首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A pivotal step forward in chemical approaches to controlling gene expression is the development of sequence-specific DNA-binding molecules that can enter live cells and traffic to nuclei unaided. DNA-binding polyamides are a class of programmable, sequence-specific small molecules that have been shown to influence a wide variety of protein-DNA interactions. We have synthesized over 100 polyamide-fluorophore conjugates and assayed their nuclear uptake profiles in 13 mammalian cell lines. The compiled dataset, comprising 1300 entries, establishes a benchmark for the nuclear localization of polyamide-dye conjugates. Compounds in this series were chosen to provide systematic variation in several structural variables, including dye composition and placement, molecular weight, charge, ordering of the aromatic and aliphatic amino-acid building blocks and overall shape. Nuclear uptake does not appear to be correlated with polyamide molecular weight or with the number of imidazole residues, although the positions of imidazole residues affect nuclear access properties significantly. Generally negative determinants for nuclear access include the presence of a beta-Ala-tail residue and the lack of a cationic alkyl amine moiety, whereas the presence of an acetylated 2,4-diaminobutyric acid-turn is a positive factor for nuclear localization. We discuss implications of these data on the design of polyamide-dye conjugates for use in biological systems.  相似文献   

2.
Kaihatsu K  Huffman KE  Corey DR 《Biochemistry》2004,43(45):14340-14347
Peptide nucleic acids (PNAs) offer a distinct option for silencing gene expression in mammalian cells. However, the full value of PNAs has not been realized, and the rules governing the recognition of cellular targets by PNAs remain obscure. Here we examine the uptake of PNAs and PNA-peptide conjugates by immortal and primary human cells and compare peptide-mediated and DNA/lipid-mediated delivery strategies. We find that both peptide-mediated and lipid-mediated delivery strategies promote entry of PNA and PNA-peptide conjugates into cells. Confocal microscopy reveals a punctate distribution of PNA and PNA-peptide conjugates regardless of the delivery strategy used. Peptide D(AAKK)(4) and a peptide containing a nuclear localization sequence (NLS) promote the spontaneous delivery of antisense PNAs into cultured cells. The PNA-D(AAKK)(4) conjugate inhibits expression of human caveolin 1 (hCav-1) in both HeLa and primary endothelial cells. DNA/lipid-mediated delivery requires less PNA, while peptide-mediated delivery is simpler and is less toxic to primary cells. The ability of PNA-peptide conjugates to enter primary and immortal human cells and inhibit gene expression supports the use of PNAs as antisense agents for investigating the roles of proteins in cells. Both DNA/lipid-mediated and peptide-mediated delivery strategies are efficient, but the compartmentalized localization of PNAs suggests that improving the cellular distribution may lead to increased efficacy.  相似文献   

3.
The design and synthesis of the lipophilic (9) and fluorescent (10) conjugates of a structural analogue of distamycin and their in vitro cellular localization studies are reported. Confocal laser scanning microscopy (CLSM) indicates that 10 rapidly enters human ovarian adenocarcinoma (SKOV-3) cells with principal uptake in mitochondria and uniform cytoplasmic distribution.  相似文献   

4.
Gold nanoparticles modified with nuclear localization peptides were synthesized and evaluated for their subcellular distribution in HeLa human cervical epithelium cells, 3T3/NIH murine fibroblastoma cells, and HepG2 human hepatocarcinoma cells. Video-enhanced color differential interference contrast microscopy and transmission electron microscopy indicated that transport of nanoparticles into the cytoplasm and nucleus depends on peptide sequence and cell line. Recently, the ability of certain peptides, called protein transduction domains (PTDs), to transclocate cell and nuclear membranes in a receptor- and temperature-independent manner has been questioned (see for example, Lundberg, M.; Wikstrom, S.; Johansson, M. (2003) Mol. Ther. 8, 143-150). We have evaluated the cellular trajectory of gold nanoparticles carrying the PTD from HIV Tat protein. Our observations were that (1) the conjugates did not enter the nucleus of 3T3/NIH or HepG2 cells, and (2) cellular uptake of Tat PTD peptide-gold nanoparticle conjugates was temperature dependent, suggesting an endosomal pathway of uptake. Gold nanoparticles modified with the adenovirus nuclear localization signal and the integrin binding domain also entered cells via an energy-dependent mechanism, but in contrast to the Tat PTD, these signals triggered nuclear uptake of nanoparticles in HeLa and HepG2 cell lines.  相似文献   

