首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
不同强度盐胁迫下AM真菌对羊草生长的影响   总被引:3,自引:0,他引:3  
张义飞  王平  毕琪  张忠辉  杨允菲 《生态学报》2016,36(17):5467-5476
不同浓度NaCl盐处理下,AM真菌对羊草(Leymus chinensis)的侵染能力和对植物生长的影响,从植物形态和离子含量角度探讨了AM真菌提高羊草耐盐性的作用机理。结果表明,在高盐胁迫下,AM真菌显著降低了盐胁迫效应,提高了羊草生物量,菌根效应明显。菌根化羊草的根茎比显著增加,并且N、P浓度较高,Na~+和Cl~-离子浓度较低,表明AM真菌即促进羊草对营养元素的吸收,又减少了离子毒害。菌根化羊草的Ca~(2+)和K~+离子浓度,以及P/Na~+和K~+/Na~+比高于非菌根化羊草,表明AM真菌可通过调节渗透势以避免或减缓盐胁迫造成的生理缺水。随着盐胁迫的增加,菌根化羊草对磷的依赖性逐渐转换为对钾的依赖性。研究结果有助于揭示AM真菌提高植物耐盐能力的作用机理,并对应用菌根技术修复盐化草地具有理论指导意义。  相似文献   

2.
《Journal of plant physiology》2014,171(18):1774-1781
Medicago sativa L. (alfalfa) can exhibit photosynthetic down-regulation when grown in greenhouse conditions under elevated atmospheric CO2. This forage legume can establish a double symbiosis with nitrogen fixing bacteria and arbuscular mycorrhizal fungi (AMF), which may increase the carbon sink effect of roots. Our aim was to assess whether the association of alfalfa with AMF can avoid, diminish or delay the photosynthetic acclimation observed in previous studies performed with nodulated plants. The results, however, showed that mycorrhizal (M) alfalfa at the end of their vegetative period had lower carbon (C) discrimination than non-mycorrhizal (NM) controls, indicating photosynthetic acclimation under ECO2 in plants associated with AMF. Decreased C discrimination was due to the acclimation of conductance, since the amount of Rubisco and the expression of genes codifying both large and small subunits of Rubisco were similar or slightly higher in M than in NM plants. Moreover, M alfalfa accumulated a greater amount of soluble sugars in leaves than NM plants, thus favoring a down-regulation effect on photosynthetic rates. The enhanced contents of sugars in leaves coincided with a reduced percentage of arbuscules in roots, suggesting decreased sink of carbohydrates from shoots to roots in M plants. The shorter life cycle of alfalfa associated with AMF in comparison with the NM controls may also be related to the accelerated photosynthetic acclimation in M plants. Further research is needed to clarify to what extent this behavior could be extrapolated to alfalfa cultivated in the field and subjected to periodic cutting of shoots under climatic change scenarios.  相似文献   

3.
Cosme M  Stout MJ  Wurst S 《Mycorrhiza》2011,21(7):651-658
Root-feeding insects are important drivers in ecosystems, and links between aboveground oviposition preference and belowground larval performance have been suggested. The root-colonizing arbuscular mycorrhizal fungi (AMF) play a central role in plant nutrition and are known to change host quality for root-feeding insects. However, it is not known if and how AMF affect the aboveground oviposition of insects whose offspring feed on roots. According to the preference–performance hypothesis, insect herbivores oviposit on plants that will maximize offspring performance. In a greenhouse experiment with rice (Oryza sativa), we investigated the effects of AMF (Glomus intraradices) on aboveground oviposition of rice water weevil (Lissorhoptrus oryzophilus), the larvae of which feed belowground on the roots. Oviposition (i.e., the numbers of eggs laid by weevil females in leaf sheaths) was enhanced when the plants were colonized by AMF. However, the leaf area consumed by adult weevils was not affected. Although AMF reduced plant biomass, it increased nitrogen (N) and phosphorus concentrations in leaves and N in roots. The results suggest that rice water weevil females are able to discriminate plants for oviposition depending on their mycorrhizal status. The discrimination is probably related to AMF-mediated changes in plant quality, i.e., the females choose to oviposit more on plants with higher nutrient concentrations to potentially optimize offspring performance. AMF-mediated change in plant host choice for chewing insect oviposition is a novel aspect of below- and aboveground interactions.  相似文献   

