首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Over the last decade, a large number of radiotracers have been developed to image and quantify transporter availability with positron emission tomography (PET) or single-photon emission computed tomography (SPECT). Radiotracers suitable to image dopamine transporters (DATs) and serotonin transporters (SERTs) have been the object of most efforts. Following a brief overview of DAT and SERT radiotracers that have been demonstrated to be suitable for quantitative analysis in vivo, this article describes the principal methods that have been used for the analysis of these data. Kinetic modeling is the most direct implementation of the compartment models, but with some tracers accurate input function measurement and good compartment configuration identification can be difficult to obtain. Other methods were designed to overcome some particular vulnerability to error of classic kinetic modeling, but introduced new vulnerabilities in the process. Reference region methods obviate the need for arterial plasma measurement, but are not as robust to violations of the underlying modeling assumptions as methods using the arterial input function. Graphical methods give estimates of distribution volumes without the requirement of compartment model specification, but provide a biased estimator in the presence of statistical noise. True equilibrium methods are quite robust, but their use is limited to experiments with tracers that are suitable for constant infusion. In conclusion, no universally "best" method is applicable to all neurotransporter imaging studies, and careful evaluation of model-based methods is required for each radiotracer.  相似文献   

3.
4.
Molecular therapy using viruses would benefit greatly from a non-invasive modality for assessing dissemination of viruses. Here we investigated whether positron emission tomography (PET) scanning using [(124)I]-5-iodo-2'-fluoro-1-beta-d-arabinofuranosyl-uracil (FIAU) could image cells infected with herpes simplex viruses (HSV). Using replication-competent HSV-1 oncolytic viruses with thymidine kinase (TK) under control of different promoters, we demonstrate that viral infection, proliferation and promoter characteristics all interact to influence FIAU accumulation and imaging. In vivo, as few as 1 x 107 viral particles injected into a 0.5-cm human colorectal tumor can be detected by [(124)I]FIAU PET imaging. PET signal intensity is significantly greater at 48 hours compared with that at 8 hours after viral injection, demonstrating that PET scanning can detect changes in TK activity resulting from local viral proliferation. We also show the ability of FIAU-PET scanning to detect differences in viral infectivity at 0.5 log increments. Non-invasive imaging might be useful in assessing biologically relevant distribution of virus in therapies using replication-competent HSV.  相似文献   

5.
6.
The noninvasive imaging of cell death, including apoptosis and necrosis, is an important tool for the assessment of degenerative diseases and in the monitoring of tumor treatments. Duramycin is a peptide of 19-amino acids. It binds specifically to phosphatidylethanolamine a novel molecular target for cell death. N-(2-18F-Fluoropropionyl)duramycin ([18F]FPDuramycin) was prepared as a novel positron emission tomography (PET) tracer from the reaction of duramycin with 4-nitrophenyl 2-[18F]fluoropropionate ([18F]NFP). Compared with control cells (viable tumor cells), the in vitro binding of [18F]FPDuramycin with apoptotic cells induced by anti-Fas antibody resulted in a doubling increase, while the binding of [18F]FPDuramycin with necrotic cells induced by three freeze and thaw cycles resulted in a threefold increase. Biodistribution study in mice exhibited its rapid blood and renal clearance and predominant accumulation in liver and spleen over 120 min postinjection. Small-animal PET/CT imaging with [18F]FPDuramycin proved to be a successful way to visualize in vivo therapeutic-induced tumor cell death. In summary, [18F]FPDuramycin seems to be a potential PET probe candidate for noninvasive visualization of in vivo cell death sites induced by chemotherapy in tumors.  相似文献   

7.
8.
Animal models have provided valuable information related to trait and state variables associated with vulnerability to drug addiction. Our brain imaging studies in monkeys have implicated D2 receptors in cocaine addiction. For example, an inverse relationship between D2 receptor availability and rates of cocaine self-administration has been documented. Moreover, environmental variables, such as those associated with formation of the social hierarchy, can impact receptor availability and sensitivity to the abuse-related effects of cocaine. Similarly, both D2 receptor availability and cocaine self-administration can be altered by chronic drug administration and fluctuations in hormone levels. In addition, cocaine self-administration can be altered in an orderly fashion by presentation of an acute stressor, such as acting as an intruder into an unfamiliar social group, which can shift the cocaine dose-response curve to the left in subordinate monkeys and to the right in dominant animals, suggesting an interaction between social variables and acute stressors. Conversely, irrespective of social rank, acute environmental enrichment, such as increasing the size of the living space, shifts the cocaine dose-response curve to the right. These findings highlight a pervasive influence of the environment in modifying the reinforcing effects of cocaine and strongly implicate brain D2 receptors.  相似文献   

9.
脑内阿片受体PET成像及其在痛与镇痛研究中的应用   总被引:1,自引:0,他引:1  
脑内阿片受体在痛与镇痛中的作用机制一直是神经科学领域研究热点之一。正电子发射体层扫描(positron emission tomography,PET)是目前在体定量检测脑内相关分子参与神经信号转导的唯一途径。本文在简要回顾阿片受体和内源性阿片肽的发现、生理功能及其脑内分布的基础上,对已应用或有望应用于人体的阿片受体选择性和非选择性示踪剂及其在PET成像中的应用进行介绍,并对阿片成像结果所反映的神经机制进行解读。鉴于脑内阿片受体在介导痛与镇痛中的重要作用,文中着重就近年来有关痛与镇痛的脑内阿片受体PET成像研究进展予以综述。  相似文献   

10.
11.
12.
Improved communication and cooperation between research-driven drug companies and academic positron emission tomography (PET) centers, coupled with improvements in PET camera resolution, the availability of small animal PET cameras and a growing list of neuroreceptor-specific PET tracers, have all contributed to a substantial increase in the use and value of PET as a tool in central nervous system drug discovery and development.  相似文献   