5.
The synthesis, physico-chemical properties, cellular localization and photocytotoxicity of estradiol-pheophorbide a conjugates in estrogen-dependent cancer and vascular endothelial cells are described with the aim of increasing the photodynamic activity by targeting the nucleus of both tumor and blood vessel cells.  相似文献   

6.
Brunner J  Barton JK 《Biochemistry》2006,45(40):12295-12302
Cell-penetrating peptides are widely used to deliver cargo molecules into cells. Here we describe the synthesis, characterization, DNA binding, and cellular uptake studies of a series of metal-peptide conjugates containing oligoarginine as a cell-penetrating peptide. d-Octaarginine units are appended onto a rhodium intercalator containing the sterically expansive chrysenequinone diimine (chrysi) ligand to form Rh(chrysi)(phen)(bpy)(3+)-tethered oligoarginine conjugates, where the peptide is attached to the ancillary bpy ligand; some conjugates also include a fluorescein or thiazole orange tag. These complexes bind and with photoactivation selectively cleave DNA neighboring single-base mismatches. The presence of the oligoarginines is found to increase the nonspecific binding affinity of the complexes for both matched and mismatched DNA, but for these conjugates, photocleavage remains selective for the mismatched site, as assayed using both gel electrophoresis and mass spectrometry experiments. Significantly, the rhodium complex does not interfere with the delivery properties of the cell-penetrating peptide. Confocal microscopy experiments show rapid nuclear localization of the metal-peptide conjugates containing the tethered fluorescein. Mass spectrometry experiments confirm the association of the rhodium with the HeLa cells. These results provide a strategy for targeting mismatch-selective metal complexes inside cell nuclei.  相似文献   

7.
Improvement of cellular uptake and cellular localization is still one of the main obstacles to the development of antisense-antigene therapeutics, including peptide nucleic acid (PNA). Cell-penetrating peptides (CPPs) such as Tat peptide and polyarginine have been widely used to improve the cellular uptake of PNA and other antisense agents. Cellular uptake of most CPP conjugates occurs mainly through endocytotic pathways, and most CPP conjugate is retained in the endosomal compartments of the cell. Several methods to induce endosome disruption have been shown to improve the bioavailability of CPP conjugates to the cytosol and/or nucleus by facilitating escape from the endosomal compartments. Here we describe protocols for the delivery of CPP-PNA conjugates to adherent cultured cells using photodynamic treatment (photochemical internalization), Ca2+ treatment or chloroquine treatment to potentiate the antisense effects of CPP-PNA conjugates through increased release of CPP conjugates into the cytoplasm. This protocol, consisting of CPP-mediated delivery assisted by an endosome-disruption agent, allows the delivery of the CPP-PNA conjugates to the nucleus and/or cytosol of cultured cells. The endosome-disruption treatment improves the nuclear antisense effects of CPP-PNA conjugates by up to two orders of magnitude using 24-hour delivery.  相似文献   

8.
Mitochondria-specific photosensitizers were designed by taking advantage of the preferential localization of delocalized lipophilic cations (DLCs) in mitochondria. Three DLC-porphyrin conjugates: CMP-Rh (a core modified porphyrin-rhodamine B cation), CMP-tPP (a core modified porphyrin-mono-triphenyl phosphonium cation), CMP-(tPP)2 (a core modified porphyrin-di-tPP cation) were prepared. The conjugates were synthesized by conjugating a monohydroxy core modified porphyrin (CMP-OH) to rhodamine B (Rh B), or either one or two tPPs, respectively, via a saturated hydrocarbon linker. Their ability for delivering photosensitizers to mitochondria was evaluated using dual staining fluorescence microscopy. In addition, to evaluate the efficiency of the conjugates as photosensitizers, their photophysical properties and in vitro biological activities were studied in comparison to those of CMP-OH. Fluorescence imaging study suggested that CMP-Rh specifically localized in mitochondria. On the other hand, CMP-tPP and CMP-(tPP)2 showed less significant mitochondrial localization. All conjugates were capable of generating singlet oxygen at rates comparable to CMP-OH. Interestingly, all cationic conjugates showed dramatic increase in cellular uptake and phototoxicity compared to CMP-OH. This improved photodynamic activity might be primarily due to an enhanced cellular uptake. Our study suggests that Rh B cationic group is better at least for CMP than tPP as a mitochondrial targeting vector.  相似文献   