4.
Soil organisms affect plant growth and chemistry and have subsequent effects on aboveground herbivore performance. However, whether herbivores discriminate between plants exposed to different soil organisms when colonizing their host plants is largely unexplored. In a greenhouse study, Tanacetum vulgare L. (Asteraceae) growing in a ruderal plant community in the presence and absence of arbuscular mycorrhizal fungi (AMF) and earthworms [Aporrectodea spp. (Haplotaxida: Lumbricidae)] was colonized by aphids [Myzus persicae Sulzer (Hemiptera: Aphididae)]. The aphids preferred to colonize plants without earthworms in the soil, and the numbers of aphids remained lower on the plants with earthworms, irrespective of the presence of AMF. Although the N, C, and P concentrations of the shoots were not affected by the soil organisms, AMF increased total aboveground biomass, total N, C, and P content, and photosynthetic activity (measured as electron transport rate) in the leaves under high light intensity. These results suggest that earthworms affect chemical cues that are used by aphids to judge host quality prior to feeding. Discrimination between plants with and without exposure to earthworms by aboveground herbivores is a novel aspect of plant‐mediated interactions between below‐ and aboveground organisms.  相似文献   

5.
Arbuscular mycorrhizal fungi (AMF) can perform key roles in ecosystem functioning through improving host nutrient acquisition. Nitrogen (N) is an essential nutrient for plant growth, however, anthropogenic N loading (e.g. crop fertilization and deposition from combustion sources) is increasing so that N now threatens ecosystem sustainability around the world by causing terrestrial and aquatic eutrophication and acidification. It is important to better understand the capacity of AMF to directly uptake N from soils and transfer it to host plants because this process may increase N recycling and retention within ecosystems. In addition to understanding the role of AMF in the N cycle in the present day it is important to understand how AMF function may change as global change proceeds. Currently the net effects of N enrichment and elevated temperature predicted with global change on AMF are unknown. In this study, we examined the effects of N enrichment by simulated N‐deposition loading, elevated temperatures expected by future global changes and their interactions on growth and AMF‐mediated N acquisition of switchgrass (Panicum virgatum var. Alamo), an important species for biofuel production. Switchgrass plants were grown in microcosm units that divided mycorrhizal roots from AMF hyphae and organic residues enriched with 15N by compartments separated by an air gap to reduce N diffusion. While AMF did not enhance switchgrass biomass, mycorrhizas significantly increased 15N in shoots and total shoot N. Neither N enrichment nor elevated temperatures influenced this mycorrhizal‐mediated N uptake and transfer. Results from this study can aid in developing sustainable bioethanol and switchgrass production practices that are less reliant on synthetic fertilizers and more dependent on internal N recycling from AMF.  相似文献   

6.
In order to investigate the cadmium (Cd) accumulation patterns and possible alleviation of Cd stress by mycorrhization, sunflower plants (Helianthus annuus L.) were grown in the presence or absence of Cd (20 micromol L(-1)) and inoculated or not inoculated with the arbuscular mycorrhizal fungus (AMF) Glomus intraradices. No visual symptoms of Cd phytotoxicity were observed; nevertheless, in non-mycorrhizal plants the presence of Cd decreased plant growth. The addition of Cd had no significant effect on either mycorrhizal colonization or the amount of extra-radical mycelia that was produced by the AMF. Cd accumulated mainly in roots; only 22% of the total Cd absorbed was translocated to the shoots, where it accumulated to an average of 228 mg Cd kg(-1). Although the shoot-to-root ratio of Cd was similar in both the AMF inoculated and non-inoculated plants, the total absorbed Cd was 23% higher in mycorrhizal plants. Cd concentration in AMF extra-radical mycelium was 728 microg g(-1) dry weight. Despite the greater absorption of Cd, mycorrhizal plants showed higher photosynthetic pigment concentrations and shoot P contents. Cd also influenced mineral nutrition, leading to decreased Ca and Cu shoot concentrations; N, Fe and Cu shoot contents; and increased S and K shoot concentrations. Cd induced guaiacol peroxidase activity in roots in both mycorrhizal and non-mycorrhizal plants, but this increase was much more accentuated in non-mycorrhizal roots. In conclusion, sunflower plants associated with G. intraradices were less sensitive to Cd stress than non-mycorrhizal plants. Mycorrhizal sunflowers showed enhanced Cd accumulation and some tolerance to excessive Cd concentrations in plant tissues.  相似文献   

