首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salidroside, a bioactive constituent isolated from Rhodiola rosea, has been reported to have anti-inflammatory effects. However, the effects of salidroside on interleukin (IL)-1β-stimulated osteoarthritis (OA) chondrocytes remain to be elucidated. Thus, this study aimed to evaluate the anti-inflammatory effects of salidroside on IL-1β-stimulated human OA chondrocytes and explore its underlying mechanisms. Our results showed that salidroside significantly inhibited the production of nitric oxide and prostaglandin E-2, as well as suppressed the expression of inducible nitric oxide synthase and cyclooxygenase-2 in IL-1β-stimulated chondrocytes ( P < .05). In addition, salidroside also suppressed IL-1β-induced matrix metalloproteinases production in human OA chondrocytes ( P < .05). Furthermore, pretreatment with salidroside prevented IL-1β-induced NF-κB activation in OA chondrocytes ( P < .05). In conclusion, the current study demonstrated that salidroside inhibited the IL-1β-induced inflammatory response in OA chondrocytes via inhibition of NF-κB activation.  相似文献   

2.
Osteoarthritis (OA) is a common chronic degenerative condition in the elderly, in which inflammation plays a key role in disease pathology. Lycopene (Lye), a member of the carotenoid family, has been reported to have anti-inflammatory effects. The purpose of this study was to investigate the effect of Lye on the inflammation of chondrocytes and the mouse OA model. Chondrocytes were treated with interleukin (IL)-1β, and the mouse OA model was induced by the surgical destabilization of the medial meniscus (DMM). The results showed that Lye could inhibit the expression of inflammatory factors and alleviate the degradation of extracellular matrix (ECM). Additionally, Lye could activate the Nrf2/HO-1 pathway and reverse the activations of NF-κB and STAT3 signal pathway induced by IL-1β, suggesting that its anti-inflammatory effect may be mediated via these pathways. The animal experiments showed that Lye could decrease the Osteoarthritis Research Society International (OARSI) scores of the knee, indicating that it could inhibit the occurrence and development of OA in mouse. Overall, our results indicated that Lye might be used as a novel drug for OA treatment.  相似文献   

3.
The mechanisms driving the pathologic progression of osteoarthritis (OA) have not yet to be fully elucidated. Excessive and irreversible breakdown of the extracellular matrix is the main hallmark of OA. Inhibitors of DPP-4 have been widely used for over a decade as a treatment for type-2 diabetes, but the promising function of DPP-4 inhibitors in chronic inflammatory diseases has only begun to receive attention. Here, we treated human chondrocytes with interleukin-1β (IL-1β) with or without teneligliptin to assess the role of DPP-4 in the enzyme-driven reduction of type II collagen. Treatment with teneligliptin significantly reduced IL-1β-induced expression of tumor necrosis factor α, IL-6, and IL-8, generation of reactive oxygen species, increase in metalloproteinase 3 (MMP-3) and MMP-13, reduction of tissue inhibitors of matrix metalloproteinase 1 (TIMP-1) and TIMP-2, release of lactate dehydrogenase, and activation of the mitogen-activated protein kinase p38 and nuclear factor κB intracellular signaling pathways, among other things. These findings demonstrate that treatment with teneligliptin may act as a novel therapy to slow or halt disease progression in patients with OA.  相似文献   

4.
Interleukin-1β (IL-1β) induces the expression of matrix metalloproteinases (MMPs) implicated in cartilage and joint degradation in osteoarthritis (OA) and rheumatoid arthritis (RA). Polyoxypregnane glycoside (PPG), active compound was identified from Dregea volubilis extract by chemical analysis, shown to exert chondroprotective effects in cartilage explant models. However, no studies have been undertaken for the molecular investigation of whether PPG constituents protect the human articular chondrocyte (HAC). In the present studies, HAC was co-treated with IL-1β and PPG. The expression of MMPs, type II collagen, phosphorylation of mitogen-activated protein kinases (MAPKs) and NF-κB signaling pathway were determined by Western immunoblotting. PPG (6.25–25 μM) decreased the IL-1β-induced HA release from chondrocyte to culture medium. The mode of action of PPG was likely mediated through inhibiting expression of MMP-1, -3 and -13 in the medium, which was associated with the inhibition of mRNA expression. PPG had no effect on IL-1β-induced phosphorylation of MAPK pathway. Conversely, PPG decreased phosphorylation of IκB kinase and IκBα degradation. Taken together, these results indicate that PPG may inhibit cartilage degradation in OA and may also be used as nutritional supplement for maintaining joint integrity and function.  相似文献   

