首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Ultrafast transient absorption studies are reported for high-aspect-ratio gold nanorods that were fabricated by electrochemical deposition in polycarbonate templates. The nanorods are 60 nm in diameter with distribution of lengths of up to 6 μm. The average aspect ratio was ∼50, resulting in a longitudinal surface plasmon resonance (SPRL) band in the mid-IR, as well as a transverse (SPRT) band in the visible. The rods were excited at 400 nm and probed at a range of wavelengths from the visible to the mid-IR to interrogate both SPR bands. The dynamics observed, including the electron–phonon coupling time and coherent acoustic breathing mode oscillations, closely resemble those previously reported for gold spherical nanoparticles and smaller-aspect-ratio nanorods. The electron–phonon coupling time was similarly determined to be 3.3 ± 0.2 ps for both of the SPR bands. Also, oscillations with a 32-ps period were observed for probing near the SPRT band in the visible region due to impulsive coherent excitation of the acoustic breathing mode, which are consistent with the 60-nm diameter of the nanorods determined by scanning electron microscopy. The results demonstrate that the dynamics for long gold nanorods are similar to those for smaller nanoparticles. Gerald M. Sando is a NRL-ASEE Research Associate  相似文献   

2.
Gold nanorods are known to exhibit two distinct surface plasmon oscillations namely, transverse and longitudinal bands corresponding to oscillations of conduction electrons along width and length of gold nanorods. Considerable changes in these surface plasmon resonance peak positions occurred when KOH was added to the nanorod solution. Nanorods with initial longitudinal plasmon band at 739, 796, and 895 nm are studied with variation in KOH concentration. While the longitudinal plasmon resonance peak showed blue shift, transverse plasmon resonance peak exhibited only intensity variations. Changes could be attributed to the shape transition of gold nanorods on variation of pH in the solution. Shape transition of gold nanorods is confirmed by transmission electron microscopy images.  相似文献   

3.

The influence of TiO2 coating on resonant properties of gold nanoisland films deposited on silica substrates was studied numerically and in experiments. The model describing plasmonic properties of a metal truncated nanosphere placed on a substrate and covered by a thin dielectric layer has been developed. The model allows calculating a particle polarizability spectrum and, respectively, its surface plasmon resonance (SPR) wavelength for any given cover thickness, particle radius and truncation parameter, and dielectric functions of the particle, the substrate, the coating layer, and the surrounding medium. Dependence of the SPR position calculated for truncated gold nanospheres has coincided with the measured one for the gold nanoisland films covered with titania of different thicknesses. In the experiments, gold films with thickness of 5 nm were deposited on a silica glass substrate, annealed at 500 °C to form nanoislands of 20 nm in diameter, and covered with amorphous titania layers using atomic layer deposition technique. The resulting structures were characterized with scanning electron microscopy and optical absorption spectroscopy. The measured dependence of the SPR position on titania film thickness corresponded to the one calculated for truncated sphere-shaped nanoparticles with the truncation angle of ~50°. We demonstrated the possibility of tuning the SPR position within ~100 nm range by depositing to 30 nm thick titania layer.

  相似文献   

4.
We study an active modulation of surface plasmon resonance (SPR) of Au nanoparticles based on highly doped graphene in visible and near-infrared regions. We find that compared to the traditional metal SPR, the SPR of Au nanoparticles based on graphene causes a remarkable blue shift. The field intensity in the gap is redistributed to standing wave. The field intensity of standing wave is about one order of magnitude higher than the traditional model. Moreover, the SPR of Au nanoparticles can be actively modulated by varying the graphene Fermi energy. We find the maximum modulation of field intensity of absorption spectra is more than 21.6 % at λ?=?822?nm and the amount of blue shift is 17.4 nm, which is about 2.14 % of the initial wavelength λ 0?=?813.4?nm, with increasing monolayer graphene Fermi energy from 1.0 to 1.5 ev. We find that the SPR sensitivity to the refractive index n of the environment is about 642 nm per refractive index unit (RIU). The SPR wavelengths have a big blue shift, which is about 33 nm, with increasing number of graphene layers from 1 to 3, and some shoulders on the absorption spectra are observed in the models with multilayer graphene. Finally, we study the Au nanorod array based on monolayer graphene. We find that the blue shift caused by the graphene increases from 14 to 24 nm, with increasing gap g y from 10 to 20 nm. Then, it decreases from 24 to 14 nm, with increasing gap g y from 20 to 50 nm. This study provides a new way for actively modulating the optical and optoelectronic devices.  相似文献   