7.
Zubek S  Mielcarek S  Turnau K 《Mycorrhiza》2012,22(2):149-156
Hypericum perforatum L. (St. John’s-wort, Hypericaceae) is a valuable medicinal plant species cultivated for pharmaceutical purposes. Although the chemical composition and pharmacological activities of H. perforatum have been well studied, no data are available concerning the influence of arbuscular mycorrhizal fungi (AMF) on this important herb. A laboratory experiment was therefore conducted in order to test three AMF inocula on H. perforatum with a view to show whether AMF could influence plant vitality (biomass and photosynthetic activity) and the production of the most valuable secondary metabolites, namely anthraquinone derivatives (hypericin and pseudohypericin) as well as the prenylated phloroglucinol—hyperforin. The following treatments were prepared: (1) control—sterile soil without AMF inoculation, (2) Rhizophagus intraradices (syn. Glomus intraradices), (3) Funneliformis mosseae (syn. Glomus mosseae), and (4) an AMF Mix which contained: Funneliformis constrictum (syn. Glomus constrictum), Funneliformis geosporum (syn. Glomus geosporum), F. mosseae, and R. intraradices. The application of R. intraradices inoculum resulted in the highest mycorrhizal colonization, whereas the lowest values of mycorrhizal parameters were detected in the AMF Mix. There were no statistically significant differences in H. perforatum shoot mass in any of the treatments. However, we found AMF species specificity in the stimulation of H. perforatum photosynthetic activity and the production of secondary metabolites. Inoculation with the AMF Mix resulted in higher photosynthetic performance index (PItotal) values in comparison to all the other treatments. The plants inoculated with R. intraradices and the AMF Mix were characterized by a higher concentration of hypericin and pseudohypericin in the shoots. However, no differences in the content of these metabolites were detected after the application of F. mosseae. In the case of hyperforin, no significant differences were found between the control plants and those inoculated with any of the AMF applied. The enhanced content of anthraquinone derivatives and, at the same time, better plant vitality suggest that the improved production of these metabolites was a result of the positive effect of the applied AMF strains on H. perforatum. This could be due to improved mineral nutrition or to AMF-induced changes in the phytohormonal balance. Our results are promising from the biotechnological point of view, i.e. the future inoculation of H. perforatum with AMF in order to improve the quality of medicinal plant raw material obtained from cultivation.  相似文献   