5.
Exacerbated production of matrix metalloproteinases (MMPs) is a key event in the progression of osteoarthritis (OA) and represents a promising target for the management of OA with nutraceuticals. In this study, we sought to determine the MMP-inhibitory activity of an ethanolic Caesalpinia sappan extract (CSE) in human OA chondrocytes. Thus, human articular chondrocytes isolated from OA cartilage and SW1353 chondrocytes were stimulated with Interleukin-1beta (IL1β), without or with pretreatment with CSE. Following viability assays, the production of MMP-2 and MMP-13 was assessed using ELISA, whereas mRNA levels of MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-13 and TIMP-1, TIMP-2, TIMP-3 were quantified using RT-qPCR assays. Chondrocytes were co-transfected with a MMP-13 luciferase reporter construct and NF-kB p50 and p65 expression vectors in the presence or absence of CSE. In addition, the direct effect of CSE on the proteolytic activities of MMP-2 was evaluated using gelatin zymography. We found that CSE significantly suppressed IL1β-mediated upregulation of MMP-13 mRNA and protein levels via abrogation of the NF-kB(p65/p50)-driven MMP-13 promoter activation. We further observed that the levels of IL1β-induced MMP-1, MMP-3, MMP-7, and MMP-9 mRNA, but not TIMP mRNA levels, were down-regulated in chondrocytes in response to CSE. Zymographic results suggested that CSE did not directly interfere with the proteolytic activity of MMP-2. In summary, this study provides evidence for the MMP-inhibitory potential of CSE or CSE-derived compounds in human OA chondrocytes. The data indicate that the mechanism of this inhibition might, at least in part, involve targeting of NF-kB-mediated promoter activation.  相似文献   

6.
7.
There is increasing evidence regarding the pivotal roles of microRNAs (miRNAs) and histone deacetylases (HDACs) in the development of osteoarthritis (OA). This study aimed to determine whether miR-193b-5p regulates HDAC7 expression directly to affect cartilage degeneration. Expression levels of miR-193b-5p, HDAC7, matrix metalloproteinase 3 (MMP3), and MMP13 were determined in normal and OA cartilage and primary human chondrocytes (PHCs) stimulated with interleukin-1β (IL-1β). PHCs were transfected with a miR-193b-5p mimic or inhibitor to verify whether miR-193b-5p influences the expression of HDAC7 and MMPs. A luciferase reporter assay was performed to demonstrate the binding between miR-193b-5p and the 3′-untranslated region (UTR) of HDAC7. Expression of miR-193b-5p was reduced in IL-1β-stimulated PHCs and in OA cartilage compared to that in normal cartilage. Luciferase reporter assay exhibited the repressed activity of the reporter construct containing the 3′UTR of HDAC7. Both miR-193b-5p overexpression and HDAC7 inhibition decreased the expression of MMP3 and MMP13, whereas the inhibition of miR-193b-5p enhanced HDAC7, MMP3, and MMP13 expression. miR-193b-5p downregulates HDAC7 directly and, as a result, inhibits MMP3 and MMP13 expression, which suggests that miR-193b-5p has a protective role in OA.  相似文献   

8.
9.

Objective

To suppress TNF-α-induced lipogenesis in sebocytes (associated with acne development) with microRNA-338-3p (miR-338-3p) and to explore the underlying mechanisms.

Results

TNF-α increased lipid droplet formation in sebocytes which were used as in vitro model of inflammation-induced acne. Flow cytometry and TLC assays validated that miR-338-3p could suppress TNF-α-induced lipid droplet formation, down-regulate the expression of PREX2a, and inactivate AKT signaling in sebocytes. In addition, suppression of AKT activity by the PI3 K and AKT inhibitors diminished TNF-α-induced lipogenesis. PREX2a siRNA mimics the effects of miR-338-3p on AKT phosphorylation and lipogenesis. PREX2a overexpression consistently restored lipogenesis and AKT phosphorylation attenuated by miR-338-3p.