13.
14.
Medical and biological imaging has undergone a revolution in the past decade. Positron emission tomography (PET) has been developed to visualize biochemical and physiological phenomena in living humans and animals. For instance, blood flow, blood volume, glucose metabolism, amino acid metabolism, can be quantitatively estimated by means of PET with various radioactive tracers. This functional and molecular imaging technique has progressed rapidly from being a research technique in laboratories to a routine clinical imaging modality. The most widely used radiotracer in routine is 18F-fluorodeoxyglucose (18FDG), which is an analogue of glucose. Since glucose metabolism is increased many fold in malignant tumors, PET has a major role in the field of clinical oncology and recently in cardiology and neurology. PET is also a valuable tool to study cerebral or cardiac binding sites and to image the expression of reporter genes in small animals. In this review, we summarize the most recent developments in PET imaging with particular reference to the radiotracers available and their application.  相似文献   

15.
16.
Fourteen patients who had clinically diagnosed Alzheimer''s disease with mild to severe dementia (mean age 69.1 years) were evaluated by calculation of local cerebral metabolic rate for glucose (LCMR-gl) based on uptake of 18F-2-fluoro-2-deoxyglucose (FDG) detected with positron emission tomography (PET). PET scanning showed that the patients had significantly lower LCMR-gl values than 11 age-matched neurologically normal volunteers (mean age 66.3 years). The differences were most marked in the temporal cortex, followed by the frontal, parietal and occipital cortex. In each case the LCMR-gl value was below the lowest control value in at least one cortical area and usually in several; the reduction in LCMR-gl and the number of regions involved in the patients increased with the severity of the dementia. Deficits noted in neuropsychologic testing generally correlated with those predicted from loss of regional cortical metabolism. The patients with Alzheimer''s disease were also examined with magnetic resonance imaging, computed tomography or both; the degree of atrophy found showed only a poor correlation with the neuropsychologic deficit. Significant atrophy was also noted in some of the controls. A detailed analysis of LCMR-gl values in selected cerebral regions of various sizes refuted the hypothesis that the reduction in cortical glucose metabolism in Alzheimer''s disease is due to the filling by metabolically inert cerebrospinal fluid of space created by tissue atrophy.  相似文献   

17.
Positron emission tomography (PET) is a method for quantitatively measuring biochemical and physiological processes in vivo by using radiopharmaceuticals labeled with positron-emitting radionuclides such as 11C, 13N, 15O, and 18F and by measuring the annihilation radiation using a coincidence technique. This technique is also used for measurement of the pharmacokinetics of labeled drugs and measurement of the effects of drugs on metabolism. Deviations from normal metabolism can be measured and insight into biological processes responsible for diseases can be obtained.  相似文献   

18.
Phosphoinositide turnover is closely connected to modulation of synaptic function and is part of an important second messenger-producing system. New radioligands for imaging second messenger systems by positron emission tomography have been developed: carbon-11-labeled 1,2-diacylglycerols. The theoretical background of second messenger imaging is described in detail and the relation between the biologically active compounds and potential tracers for imaging second messenger systems is discussed. We report informative findings on postsynaptic biological responses in the living human brain of healthy normal subjects and with various diseases.  相似文献   

19.
Zhang Y  Hong H  Engle JW  Bean J  Yang Y  Leigh BR  Barnhart TE  Cai W 《PloS one》2011,6(12):e28005
Optimizing the in vivo stability of positron emission tomography (PET) tracers is of critical importance to cancer diagnosis. In the case of (64)Cu-labeled monoclonal antibodies (mAb), in vivo behavior and biodistribution is critically dependent on the performance of the bifunctional chelator used to conjugate the mAb to the radiolabel. This study compared the in vivo characteristics of (64)Cu-labeled TRC105 (a chimeric mAb that binds to both human and murine CD105), through two commonly used chelators: 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). Flow cytometry analysis confirmed that chelator conjugation of TRC105 did not affect its CD105 binding affinity or specificity. PET imaging and biodistribution studies in 4T1 murine breast tumor-bearing mice revealed that (64)Cu-NOTA-TRC105 exhibited better stability than (64)Cu-DOTA-TRC105 in vivo, which resulted in significantly lower liver uptake without compromising the tumor targeting efficiency. In conclusion, this study confirmed that NOTA is a superior chelator to DOTA for PET imaging with (64)Cu-labeled TRC105.  相似文献   

20.
A new method for quantitative measurement of brain acetylcholinesterase (AChE) activity in living human brain using positron emission tomography (PET) is described. We tested several radiolabeled lipophilic acetylcholine analogs, e.g., N-methylpiperidyl esters, which readily entered the brain via the blood-brain barrier, were hydrolyzed selectively by AChE, and were then trapped in the brain. Among them, and tested and N-[11C]methylpiperidin-4-yl acetate ([11C]MP4A) was chosen as the tracer for PET. Quantitative measurement of cortical AChE was accomplished by fitting the time course of cerebral radioactivity concentration measured by PET and the metabolite-corrected arterial plasma input function using a nonlinear least-squares fitting method. Normal control studies of subjects with a wide range in age (24-89 years) showed no decrease in AChE activity in the cerebral cortex with age. Studies on patients with Alzheimer's disease demonstrated a widespread reduction of AChE activity in the cerebral cortex (more profound in early-onset than in late-onset Alzheimer's disease). Parkinson's disease and progressive supranuclear palsy, clinically similar disorders, could be differentiated with [11C]MP4A/PET studies. Simple methods without using an arterial input function are also proposed. The method provides a quantitative measure of the cholinergic aspect of brain function and proved to be useful in diagnosis of neurodegenerative disorders including Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号