8.
9.
干旱胁迫下AMF对云南蓝果树幼苗生长和光合特征的影响   总被引:2,自引:0,他引:2  
张珊珊  康洪梅  杨文忠  向振勇 《生态学报》2016,36(21):6850-6862
采用盆栽试验与称重控水法,将土壤相对含水量分别控制在田间最大持水量的100%、91.68%、82.85%、60.00%、41.86%和21.28%,并在这6个不同的土壤相对含水量条件下,分别设添加苯菌灵(杀真菌剂)(低AMF)和不添加苯菌灵(高AMF)处理,研究干旱胁迫下AMF对极小种群野生植物云南蓝果树幼苗生长和光合特征的影响,揭示云南蓝果树濒危的微生物学机制,为云南蓝果树保护措施的制定与实施奠定基础。结果表明,添加苯菌灵处理显著降低了不同水分条件下的AMF侵染率,说明试验中AMF处理的实生苗在生长和光合特征上的差异是苯菌灵处理下侵染率下降导致的;随着干旱胁迫的加剧,云南蓝果树幼苗的根部AMF侵染率显著降低、叶面积等生长指标和净光合速率(Pn)等光合参数都发生显著变化;高AMF处理可以显著增加水分充足和轻度干旱胁迫条件下云南蓝果树幼苗的大部分生长指标和光合参数,而对重度胁迫下的云南蓝果树幼苗没有显著影响,说明重度干旱胁迫对其影响大于AMF的影响;另外,整合了可塑性指数分析和隶属函数分析两种方法对其抗旱性进行评价,云南蓝果树幼苗基本上无法通过调节形态和光合能力来适应水分环境的变化,但是高AMF处理可使云南蓝果树幼苗具有较强的可塑性和更强的抗旱性。实验结果为云南蓝果树的科学保育及种苗繁育提供了理论依据。  相似文献   

10.

Aims

The aim was to quantify the nitrogen (N) transferred via the extra-radical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices from both a dead host and a dead non-host donor root to a receiver tomato plant. The effect of a physical disruption of the soil containing donor plant roots and fungal mycelium on the effectiveness of N transfer was also examined.

Methods

The root systems of the donor (wild type tomato plants or the mycorrhiza-defective rmc mutant tomato) and the receiver plants were separated by a 30 μm mesh, penetrable by hyphae but not by the roots. Both donor genotypes produced a similar quantity of biomass and had a similar nutrient status. Two weeks after the supply of 15?N to a split-root part of donor plants, the shoots were removed to kill the plants. The quantity of N transferred from the dead roots into the receiver plants was measured after a further 2 weeks.

Results

Up to 10.6 % of donor-root 15N was recovered in the receiver plants when inoculated with the arbuscular mycorrhizal fungus (AMF). The quantity of 15N derived from the mycorrhizal wild type roots clearly exceeded that from the only weakly surface-colonised rmc roots. Hyphal length in the donor rmc root compartments was only about half that in the wild type compartments. The disruption of the soil led to a significantly increased AMF-mediated transfer of N to the receiver plants.

Conclusions

The transfer of N from dead roots can be enhanced by AMF, especially when the donor roots have been formerly colonised by AMF. The transfer can be further increased with higher hyphae length densities, and the present data also suggest that a direct link between receiver mycelium and internal fungal structures in dead roots may in addition facilitate N transfer. The mechanical disruption of soil containing dead roots may increase the subsequent availability of nutrients, thus promoting mycorrhizal N uptake. When associated with a living plant, the external mycelium of G. intraradices is readily able to re-establish itself in the soil following disruption and functions as a transfer vessel.  相似文献   

11.
干旱胁迫条件下AMF促进小马鞍羊蹄甲幼苗生长的机理研究   总被引:1,自引:0,他引:1  
张亚敏  马克明  李芳兰  曲来叶 《生态学报》2016,36(11):3329-3337
采用温室水分控制试验,在干旱胁迫条件下,定量化研究优势丛枝菌根真菌(AMF)影响优势乡土植物小马鞍羊蹄甲(Bauhinia faberi var.microphylla)幼苗生长的机理,主要通过研究干旱胁迫条件下摩西球囊霉菌(Funneliformis mosseae)与小马鞍羊蹄甲的共生关系,阐明AMF在植物生长初期的作用。结果表明,干旱胁迫条件下,摩西球囊霉菌能够很好地侵染幼苗,侵染率高达89%—97%,并且不受水分条件影响。接种的幼苗最大光合速率、水分利用效率随着干旱胁迫程度从重度到轻度(水分从低到高)逐渐增大,相反地,叶片脯氨酸含量逐渐减小。接种显著地促进幼苗株高、叶片数、叶面积、根长、根面积等生长指标,提高幼苗各部分生物量、地上地下磷(P)含量。当含水量为60%田间持水量时,AMF促进小马鞍羊蹄甲幼苗吸收P的效果最好。接种还显著影响幼苗的生物量分配,在重度干旱胁迫时影响P分配,水分条件也显著影响幼苗的生物量分配。此外,接种和水分的交互作用对叶生物量、总生物量、生长指标以及地上部氮(N)总量影响显著。结果表明干旱胁迫条件下菌根效应显著,并在干旱条件下显著促进了小马鞍羊蹄甲幼苗的生长,这为进一步干旱河谷植被恢复提供了理论依据。  相似文献   