5.
Au plasmonic hollow spherical nanostructures were synthesized by electrochemical reduction (GRR, the Galvanic Replacement Reaction) using Ag nanoparticles as templates. From UV-visible absorption spectroscopy, it was found that the surface plasmon resonance (SPR) of gold hollow spherical nanostructures first showed red shift and then blue shift. However, further addition of gold precursor (HAuCl4) resulted into a red shift of SPR peak. The morphological changes from Ag nanoparticles to Au hollow nanostructures were assessed by transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX)analysis. The Mie Scattering theory based simulations of SPR of Au hollow nanostructures were performed which are in good agreement with the experimental observations. Based on the experimental observations and theoretical calculations, a complete growth mechanism for Au hollow nanostructures is proposed.  相似文献   

6.
Intracellular bioconversion of auric ion (Au3+) to gold nanorod (Au0) by the cyanobacterium Nostoc ellipsosporum has been observed for the first time in laboratory condition. The nanorods were produced within the cell after exposing the healthy growing filaments to 15 mg L−1 gold (III) solution (pH 4.5) for 48 h at 20°C. The gold nanoparticles were extracted with sodium citrate solution and were subjected to UV–Visible spectroscopy. The characteristic surface-multiple plasmon bands at 560, 610, and 670 nm were observed. The nature and size of the particles were determined by transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), and zeta potential studies. The nanorod size ranged from 137 to 209 nm in length and 33 to 69 nm in diameter. DLS study revealed the average hydrodynamic size as 435 nm and XRD study indicated the reduction of Au3+ to Au0. Methods of extraction and preservation of gold nanorod particles have also been studied.  相似文献   

7.
By the absorption spectroscopy method, optical properties of gold nanorods (10 × 38 nm) and their interaction with globular protein bovine hemoglobin and bovine serum albumin were investigated. Nanorod behavior was studied in water solution and in solution of 97 mM NaCl under ultrasound action during 90 min and results were then compared. In water solutions, nanorod coagulation (aggregation) was observed with reduced optical density of the longitudinal plasmon band widening at λ > 800 nm. In NaCl solution, absorption spectra evolution had a complex character and was in some degree analogous to the result that was obtained for two-dimensional grids of gold nanoparticles when changing the distance between them. By interacting with serum albumin, stabilization of colloid solution and dissociation of nanorod aggregates were observed.  相似文献   

8.
We developed a novel technique for increasing the sensitivity of transmission surface plasmon resonance (T-SPR) signals. T-SPR spectroscopy was performed by irradiating, with white light, a gold grating substrate whose surface was nanostructured by growing gold nanoparticles (AuNPs). AuNPs were grown directly on the substrate surface by alcohol reduction and their growth was observed at various stages by UV–visible spectroscopy and standard Kretschmann-type SPR spectroscopy. For comparison, normal gold film with smooth surface was examined under similar condition. The T-SPR results show a possibility of hybrid excitation of both localized and propagating surface plasmon. Significantly, T-SPR spectra of the gold grating substrate obtained during AuNP growth show stronger and narrower peaks in the range 650–800 nm. The maximum T-SPR excitation was at an incident angle of 35°. A layer-by-layer system of 5,10,15,20-tetrakis (1-methyl-4-pyridinio)porphyrin tetra(p-toluenesulfonate) molecules and sodium copper chlorophyllin molecules was used to verify the enhancement of the developed system. We believe that the AuNPs/Au grating for T-SPR devices will provide enhanced signals for detecting nanometer order materials and for high-sensitive sensor applications.  相似文献   