9.
Summary Low density lipoproteins (LDL) were conjugated to colloidal gold to visualize the route for internalization of LDL in the cultured cells of human term placenta. Cells were obtained from placental villi (caesarian section) by a standard trypsin-DNase dispersion method followed in some cases by a Percoll gradient centrifugation step. Employing electron microscopy it was observed that after 3 days of culture, cells obtained by trypsin-DNAse dispersion were a mixture of macrophages, mononucleated cells and large multinucleated cells. When the cells were incubated for 3 days after the Percoll purification, essentially multinucleated cells identical to the syncytiotrophoblast were present. The number of LDL receptor was increased by preincubation in medium with lipoprotein depleted serum. In binding experiments cells incubated at 4° C for 2 h with medium containing gold LDL conjugates showed gold LDL attached to the plasma membrane without characteristic localization. After incubation with gold LDL at 37° C for various times, the three cellular types showed ligand internalization. Gold LDL endocytosis involved first coated pits but also uncoated plasmalemmal invaginations. Then gold LDL was further observed in coated and non coated vesicles, smooth walled endosomes, multivesicular bodies and tubular vesicles. Lastly free gold particles were observed in lysosome like dense bodies. These results prove the internalization of gold LDL conjugates by human cultured placental cells, particularly by syncytiotrophoblast like multinucleated cells. This accumulation of LDL (the major cholesterol carrying protein in humans) is recognised to be responsable for the exogenous cholesterol supply indispensable to the progesterone biosynthesis and cellular growth of the placenta.  相似文献   

10.
Low density lipoproteins (LDL) were conjugated to colloidal gold to visualize the route for internalization of LDL in the cultured cells of human term placenta. Cells were obtained from placental villi (caesarian section) by a standard trypsin-DNase dispersion method followed in some cases by a Percoll gradient centrifugation step. Employing electron microscopy it was observed that after 3 days of culture, cells obtained by trypsin-DNase dispersion were a mixture of macrophages, mononucleated cells and large multinucleated cells. When the cells were incubated for 3 days after the Percoll purification, essentially multinucleated cells identical to the syncytiotrophoblast were present. The number of LDL receptor was increased by preincubation in medium with lipoprotein depleted serum. In binding experiments cells incubated at 4 degrees C for 2 h with medium containing gold LDL conjugates showed gold LDL attached to the plasma membrane without characteristic localization. After incubation with gold LDL at 37 degrees C for various times, the three cellular types showed ligand internalization. Gold LDL endocytosis involved first coated pits but also uncoated plasmalemmal invaginations. Then gold LDL was further observed in coated and non coated vesicles, smooth walled endosomes, multivesicular bodies and tubular vesicles. Lastly free gold particles were observed in lysosome like dense bodies. These results prove the internalization of gold LDL conjugates by human cultured placental cells, particularly by syncytiotrophoblast like multinucleated cells. This accumulation of LDL (the major cholesterol carrying protein in humans) is recognised to be responsible for the exogenous cholesterol supply indispensable to the progesterone biosynthesis and cellular growth of the placenta.  相似文献   

11.
Cellular and nuclear uptake of dual labelled conjugates could be of great value for chemotherapy and cancer diagnostics. Therefore we designed conjugates in which gadolinium (Gd)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), a contrast agent for magnetic resonance imaging and fluorescein isothiocyanate (FITC), a fluorescence marker were coupled to membrane translocation sequences (MTS). The MTSs we employed were the third helix of the Antennapedia homeodomain, the HIV-1 Tat peptide and the N-myristoylated HIV-1 Tat peptide. We used confocal laser scanning microscopy, fluorescence activated cell sorting, magnetic resonance imaging (MRI) and viability tests to examine the cellular and nuclear uptake of these conjugates into U373 glioma cells, as well as their cytotoxic effects. We found that the Antennapedia conjugate was taken up by no more than 20% of the cells. The HIV-1 Tat conjugate showed even lower uptake into less than 3% of cells. Interestingly, N-myristoylation of the HIV-1 Tat conjugate drastically improved its cellular uptake. Up to 70% of cells showed cellular and nuclear uptake of the N-myristoylated HIV-1 Tat conjugate. Conjugate cytotoxicity appears to correlate with cellular uptake.  相似文献   