Conclusions

MiR-338-3p suppresses the TNF-α-induced lipogenesis in sebocytes by targeting PREX2a and down-regulating PI3K/AKT signaling.
  相似文献   

10.
11.
Transforming growth factor-β (TGF-β) and glial-cell-line-derived neurotrophic factor (GDNF) have been shown to synergize in several paradigms of neuronal survival. We have previously shown that cerebellar granule neurons (CGN) degenerate in low potassium via ERK1/2 (extra-cellular-regulated kinase)-dependent plasma membrane (PM) damage and caspase-3-dependent DNA fragmentation. Here, we have investigated the putative synergistic function of GDNF and TGF-β in CGN degeneration. GDNF alone prevents low-potassium-induced caspase-3 activation and DNA fragmentation but does not affect either low-potassium-induced ERK activation or PM damage. TGF-β alone does not affect low-potassium-induced DNA fragmentation but potentiates low-potassium-induced PM damage. This effect of TGF-β is independent of ERK1/2 activation but dependent on p38-MAPK (mitogen-activated protein kinase) activation. When co-applied with TGF-β, GDNF paradoxically antagonizes TGF-β-induced potentiation of PM damage by inhibiting TGF-β-induced p38-MAPK activation. In addition, PI3K (phosphatidylinositol 3-kinase) inhibitors abolish the GDNF effect. This study thus demonstrates a differential mechanism of action of GDNF and TGF-β on CGN degeneration. GDNF inhibits caspase-3-dependent DNA fragmentation but does not affect ERK-dependent PM damage. However, GDNF can attenuate TGF-β-induced p38-MAPK-dependent PM damage via the PI3K pathway. This work was supported by the Deutsche Forschungsgemeinschaft (STR 616/1–2) and by a fellowship (Young Investigator Award) from the Medical Faculty, University of Heidelberg, Germany to S. Subramaniam.  相似文献   

12.
Proinflammatory cytokine such as interleukin (IL)-1β causes inflammation of articular cartilage. In this current study, we explored the chondroprotective effects of long noncoding RNA (lncRNA) MALAT-1 on cell proliferation, apoptosis, and matrix metabolism in IL-1β-induced inflammation in articular chondrocytes. Articular chondrocytes from knee joints of normal rats were isolated and cultured, followed by identification through observation of toluidine blue and COL II immunocytochemical stainings. The proliferation of chondrocytes at passage 2 was detected by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. The inflammatory chondrocytes induced by 10 ng/mL IL-1β were observed and identified by toluidine blue and COL II immunocytochemical stainings. pcDNA 3.1 and pcDNA-MALAT-1 were transfected in the chondrocytes. Ultrastructure of chondrocytes was observed by using a transmission electron microscope. The MTT assay was carried out to evaluate chondrocyte viability. Hoechst 33258 staining and flow cytometry were adopted to assess chondrocyte apoptosis. The chondrocytes at passage 2 with the biological characteristics of chondrocytes were used for subsequent experiments. In IL-1β-treated chondrocytes, the growth rate of chondrocytes slowed down, the cells became narrow and long, the vacuoles were seen in the cells, and the morphology of the chondrocytes was irregular. The toluidine blue staining and the immunohistochemical staining of COL II became weaker. In response to IL-1β induction, articular chondrocytes showed reduced MALAT-1 expression; moreover, obvious cartilage injury was observed with decreased chondrocyte viability and Col II expression and elevated chondrocyte apoptosis, MMP-13 expression, and p-JNK expression. With the treatment of pcDNA-MALAT-1, the cartilage injury was alleviated with increased chondrocyte viability and type II collagen (Col II) expression and reduced chondrocyte apoptosis, MMP-13 expression and p-JNK expression. Taken together these results, lncRNA MALAT-1 blocked the activation of the JNK signaling pathway; thereby, IL-1β-induced inflammation in articular chondrocytes was reduced with enhanced chondrocyte proliferation and suppressed chondrocyte apoptosis and extracellular matrix degradation.  相似文献   

13.
Summary We have previously reported liver-specific interferon (IFN) / production by murine Kupffer cells that was not observed with other tissue macrophages incubated in the absence of stimulators such as IFN or lipopolysaccharide (LPS). Consequently, while interleukin-2 (IL-2) alone induced pronounced lymphokine-activated killer (LAK) activity from splenocytes, combination of anti-IFN/ antibody with IL-2 was required to generate significant LAK activity from nonparenchymal liver cells. This endogenous IFN/ production by Kupffer cells was not induced by LPS because (a) addition of polymyxin B did not abolish the positive effects of anti-IFN/ antibody on nonparenchymal liver cells, and (b) similar results were obtained when comparing the responses of LPS-responsive C3HeB/FeJ and LPS-hyporesponsive C3H/HeJ mice. The possibility of hepatotropic infection was also ruled out in that anti-IFN/ antibody enhanced hepatic but not splenic LAK cell induction in vitro in both conventional and germfree C3H/HeN mice. IFN/ played an autoregulatory role by down-regulating the production of IL-1 and tumor necrosis factor by Kupffer cells. However, the augmenting effect of anti-IFN/ antibody on LAK induction from non-parenchymal liver cells was not mediated through an increase in the level of either IL-1 or TNF, as specific antisera against either cytokine did not abrogate this positive effect. Finally, flow-cytometry analysis showed that IFN/ significantly diminished the expression of IL-2 receptor chain, indicating an inhibition of LAK cell generation at a relatively early stage of induction.This work is supported by NIH grant RO1-28 835 and by Medical Research Funds from the Veterans Administration  相似文献   