9.
Because of the interaction between dipole resonances of the inner gold sphere and the outer gold shell, gold-dielectric-gold multishells with sub-50 nm diameter may at most have three hybridization modes of surface plasmon resonance (SPR). Theoretical calculations based on quasi-static theory indicate that there are blending and splitting of SPR bands in the absorption spectra, which makes the number of absorption peak tunable by changing the radius of inserted gold sphere, thickness of gold shell, dielectric constant of middle dielectric shell or outer environment. The two absorption peaks at longer wavelength, which correspond to the hybridization from the bonding shell plasmon and the sphere plasmon, are usually intense and well tunable. The absorption peak at shorter wavelength, which corresponds to the symmetric coupling between the anti-bonding shell plasmon and the sphere plasmon, is relative weak and only occurs with large dielectric constant of the middle shell, small dielectric constant of the outer surrounding, large inner radius of the gold shell, and small radius of the inner gold sphere. Furthermore, the physical origin of these plasmon hybridizations in gold-dielectric-gold multishells nanostructure has also been illuminated by analyzing the local electric field distributions.  相似文献   

10.

Aptamers are DNA or RNA single-stranded molecules that bind specifically to target molecules with high affinity. Function of nucleic acid aptamers is based on organized tertiary structure of them that is related to primary sequence, length of nucleic acid molecule, and environmental conditions. Herein, a localized surface plasmon resonance (LSPR) nanobioprobe has been developed based on specific aptamer-conjugated gold nanoparticles for rapid detection of methamphetamine. Detection of methamphetamine was studied via monitoring the gold nanoparticles (GNPs) LSPR band alterations in the presence of different concentrations. The covalent conjugation has been confirmed with FT-IR spectroscopy, and size alterations of gold nanoparticles before and after the conjugation state were monitored using dynamic light scattering (DLS) technique. The results show high affinity of aptamer to methamphetamine. Moreover, the results show conjugated aptamer with GNP in different concentrations of methamphetamine that contribute to color changes that is visible with unaided eye. Also, 14 nm LSPR shift was seen after conjugation of aptamer with GNP. Nanoparticle diameter after conjugation with aptamer was increased from 30 to 91 nm and decreased after incubation with methamphetamine (due to folding) from 91 to 84 nm. Detection limit of this designed nanoprobe is 500 nM. Plasmonic nanoparticle-based nanobioprobe is a new field for development of sensitive detection systems.

  相似文献   

11.
The laser desorption/ionization (LDI) assisted by gold nanospheres, nanorods and nanostars has been investigated. Laser fluence thresholds for the appearance of cationized adducts of a polydispersed polyether standard (polyethylenglycol PEG600) have been determined at the near ultraviolet–visible–near infrared wavelengths delivered by a Nd:YAG laser (266, 355, 532, 1,064 nm). The results demonstrate the efficiency of surface plasmon excitation to assist laser desorption/ionizaton at laser wavelengths extending to the visible and near infrared, with advantages with respect to conventional LDI techniques using ultraviolet wavelengths. A close correlation is found between the optical absorbance of the nanoparticles and the LDI thresholds, although for the nanospheres plasmonic excitation in the visible appears to be more efficient than non-plasmonic excitation at shorter UV wavelengths. The recorded molecular weight distributions for the PEG600 standard show that the LDI process tends to be less efficient for the heavier components of the polymer mixture, presumably as a consequence of their stronger bonding to the nanoparticle substrate. The role of the coating agent of the nanoparticles in the observed LDI behavior is discussed.  相似文献   

12.