12.
Plants in alpine habitats are exposed to many environmental stresses, in particular temperature and radiation extremes. Recent field experiments on Arnica montana L. cv. ARBO indicated pronounced altitudinal variation in plant phenolics. Ortho-diphenolics increased with altitude compared to other phenolic compounds, resulting in an increase in antioxidative capacity of the tissues involved. Factors causing these variations were investigated by climate chamber (CC) experiments focusing on temperature and ultraviolet (UV)-B radiation. Plants of A. montana L. cv. ARBO were grown in CCs under realistic climatic and radiation regimes. Key factors temperature and UV-B radiation were altered between different groups of plants. Subsequently, flowering heads were analyzed by HPLC for their contents of flavonoids and caffeic acid derivatives. Surprisingly, increased UV-B radiation did not trigger any change in phenolic metabolites in Arnica. In contrast, a pronounced increase in the ratio of B-ring ortho-diphenolic (quercetin) compared to B-ring monophenolic (kaempferol) flavonols resulted from a decrease in temperature by 5°C in the applied climate regime. In conclusion, enhanced UV-B radiation is probably not the key factor triggering shifts in the phenolic composition in Arnica grown at higher altitudes but rather temperature, which decreases with altitude.  相似文献   

13.
The dramatic decline in atmospheric CO2 evidenced by proxy data during the Devonian (416.0–359.2 Ma) and the gradual decline from the Cretaceous (145.5–65.5 Ma) onwards have been linked to the spread of deeply rooted trees and the rise of angiosperms, respectively. But this paradigm overlooks the coevolution of roots with the major groups of symbiotic fungal partners that have dominated terrestrial ecosystems throughout Earth history. The colonization of land by plants was coincident with the rise of arbuscular mycorrhizal fungi (AMF), while the Cenozoic (c. 65.5–0 Ma) witnessed the rise of ectomycorrhizal fungi (EMF) that associate with both gymnosperm and angiosperm tree roots. Here, we critically review evidence for the influence of AMF and EMF on mineral weathering processes. We show that the key weathering processes underpinning the current paradigm and ascribed to plants are actually driven by the combined activities of roots and mycorrhizal fungi. Fuelled by substantial amounts of recent photosynthate transported from shoots to roots, these fungi form extensive mycelial networks which extend into soil actively foraging for nutrients by altering minerals through the acidification of the immediate root environment. EMF aggressively weather minerals through the additional mechanism of releasing low molecular weight organic chelators. Rates of biotic weathering might therefore be more usefully conceptualized as being fundamentally controlled by the biomass, surface area of contact, and capacity of roots and their mycorrhizal fungal partners to interact physically and chemically with minerals. All of these activities are ultimately controlled by rates of carbon‐energy supply from photosynthetic organisms. The weathering functions in leading carbon cycle models require experiments and field studies of evolutionary grades of plants with appropriate mycorrhizal associations. Representation of the coevolution of roots and fungi in geochemical carbon cycle models is required to further our understanding of the role of the biota in Earth's CO2 and climate history.  相似文献   

