首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Signal regulatory proteins (SIRPs) are receptor-like transmembrane proteins, the majority of which contain a cytoplasmic proline-rich region and four cytoplasmic tyrosines that, when phosphorylated, bind SH2 domain-containing protein tyrosine phosphatases (SHP). We demonstrated previously that growth hormone (GH) induces tyrosyl phosphorylation of SIRPalpha and association of SIRPalpha with SHP-2. The GH-activated tyrosine kinase JAK2 associates with and tyrosyl-phosphorylates SIRPalpha1. Here we show that JAK2-SIRPalpha1 association does not require phosphotyrosines in SIRPalpha1 or JAK2 or the proline-rich region of SIRPalpha1. However, when the C-terminal 30 amino acids of SIRPalpha1 containing the proline-rich region and tyrosine 495 are deleted, tyrosyl phosphorylation of SIRPalpha1 by JAK2 and association of SHP-2 with SIRPalpha1 are reduced. GH-dependent tyrosyl phosphorylation of JAK2 is reduced when wild-type SIRPalpha1 compared with SIRPalpha1 lacking the four cytoplasmic tyrosines (SIRP 4YF) is expressed in cells, suggesting that SIRPalpha1 negatively regulates GHR/JAK2 signaling. Consistent with reduced JAK2 activity, overexpression of wild-type SIRPalpha1 but not SIRP 4YF reduces GH-induced phosphorylation of ERKs 1 and 2, STAT3, and STAT5B. These results suggest that SIRPalpha1 is a negative regulator of GH signaling and that the ability of SIRPalpha1 mutants to negatively regulate GHR-JAK2 signaling correlates with their ability to bind SHP-2.  相似文献   

2.
Induction of apoptosis by Mycobacterium tuberculosis in murine macrophage involves TNF-alpha and nitric oxide (NO) production and caspase cascade activation; however, the intracellular signaling pathways implicated remain to be established. Our results indicate that infection of the B10R murine macrophage line with M. tuberculosis induces apoptosis independent of mycobacterial phagocytosis and that M. tuberculosis induces protein tyrosine kinase (PTK) activity, JAK2/STAT1-alpha phosphorylation, and STAT1-alpha nuclear translocation. Inhibitors of PTK (AG-126), or JAK2 (AG-490) inhibited TNF-alpha and NO production, caspase 1 activation and apoptosis, suggesting that M. tuberculosis-induction of these events depends on JAK2/STAT1-alpha activation. In addition, we have obtained evidence that ManLAM capacity to inhibit M. tuberculosis-induced apoptosis involves the activation of the PTP SHP-1. The finding that M. tuberculosis infection activate JAK2/STAT1-alpha pathway suggests that M. tuberculosis might mimic macrophage-activating stimuli.  相似文献   

3.
4.
Activation of the Janus-activated kinase 2 (JAK2)/STAT1alpha signaling pathway is repressed in Leishmania-infected macrophages. This represents an important mechanism by which this parasite subverts the microbicidal functions of the cell to promote its own survival and propagation. We recently provided evidence that the protein tyrosine phosphatase (PTP) SHP-1 was responsible for JAK2 inactivation. However, STAT1 translocation to the nucleus was not restored in the absence of SHP-1. In the present study, we have used B10R macrophages to study the mechanism by which this Leishmania-induced STAT1 inactivation occurs. STAT1alpha nuclear localization was shown to be rapidly reduced by the infection. Western blot analysis revealed that cellular STAT1alpha, but not STAT3, was degraded. Using PTP inhibitors and an immortalized bone marrow-derived macrophage cell line from SHP-1-deficient mice, we showed that STAT1 inactivation was independent of PTP activity. However, inhibition of macrophage proteasome activity significantly rescued Leishmania-induced STAT1alpha degradation. We further demonstrated that degradation was receptor-mediated and involved protein kinase C alpha. All Leishmania species tested (L. major, L. donovani, L. mexicana, L. braziliensis), but not the related parasite Trypanosoma cruzi, caused STAT1alpha degradation. Collectively, results from this study revealed a new mechanism for STAT1 regulation by a microbial pathogen, which favors its establishment and propagation within the host.  相似文献   