14.
《Life sciences》1996,59(12):PL185-PL190
The purpose of this study was to investigate the role of pyrogenic cytokines, such as IL-1β, IL-6 and MIP-1β, in the mechanisms underlying the hyperthermic response of rats to central injection of PGE2. Thus, specific murine neutralizing antibodies against these cytokines were microinjected directly into the anterior hypothalamic, preoptic area (AH/POA) of unrestrained rats just before intracerebroventricular injection of PGE2. The significant hyperthermia induced by PGE2 was markedly suppressed by micro-injection of anti-IL-6 and partially attenuated by anti-IL-1β. However, the micro-injection of anti-MIP-1β failed to alter the hyperthermic response. The results indicate that PGE2-induced hyperthermia is presumably mediated through actions of IL-6 on the thermosensitive cells of the AH/POA and confirm that distinct and alternate pathways exist in the rat brain for the induction of fever.  相似文献   

15.
MicroRNA-145 has been shown to regulate chondrocyte homeostasis. It seems that miR-145 is implicated in cartilage dysfunction in Osteoarthritis (OA). However, the functional role of miR-145 in interleukin-1 beta (IL-1β)-induced extracellular matrix (ECM) degradation of OA cartilage has never been clarified. Here, we show that miR-145 expression increased in OA chondrocytes and in response to IL-1β stimulation. We confirm that mothers against decapentaplegic homolog 3 (Smad3), a key factor in maintaining chondrocyte homeostasis, is directly regulated by miR-145. Modulation of miR-145 affects the expression of Smad3 causing a change of its downstream target gene expression as well as IL-1β-induced ECM degradation in OA chondrocytes. This indicates that miR-145 contributes to impaired ECM in OA cartilage probably in part via targeting Smad3.  相似文献   

16.
α-Melanocyte-stimulating hormone (α-MSH), an anti-inflammatory and immunomodulatory neuropeptide, has been shown to be effective in the experimental treatment of autoimmune diseases and allograft rejection. However, its regulatory mechanism is still unclear. Mature dendritic cells (DCs) are pivotal initiators of immune response and inflammation. We hypothesized that the regulatory role of α-MSH in DC maturation would contribute to the effects of α-MSH in immune-response-mediated disease models. It was found that α-MSH inhibited tumor necrosis factor-alpha (TNF-α)-induced maturation of human peripheral-monocyte-derived DCs (MoDCs), both phenotypically and functionally. This occurred through the down-regulation of the expression of co-stimulatory molecules CD83 and CD86, the production of IL-12, the promotion of IL-10 secretion, and the MoDC phagocytic activity, suggesting that the inhibition of DC maturation by α-MSH could contribute to the anti-inflammatory effect of this neuropeptide. Furthermore, increased expression of annexin A1 (ANXA1) was found to be responsible for the α-MSH inhibiting effect on TNF-α-induced MoDC maturation, which could be abolished by the treatment of MoDCs with specific, small interfering RNAs targeting ANXA1 (ANXA1-siRNA), suggesting that α-MSH-induced ANXA1 mediates the inhibition. Therefore, α-MSH inhibits TNF-α-induced maturation of human DCs through α-MSH-up-regulated ANXA1, suggesting that inhibition of the maturation of DCs by α-MSH could mediate the anti-inflammatory effect of the neuropeptide. Furthermore, ANXA1 could be identified as a new therapeutic drug target based on the role of DCs in immune-mediated inflammatory diseases.  相似文献   

