewest lateral branches. Our results deviate from the compensation continuum because resource availability affected compensation ability more strongly through phenotypic plasticity of shoot architecture rather than via changes in resource availability per se.  相似文献   

19.
Cut-leaved teasel is an invasive weed in Missouri that reduces the diversification of native species along roadsides and impairs traffic visibility. Teasel is a biennial and grows as a rosette in the first year and flowers the second year. Reproduction is only by seed. Field studies were conducted in 2004 and 2005 at two locations to assess the seed production of cut-leaved teasel. From a natural stand, fifteen plants were tagged at the onset of flowering. Selected plants included those considered growing in a group and those growing alone; a plant was considered alone when no other plant was adjacent for at least 60 cm. Whenever a seedhead completed flowering, it was covered with a cellophane bag and harvested one month later. Linear regression was used to correlate the weight of seeds from a single seedhead and number of seeds to estimate the total seed production per seedhead. The number of seedheads per plant varied from 3 to 56. On average, plants growing alone had 64% more seedheads per plant than plants occurring in a group. Seed numbers in the primary seedhead ranged from 511 to 1,487. Total seed production per plant ranged from 1,309 to 33,527. Seed production was 61% greater for plants growing alone versus those growing in a group and was more prolific in 2005 than in 2004. In addition, seed production per plant varied between locations for plants growing alone, but seed yield per plant was similar for plants growing in groups. Colonization of teasel in new areas is facilitated by higher seedhead numbers per plant and total seed production compared to reproduction of plants in areas of intraspecific competition.  相似文献   

20.
Field studies were conducted to evaluate the capacity of Amaranthus palmeri to grow and reproduce following incomplete physical control in Gossypium hirsutum fields. A. palmeri plants that emerged simultaneously with a G. hirsutum crop were selected for use. Treatments included severing the main stem of flowering plants at heights of 0, 3 and 15 cm above the soil level. A non‐cut/intact control, in which the apical meristem was not removed, was also included. Six weeks after treatment, intact A. palmeri plants had grown to a mean height of 210 cm (SE = 38) and produced 477 408 (SE = 81 250) seeds per plant. Thirty‐five percent of the A. palmeri plants cut back to a height of 15 cm above the soil level did not recover from the treatment; survivors regrew to a mean height of 102 cm (51% reduction, compared to intact plants) and produced 116 000 seeds per plant (73% reduction). A. palmeri plants cut to 3 cm above the soil level had a mortality rate of 64%, an 82% reduction in final plant height, and produced 28 000 seeds per plant. When stems were severed at the soil surface, plant mortality was 95%; final plant height and seed production of survivors were reduced by 95 and 99%, respectively, relative to the control. G. hirsutum seeded yields exceeded 3 t ha?1 when A. palmeri plants were cut back to at least 15 cm, whereas yield was reduced 50% in the control treatment, where A. palmeri growth was not interrupted by cutting. In conclusion, while there is immediate benefit of removing A. palmeri plants in terms of G. hirsutum yield, incomplete stem removal can have multi‐season implications. Results demonstrate that severely pruned A. palmeri plants can resume growth, reach reproductive maturity and produce viable seed, which have the potential to repopulate soil seedbanks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号