12.
A series of four porphyrin-cobaltacarborane conjugates have been synthesized, containing three or four cobaltabisdicarbollide anions linked by O(CH(2)CH(2)O)(2) groups to the porphyrin macrocycle and one of them containing a HIV-1 Tat 48-60 peptide sequence linked via a low molecular weight poly(ethylene glycol) (PEG) spacer. The cellular uptake, cytotoxicity, and preferential sites of intracellular localization of the conjugates were evaluated in human HEp2 cells. All conjugates are nontoxic in the dark at the concentrations studied. Upon exposure to low light dose (1 J cm(-)(2)) only the porphyrin-cobaltacarborane-HIV-1 Tat 48-60 conjugate showed 30% inhibition of cell proliferation at a concentration of 10 microM. The cellular uptake was dependent on the number of carborane cages and was significantly enhanced by the presence of the cell penetrating peptide sequence HIV-1 Tat 48-60. All conjugates preferentially localized in the cell lysosomes.  相似文献   

13.
The total syntheses of 14 porphyrin conjugates containing one to four positively charged amino acids and two distinct linkers are described. All conjugates were fully characterized using spectroscopic methods, and the X-ray structure of a porphyrin isothiocyanate precursor was obtained. In vitro studies using HEp2 cells show that these conjugates have low cytotoxicity (IC50 > 250 microM) and that the extent of their cellular uptake depends significantly on the number, nature, and sequence of amino acids in the peptide, and on the presence of a centrally chelated metal ion. Metal-free conjugates bearing three consecutive arginine residues accumulated the most within cells. On the other hand, the preferential sites of subcellular localization were found to be independent from the number, nature, and sequence of amino acids in the conjugate, the linker, and coordinated metal ion; it is suggested, based on theoretical calculations, that the peptides in these conjugates fold over the porphyrin macrocycle in order to maximize intramolecular hydrophobic interactions.  相似文献   

14.
Six water-soluble free-base porphyrin-Ru(II) conjugates, 1-3, and Zn(II) porphyrin-Ru(II) conjugates, 4-6, with different linkers between the hydrophobic porphyrin moiety and the hydrophilic Ru(II)-polypyridyl complex, have been synthesized. The linear and two-photon-induced photophysical properties of these conjugates were measured and evaluated for their potential application as dual in vitro imaging and photodynamic therapeutic (PDT) agents. Conjugates 1-3, with their high luminescence and singlet oxygen quantum yields, were selected for further study of their cellular uptake, subcellular localization, and cytotoxic and photocytotoxic (under linear and two-photon excitation) properties using HeLa cells. Conjugate 2, with its hydrophobic phenylethynyl linker, was shown to be highly promising for further development as a bifunctional probe for two-photon (NIR) induced PDT and in vitro imaging. Cellular uptake and subcellular localization properties were shown to be crucial to its PDT efficacy.  相似文献   

15.
The total syntheses of five new porphyrin-cobaltacarborane conjugates (1-5) have been achieved in 88-98% yields in a single-step reaction between a nucleophilic meso-pyridyl-containing porphyrin and zwitterionic cobaltacarborane [3,3'-Co(8-C(4)H(8)O(2)-1,2-C(2)B(9)H(10))(1',2'-C(2)B(9)H(11))]. These unique zwitterionic compounds have one to four cobaltabisdicarbollide anions conjugated to the porphyrin macrocycle via (CH(2)CH(2)O)(2) chains. The X-ray structure of one of these conjugates (1) is presented and discussed. The cellular uptake, cytotoxicity, and subcellular localization of cobaltacarboraneporphyrins 1-5 were investigated in human HEp2 cells. The number and distribution of cobaltacarborane residues linked to the porphyrin macrocycle has a significant effect on the cellular uptake of the conjugates.  相似文献   

16.
This study reports the synthesis and in vitro biological properties of dendrimer-antibody conjugates. The polyamidoamine dendrimer platform was conjugated to fluorescein isothiocyanate as a means to analyze cell binding and internalization. Two different antibodies, 60bca and J591, which bind to CD14 and prostate-specific membrane antigen (PSMA), respectively, were used as model targeting molecules. The binding of the antibody-conjugated dendrimers to antigen-expressing cells was evaluated by flow cytometry, confocal microscopy, and a new two-photon-based optical fiber fluorescence detection system. The conjugates specifically bound to the antigen-expressing cells in a time- and dose-dependent fashion, with affinity similar to that of the free antibody. Confocal microscopic analysis suggested at least some cellular internalization of the dendrimer conjugate. Dendrimer-antibody conjugates are a suitable platform for targeted molecule delivery into antigen-expressing cells.  相似文献   