17.
Tumor necrosis factor α (TNF-α) is a pleiotropic cytokine mediating inflammatory as well as cell death activities, and is thought to induce chondrocytic chondrolysis in inflammatory and degenerative joint diseases. Selective estrogen receptor modulators (SERMs), such as raloxifene, which are commonly used in clinical settings act as estrogen agonists or antagonists. It is assumed that estrogens have a potential role in cartilage protection; however, the precise molecular mechanism for the protective effects of estrogens is unclear. This study was designed to examine whether raloxifene inhibits TNF-α-induced apoptosis in human chondrocytes and to clarify the mechanisms involved. We also investigated the signaling pathways responsible for the anti-apoptotic effect of raloxifene. Apoptosis in chondrocytes was determined by DNA fragmentation assay and caspase-3 activation. Raloxifene significantly inhibited TNF-α-induced caspase-3 activation and cell DNA fragmentation levels in chondrocytes. The inhibitory effect of raloxifene was abolished by the estrogen receptor antagonist ICI 182,780. Extracellular signal-regulated kinase 1/2 (ERK1/2) regulates apoptosis, acting as an apoptotic or anti-apoptotic signal. TNF-α-induced apoptosis was significantly enhanced by the ERK1/2 pathway inhibitor PD98059. Raloxifene stimulated a further increase in ERK1/2 phosphorylation in TNF-α-treated chondrocytes. Furthermore, the anti-apoptotic effects of raloxifene were inhibited by PD98059. In addition, the anti-apoptotic effects of raloxifene were completely abolished in ERK1/2 siRNA-treated chondrocytes. These results suggest that raloxifene prevents caspase-3-dependent apoptosis induced by TNF-α in human chondrocytes by activating estrogen receptors and the ERK1/2 signaling pathway.  相似文献   

18.
19.
Idiopathic pulmonary fibrosis is characterized by myofibroblast accumulation, extracellular matrix (ECM) remodeling, and excessive collagen deposition. ECM-producing myofibroblasts may originate from epithelial cells through epithelial to mesenchymal transition (EMT). TGF-β1 is an inducer of EMT in pulmonary epithelial cells in vitro and in vivo, though the mechanisms are unclear. We hypothesized that TGF-β1 induced EMT through Smad-dependent and -independent processes. To test this hypothesis, we studied the roles and mechanisms of TGF-β1-induced Smad and p38 mitogen-activated protein kinase (MAPK) signaling in EMT-related changes in pulmonary epithelial cells. Exposure of pulmonary epithelial 1HAEo(-) cells to TGF-β1 resulted in morphological and molecular changes of EMT over a 96-h period; loss of cell-cell contact, cell elongation, down-regulation of E-cadherin, up-regulation of fibronectin, and up-regulation of collagen I. Both Smad2/3 and p38 MAPK signaling pathways were activated by TGF-β1. However, neither Smad2/3 nor p38 MAPK were required for the down-regulation of E-cadherin, yet p38 MAPK was associated with fibronectin up-regulation. Both Smad2/3 and p38 MAPK had a role in regulation of TGF-β1-induced collagen expression. Furthermore, these data demonstrate that Smads and p38 MAPK differentially regulate EMT-related changes in pulmonary epithelial cells.  相似文献   

20.
The MAPK/ERK pathway is involved in IL-1β-induced cyclooxygenase (COX-2) expression and prostaglandin E2 (PGE2) production; two factors that play important roles in OA pathogenesis. In the present study, we find that IL-1β induced COX-2 expression and PGE2 production in human chondrocytes via a process that required the activation of the MAPK/ERK pathway. To evaluate the respective roles and relationship of ERK1 and ERK2 on IL-1β induced COX-2 expression and PGE2 production, small interfering RNA was used to knockdown ERK1, ERK2 or both in human chondrocytes. COX-2 expression and PGE2 production were significantly suppressed to a similar degree by the silencing of ERK1 or ERK2 alone. Moreover, the combined knockdown displayed a synergistic effect. Simultaneously, Western blotting indicated that the knockdown of ERK1 or ERK2 down regulated phospho-ERK1 and ERK1 or phospho-ERK2 and ERK2 levels, respectively. No significant compensatory mechanism through the upregulation of the other phospho-ERK and ERK isoform was observed. The combined silencing suppressed both phospho-ERK1/2 and ERK1/2. In conclusion, each ERK isoform similarly influenced IL-1β-mediated COX-2 expression and PGE2 production in human chondrocytes, and ERK1 and ERK2 displayed synergistic effects. Although, inhibition of both ERK1 and ERK2 would be a more effective, each ERK isoform may sufficiently regulate these effects in human chondrocytes. ERK1 or ERK2 may be potential therapeutic target for the inflammatory process of OA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号