We demonstrate plasmon coupling phenomenon between equivalent (homodimer) and non-equivalent (heterodimer) spherical shape noble metal nanoparticle (Ag, Au and Al). A systematic comparison of surface plasmon resonance (SPR) and extinction properties of various configurations (monomer, homodimer and heterodimer) has been investigated to observe the effect of compositional asymmetry. Numerical simulation has been done by using discrete dipole approximation method to study the optical properties of plasmonically coupled metal nanoparticles (MNPs). Plasmon coupling between similar nanoparticles allows only higher wavelength bonding plasmon mode while both the plasmon modes lower wavelength antibonding mode as well as higher wavelength bonding mode in the case of heterodimer. Au monomer of radius 50 nm shows resonance peak at 518 nm while plasmon coupling between Au-Au homodimer results in a spectral red shift around 609 nm. Au-Ag plasmonic heterodimer (radius 50 nm) reveals two resonant modes corresponding to higher energy antibonding mode (422 nm) as well as lower energy bonding mode (533 nm). Further, we have shown that interparticle edge-to-edge separation is the most significant parameter affecting the surface plasmon resonances of MNPs. As the inter particle separation decreases, resonance wavelength shows red spectral shift which is maximum for the touching condition. It is shown that plasmon coupling is a reliable strategy to tune the SPR.

  相似文献   

13.
金纳米棒具有独特的光学性质、表面易修饰性、较低的生物毒性和良好的生物相容性,因而在成像、光热治疗和药物载带等方面具有极高的潜在应用价值.本文综述了典型的金纳米棒表面修饰方法及其在生物成像、光热治疗和药物治疗中的应用,重点阐述了通过金纳米棒同时实现肿瘤诊断和治疗相结合的研究进展.  相似文献   

14.
We present a new approach to surface plasmon microscopy with high refractive index sensitivity and spatial resolution that is not limited by the propagation length of surface plasmons. It is based on a nanostructured metallic sensor surface supporting Bragg-scattered surface plasmons. We show that these non-propagating surface plasmon modes are excellently suited for spatially resolved observations of refractive index variations on the sensor surface owing to their highly confined field profile perpendicular to as well as parallel to the metal interface. The presented theoretical study reveals that this approach enables reaching similar refractive index sensitivity as regular surface plasmon resonance (SPR) microscopy and offers the advantage of improved spatial resolution when observing dielectric features with lateral size <10???m for the wavelength around 800?nm and gold as the SPR-active metal. This paper demonstrates the potential of Bragg-scattered surface plasmon microscopy for high-throughput SPR biosensing with high-density microarrays.  相似文献   

15.
The surface plasmon resonance (SPR) of silver nanoparticles (AgNPs) was studied with the discrete dipole approximation considering different shapes, sizes, dielectric environments, and supraparticles assemblies. In particular, we focused our simulations on AgNPs with sizes below 10 nm, where the correction of silver dielectric constant for intrinsic size effects is necessary. We found that AgNPs shape and assembly can induce distinctive features in the extinction spectra and that SPR is more intense when AgNPs have discoid or flat shapes and are embedded in a dielectric shell with high refractive index. However, the SPR loses much of its distinctive features when size effects and stabilizing molecules induce significant broadening of the extinction bands that is often observed in the case of thiolated AgNPs smaller than about 5 nm. These results are useful indications for in situ characterization and monitoring of AgNPs synthesis and for the engineering of AgNPs with new plasmonic properties.  相似文献   

16.
A novel series of elliptical gold (Au0) nanoparticles (18–40 nm) embedded antimony glass (K2O-B2O3-Sb2O3) dichroic nanocomposites have been synthesized by a single-step melt-quench in-situ thermochemical reduction technique. X-ray and selected area electron diffractions manifest growth of Au0 nanoparticles along the (111) and (200) crystallographic planes. The transmission electron microscopic image reveals elliptical Au0 nanoparticles having an aspect ratio varying in the range 1.2–2.1. The dichroic behavior of the nanocomposites arises due to elliptical shape of the Au0 nanoparticles. These nanocomposites show strong surface plasmon resonance (SPR) band of Au nanoparticles in the range 610–681 nm and it exhibit red-shifts with increasing Au concentration. They, when co-doped with Sm2O3 and excited at 949 nm, exhibit about sevenfold enhancement of the upconverted red emission transition of 4G5/26H9/2 at 636 nm due to local electric field enhancement effect of Au0 nanoparticles induced by its SPR. These nanocomposites are the promising materials for laser, display, and various nanophotonic applications.  相似文献   