5.
6.
Interleukin (IL)-6 decreases cardiac contractility via a nitric oxide (NO)-dependent pathway. However, mechanisms underlying IL-6-induced NO production remain unclear. JAK2/STAT3 and ERK1/2 are two well known signaling pathways activated by IL-6 in non-cardiac cells. However, these IL-6-activated pathways have not been identified in adult cardiac myocytes. In this study, we identified activation of these two pathways during IL-6 stimulation and examined their roles in IL-6-induced NO production and decrease in contractility of adult ventricular myocytes. IL-6 increased phosphorylation of STAT3 (at Tyr(705)) and ERK1/2 (at Tyr(204)) within 5 min that peaked at 15-30 min and returned to basal levels at 2 h. Phosphorylation of STAT3 was blocked by genistein, a protein tyrosine kinase inhibitor, and AG490, a JAK2 inhibitor, but not PD98059, an ERK1/2 kinase inhibitor. The phosphorylation of ERK1/2 was blocked by PD98059 and genistein but not AG490. Furthermore, IL-6 enhanced de novo synthesis of iNOS protein, increased NO production, and decreased cardiac contractility after 2 h of incubation. These effects were blocked by genistein and AG490 but not PD98059. We conclude that IL-6 activated independently the JAK2/STAT3 and ERK1/2 pathways, but only JAK2/STAT3 signaling mediated the NO-associated decrease in contractility.  相似文献   

7.
8.
9.
10.
Cigarette smoking is a major pathogenic factor in lung cancer. Macrophages play an important role in host defense and adaptive immunity. These cells display diverse phenotypes for performing different functions. M2 type macrophages usually exhibit immunosuppressive and tumor-promoting characteristics. Although macrophage polarization toward the M2 phenotype has been observed in the lungs of cigarette smokers, the molecular basis of the process remains unclear. In this study, we evaluated the possible mechanisms for the polarization of mouse macrophages that are induced by cigarette smoking (CS) or cigarette smoke extract (CSE). The results showed that exposure to CSE suppressed the production of reactive oxygen species (ROS) and nitric oxide (NO) and down-regulated the phagocytic ability of Ana-1 cells. The CD163 expressions on the surface of macrophages from different sources were significantly increased in in vivo and in vitro studies. The M1 macrophage cytokines TNF-α, IL-12p40 and enzyme iNOS decreased in the culture supernatant, and their mRNA levels decreased depending on the time and concentration of CSE. In contrast, the M2 phenotype macrophage cytokines IL-10, IL-6, TGF-β1 and TGF-β2 were up-regulated. Moreover, phosphorylation of JAK2 and STAT3 was observed after the Ana-1 cells were treated with CSE. In addition, pretreating the Ana-1 cells with the STAT3 phosphorylation inhibitor WP1066 inhibited the CSE-induced CD163 expression, increased the mRNA level of IL-10 and significantly decreased the mRNA level of IL-12. In conclusion, we demonstrated that the M2 polarization of macrophages induced by CS could be mediated through JAK2/STAT3 pathway activation.  相似文献   

11.
There is strong evidence that deregulation of prolactin (PRL) signaling contributes to pathogenesis and chemoresistance of breast cancer. Therefore, understanding cross-talk between distinct signal transduction pathways triggered by activation of the prolactin receptor (PRL-R), is essential for elucidating the pathogenesis of metastatic breast cancer.In this study, we applied a sequential inhibitory analysis of various signaling intermediates to examine the hierarchy of protein interactions within the PRL signaling network and to evaluate the relative contributions of multiple signaling branches downstream of PRL-R to the activation of the extracellular signal-regulated kinases ERK1 and ERK2 in T47D and MCF-7 human breast cancer cells.Quantitative measurements of the phosphorylation/activation patterns of proteins showed that PRL simultaneously activated Src family kinases (SFKs) and the JAK/STAT, phosphoinositide-3 (PI3)-kinase/Akt and MAPK signaling pathways. The specific blockade or siRNA-mediated suppression of SFK/FAK, JAK2/STAT5, PI3-kinase/PDK1/Akt, Rac/PAK or Ras regulatory circuits revealed that (1) the PI3-kinase/Akt pathway is required for activation of the MAPK/ERK signaling cascade upon PRL stimulation; (2) PI3-kinase-mediated activation of the c-Raf-MEK1/2-ERK1/2 cascade occurs independent of signaling dowstream of STATs, Akt and PKC, but requires JAK2, SFKs and FAK activities; (3) activated PRL-R mainly utilizes the PI3-kinase-dependent Rac/PAK pathway rather than the canonical Shc/Grb2/SOS/Ras route to initiate and sustain ERK1/2 signaling. By interconnecting diverse signaling pathways PLR may enhance proliferation, survival, migration and invasiveness of breast cancer cells.  相似文献   