14.
Controls on root colonization by arbuscular mycorrhizal fungi (AMF) include host nutrient status, identity of symbionts and soil physico-chemical properties. Here we show, in the field, that the subset of the AMF community colonizing the roots of a common grass species, Dactylis glomerata, was strongly controlled by neighboring roots of a different plant species, Centaurea maculosa, an invasive forb, thus adding a biological spatial component to controls on root colonization. Using an AMF-specific, 18s rDNA-based terminal restriction fragment length polymorphism (T-RFLP) analysis method, significant differences were found between AMF community fingerprints of samples derived from roots of grasses with (GCm) and without (G0) neighboring C. maculosa. There were also significant differences between samples derived from C. maculosa roots (Cmac) and both GCm and G0 roots. Sample ordination indicated three generally distinct groups consisting of Cmac, GCm and G0, with GCm samples being of intermediate distance between G0and Cmac. Our results indicate that, with the presence of C. maculosa, AMF communities of D. glomerata shift to reflect community composition associated with C. maculosa roots. These results highlight the importance of complex spatial distributions of AMF communities at the scale of a root system. An additional dimension to our study is that C. maculosa is an aggressively invasive plant in the intermountain West. Viewed in this light, these results suggest that pervasive influences of this plant on AMF communities, specifically in roots of its competitors, may represent a mechanism contributing to its invasive success. However, further work is clearly required to determine the extent to which AMF genotypic alteration by neighboring plants influences competitive relationships.  相似文献   

15.
Zn uptake by maize plants may be affected by the presence of arbuscular mycorrhizal fungi (AMF). Collembola often play an important controlling role in the inter-relationship between AMF and host plants. The objective of this experiment was to examine whether the presence of Collembola at different densities (0.4 and 1 individuals g−1 dry soil) and their activity have any effect on Zn uptake by maize through the plant–AMF system. The presence of the AMF (Glomus intraradices) and of the Collembola species Folsomia candida was studied in a laboratory microcosm experiment, applying a Zn exposure level of 250 mg kg−1 dry soil. Biomass and water content of the plants were no different when only AMF or when both AMF and Collembola were present. In the presence of AMF the Zn content of the plant shoots and roots was significantly higher than without AMF. This effect was reduced by Collembola at both low and high density. High densities of Collembola reduced the extent of AMF colonization of the plant roots and hyphal length in the soil, but low densities had no effect on either. The results of this experiment reveal that the F. candidaG. intraradices interaction affects Zn uptake by maize, but the mechanisms are still unknown.  相似文献   

16.
Tarbell TJ  Koske RE 《Mycorrhiza》2007,18(1):51-56
Eight commercial inocula of arbuscular mycorrhizal fungi (AMF) were tested for their ability to colonize plant roots in the sand/peat medium specified by the U.S. Golf Association for use in putting greens. Using the standard assay for potency of inocula (Zea mays grown for 6 weeks in containers), inocula were added at the rate recommended by the manufacturer as well as at five and ten times the recommended rate. To ensure that growth conditions were conducive to AM formation, a soil-based inoculum of native AMF also was assessed for inoculum potential. Only three of the commercial inocula formed mycorrhizas when used at the recommended rate, and the extent of colonization ranged from 0.4 to 8%. Increasing the amount of inoculum resulted in colonization levels of 8.6 to 72.5% at the highest rate (10×). Mean colonization using the native AMF was 60%. One inoculum that did not form mycorrhizas at the recommended rate or at 5× produced 8.6% colonization at 10×. An inoculum that did not produce mycorrhizas at any application rate did contain a fungus tentatively identified as a root pathogen (Olpidium brassicae) that colonized the corn roots. The failure of five of the eight commercial inocula to colonize roots when applied at the recommended rate suggests that preliminary trials should be made before commercial AMF inocula are used in important plantings.  相似文献   