17.
Caveolae are vesicular invaginations of the plasma membranes that regulate signal transduction and transcytosis, as well as cellular cholesterol homeostasis. Our previous studies indicated that the removal of cholesterol from aortic endothelial cells and smooth muscle cells in the presence of HDL is associated with plasmalemmal invaginations and plasmalemmal vesicles. The goal of the present study was to investigate the location and distribution of caveolin-1, the main structural protein component of caveolae, in cholesterol-loaded aortic endothelial cells after HDL incubation. Confocal microscopic analysis demonstrated that the caveolin-1 appeared to colocalize with HDL-fluorescein 1,1'-dioctadecyl 3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) conjugates on the cell surface. No free HDL-DiI conjugates were revealed in the cytoplasm. Immunoelectron microscopy further demonstrated that caveolin-1 gold (15 nm) conjugates colocalized with HDL gold (10 nm) conjugates in the plasmalemmal invaginations. These morphological results indicated that caveolae are the major membrane domains facilitating the transport of excess cholesterol to HDL on the cell surface of aortic endothelial cells.  相似文献   

18.
Intravital two-photon microscopy was used to follow the uptake and trafficking of fluorescent conjugates of folic acid in the rat kidney. Intravenously administered folate-linked dye molecules quickly filled the plasma volume but not cellular components of the blood. Glomerular filtration occurred immediately and binding to proximal tubule cells was seen within seconds. Fluorescence from a pH-insensitive conjugate of folic acid, folate Texas red (FTR), was readily observed on the apical surface of the proximal tubules and in multiple cellular compartments, but little binding or uptake could be detected in any other kidney cells. Fluorescence from a pH-sensitive conjugate of folic acid, folate fluorescein, was seen only on the apical surface of proximal tubule cells, suggesting that internalized folate conjugates are localized to acidic compartments. The majority of the FTR conjugate internalized by proximal tubules accumulated within a lysosomal pool, as determined by colocalization studies. However, portions of FTR were also shown by electron microscopy to undergo transcytosis from apical to basal domains. Additional studies with colchicine, which is known to depolymerize microtubules and interrupt transcytosis, produced a marked reduction in endocytosis of FTR, with accumulation limited to the subapical region of the cell. No evidence of cytosolic release of either folate conjugate was observed, which may represent a key difference from the cytosolic deposition seen in neoplastic cells. Together, these data support the argument that folate conjugates (and, by extrapolation, physiological folate) bind to the apical surface of proximal tubule cells and are transported into and across the cells in endocytic compartments. proximal tubule cell  相似文献   

19.
Like most low molecular weight drugs, carboplatin has a short blood circulation time, which reduces tumor uptake and intracellular DNA binding. Drugs conjugated to PEG carriers benefit from prolonged blood circulation, but suffer from reduced cell permeability. In this work we attempted to develop long-circulating PEGylated carboplatin analogues with improved cell permeation abilities, by conjugating the platinum moiety to folate-targeted PEG carriers capable of utilizing the folate receptor-mediated endocytosis (FRME). Two bifunctional FA-PEG conjugates, FA-PEG-Pt and FA-PEG-FITC, were prepared, and their cell uptake, DNA binding, and cytotoxicity were studied by fluorescent microscopy, FACS, and platinum analysis. Folate-targeted PEG conjugates enter the cells efficiently by the FRME pathway but form relatively few DNA adducts and have higher IC(50) values than carboplatin and their nontargeted analogues. Nontargeted PEG-Pt conjugates have a lower cellular uptake but produce higher levels of DNA binding and improved cytotoxicity. Carboplatin, used as a control, has the fastest cellular uptake, but after 16 h of postincubation a large percentage of the drug is excreted from the cells. The findings of this study suggest that folate-targeted conjugates such as FA-PEG-Pt, may not be an optimal prodrug for the carboplatin family compounds, because the conjugates or the active moieties are neutralized or blocked during the FRME process and do not manage to effectively reach the nuclear DNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号