17.
Theoretical calculations of optical absorption (OA) spectra of Zn nanoparticles (NPs) in silica glass, using a simple model, have been resulted in appearance of three OA bands, all of which are found to blueshift with decrease in NP radius due to quantum confinement effects of free electrons. The intensities of the OA bands are seen to increase with increase in incident light energy. Importantly, all the three OA bands have been found to satisfy, accurately, the surface plasmon resonance (SPR) condition. All these observations clearly indicate that the observed OA bands are originated from the SPR absorptions in Zn NPs, but not due to inter-band absorption.  相似文献   

18.
Peptide-conjugated gold nanorods for nuclear targeting   总被引:2,自引:0,他引:2  
Resonant electron oscillations on the surface of noble metal nanoparticles (Au, Ag, Cu) create the surface plasmon resonance (SPR) that greatly enhances the absorption and Rayleigh (Mie) scattering of light by these particles. By adjusting the size and shape of the particles from spheres to rods, the SPR absorption and scattering can be tuned from the visible to the near-infrared region (NIR) where biologic tissues are relatively transparent. Further, gold nanorods greatly enhance surface Raman scattering of adsorbed molecules. These unique properties make gold nanorods especially attractive as optical sensors for biological and medical applications. In the present work, gold nanorods are covalently conjugated with a nuclear localization signal peptide through a thioalkyl-triazole linker and incubated with an immortalized benign epithelial cell line and an oral cancer cell line. Dark field light SPR scattering images demonstrate that nanorods are located in both the cytoplasm and nucleus of both cell lines. Single cell micro-Raman spectra reveal enhanced Raman bands of the peptide as well as molecules in the cytoplasm and the nucleus. Further, the Raman spectra reveal a difference between benign and cancer cell lines. This work represents an important step toward both imaging and Raman-based intracellular biosensing with covalently linked ligand-nanorod probes.  相似文献   

19.

The optical absorption properties of the bimetallic noble metal alloy (viz. Au-Ag, Au-Cu, and Ag-Cu) nanoparticles (NPs) of radii of 10 nm and 20 nm embedded in silica glass have been studied theoretically using a simple model based on the effective medium theory. Our study reveals that the spectra of the above bimetallic alloy NPs exhibit single but composition-sensitive surface plasmon resonance (SPR) peak which indicates the successful formation of alloys. The position of the SPR peak that appeared corresponding to alloy NPs is different from that of the component metals. The study further reveals that the Ag-Au and Au-Cu alloy systems are completely miscible over the entire concentration range but Ag-Cu is miscible up to a certain extent, although, their SPR peak shows a linear shift with molar concentration. It has been further observed that the phase of the Ag-Au alloy system changes with concentration of Au during the alloy formation but no such change is seen in the other two systems. Thus, our study shows that the Ag-Cu system which otherwise does not form alloy in bulk may form alloy in nanoscale with limited miscibility. A shift of the SPR peak positions from ~ 405 to ~ 535 nm for Au-Ag, from ~ 535 to ~ 590 nm for Au-Cu, and from ~ 405 to ~ 436 nm for Ag-Cu NP systems has been observed for different composition of constituent monometals. The compositional changes lead to a spectral tuning of the SPR of the system under studies.

  相似文献   

20.
The spectral phase shift of surface plasmon resonance (SPR) in the Kretschmann configuration is modeled for aqueous solutions of NaCl (analytes) and an SPR structure consisting of gold and chromium layers deposited on an SF10 glass slide. Using the material dispersion of the SPR structure and the analyte, the SPR phase shift, its spectral derivative, and the spectral dependence of the ratio of the reflectances of p- and s-polarized waves are determined for aqueous solutions of NaCl when the concentration of NaCl in water and the refractive index range from 0 to 10 weight percent (wt%) and from 1.3334 to 1.3515 RIU, respectively. In addition, theoretical modeling is accompanied by experiment and the position of a sharp maximum in the measured spectral derivative of the SPR phase shift changes in a range from 596 to 626 nm. From the measurements, a sensitivity to concentration of 3.83 nm/wt% and a detection limit of 7.3 × 10?7 RIU at a wavelength of 612.36 nm are obtained, and very good agreement between theory and experiment is confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号