17.
The response of Allium cepa, A. roylei, A. fistulosum, and the hybrid A. fistulosum × A. roylei to the arbuscular mycorrhizal fungus (AMF) Glomus intraradices was studied. The genetic basis for response to AMF was analyzed in a tri-hybrid A. cepa × (A. roylei × A. fistulosum) population. Plant response to mycorrhizal symbiosis was expressed as relative mycorrhizal responsiveness (R′) and absolute responsiveness (R). In addition, the average performance (AP) of genotypes under mycorrhizal and non-mycorrhizal conditions was determined. Experiments were executed in 2 years, and comprised clonally propagated plants of each genotype grown in sterile soil, inoculated with G. intraradices or non-inoculated. Results were significantly correlated between both years. Biomass of non-mycorrhizal and mycorrhizal plants was significantly positively correlated. R′ was negatively correlated with biomass of non-mycorrhizal plants and hence unsuitable as a breeding criterion. R and AP were positively correlated with biomass of mycorrhizal and non-mycorrhizal plants. QTLs contributing to mycorrhizal response were located on a linkage map of the A. roylei × A. fistulosum parental genotype. Two QTLs from A. roylei were detected on chromosomes 2 and 3 for R, AP, and biomass of mycorrhizal plants. A QTL from A. fistulosum was detected on linkage group 9 for AP (but not R), biomass of mycorrhizal and non-mycorrhizal plants, and the number of stem-borne roots. Co-segregating QTLs for plant biomass, R and AP indicate that selection for plant biomass also selects for enhanced R and AP. Moreover, our findings suggest that modern onion breeding did not select against the response to AMF, as was suggested before for other cultivated species. Positive correlation between high number of roots, biomass and large response to AMF in close relatives of onion opens prospects to combine these traits for the development of more robust onion cultivars.  相似文献   

18.
Three endangered plant species, Plantago atrata and Pulsatilla slavica, which are on the IUCN red list of plants, and Senecio umbrosus, which is extinct in the wild in Poland, were inoculated with soil microorganisms to evaluate their responsiveness to inoculation and to select the most effective microbial consortium for application in conservation projects. Individuals of these taxa were cultivated with (1) native arbuscular mycorrhizal fungi (AMF) isolated from natural habitats of the investigated species, (2) a mixture of AMF strains available in the laboratory, and (3) a combination of AMF lab strains with rhizobacteria. The plants were found to be dependent on AMF for their growth; the mycorrhizal dependency for P. atrata was 91%, S. umbrosus-95%, and P. slavica-65%. The applied inocula did not significantly differ in the stimulation of the growth of P. atrata and S. umbrosus, while in P. slavica, native AMF proved to be the less efficient. We therefore conclude that AMF application can improve the ex situ propagation of these three threatened taxa and may contribute to the success of S. umbrosus reintroduction. A multilevel analysis of chlorophyll a fluorescence transients by the JIP test permitted an in vivo evaluation of plant vitality in terms of biophysical parameters quantifying photosynthetic energy conservation, which was found to be in good agreement with the results concerning physiological parameters. Therefore, the JIP test can be used to evaluate the influence of AMF on endangered plants, with the additional advantage of being applicable in monitoring in a noninvasive way the acclimatization of reintroduced species in nature.  相似文献   

19.
20.
This study was conducted to examine the role of arbuscular mycorrhiza fungi (AMF) in alleviating the adverse effects of drought stress on damask rose (Rosa damascena Mill.) plants. Four levels of drought stress (100, 75, 50, and 25% FC) were examined on mycorrhizal and non-mycorrhizal plants in pots filled with sterilized soil. Our results showed that increasing drought stress level decreased all growth parameters, nutrient contents, gas exchange parameters, and water relations indicators. Under different levels of drought stress, mycorrhizal colonization significantly increased all studied parameters. Pn, gs, and E of the mycorrhizal plants was higher than those of non-mycorrhizal plants under different levels of drought stress. The increase in those rates was proportional the level of the mycorrhizal colonization in the roots of these plants. Majority of growth, nutrition, water status and photosynthetic parameters had a great dependency on the mycorrhizal colonization under all levels of drought stress. The results obtained in this study provide a clear evidence that AMF colonization can enhance growth, flower quality and adaptation of rose plants under different drought stress levels, particularly at high level of drought stress via improving their water relations and photosynthetic status. It could be concluded that colonization with AMF could help plants to tolerate the harmful effects caused by drought stress in arid and semi-arid regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号