12.
Previous studies indicate that STAT5 expression is required for mast cell development, survival, and IgE-mediated function. STAT5 tyrosine phosphorylation is swiftly and transiently induced by activation of the high affinity IgE receptor, FcεRI. However, the mechanism for this mode of activation remains unknown. In this study we observed that STAT5 co-localizes with FcεRI in antigen-stimulated mast cells. This localization was supported by cholesterol depletion of membranes, which ablated STAT5 tyrosine phosphorylation. Through the use of various pharmacological inhibitors and murine knock-out models, we found that IgE-mediated STAT5 activation is dependent upon Fyn kinase, independent of Syk, PI3K, Akt, Bruton's tyrosine kinase, and JAK2, and enhanced in the context of Lyn kinase deficiency. STAT5 immunoprecipitation revealed that unphosphorylated protein preassociates with Fyn and that this association diminishes significantly during mast cell activation. SHP-1 tyrosine phosphatase deficiency modestly enhanced STAT5 phosphorylation. This effect was more apparent in the absence of Gab2, a scaffolding protein that docks with multiple negative regulators, including SHP-1, SHP-2, and Lyn. Targeting of STAT5A or B with specific siRNA pools revealed that IgE-mediated mast cell cytokine production is selectively dependent upon the STAT5B isoform. Altogether, these data implicate Fyn as the major positive mediator of STAT5 after FcεRI engagement and demonstrate importantly distinct roles for STAT5A and STAT5B in mast cell function.  相似文献   

13.
14.
15.
Hairy cells (HCs) are mature malignant B cells that contain a number of constitutively active signaling molecules including GTP-bound Rac1, protein kinase C, and Src family kinases. Because Rac1 is a component of the reactive oxidant species (ROS)-generating NADPH oxidase system, we investigated the role of this GTPase in ROS production in HCs. In this study, we show that ROS production in HCs involves a flavin-containing oxidase dependent on Ca2+, but not on GTP-Rac1 or protein kinase C. This suggests the involvement of the nonphagocytic NADPH oxidase NOX5, an enzyme found in lymphoid tissues, but not in circulating lymphocytes. By using RT-PCR and Southern and Western blotting and by measuring superoxide anion production in membrane fractions in the absence of cytosolic components, we demonstrate for the first time that HCs (but not circulating normal B cells or some other lymphoid cell types) express NOX5. We also demonstrate that inhibition of NADPH oxidase in HCs results in a selective increase in the activity of Src homology region 2 domain-containing phosphatase 1 (SHP-1). Furthermore, SHP-1 in HCs coimmunoprecipitates with tyrosine phosphorylated CD22 and localizes in the same cellular compartment as NOX5. This allows the inactivation of SHP-1 by NOX5-generated ROS and contributes to the maintenance of the constitutive activation of HCs.  相似文献   

16.
Autophosphorylation of the platelet-derived growth factor (PDGF) receptor triggers intracellular signaling cascades as a result of recruitment of Src homology 2 domain-containing enzymes, including phosphatidylinositol 3-kinase (PI3K), the GTPase-activating protein of Ras (GAP), the protein-tyrosine phosphatase SHP-2, and phospholipase C-gamma1 (PLC-gamma1), to specific phosphotyrosine residues. The roles of these various effectors in PDGF-induced generation of H(2)O(2) have now been investigated in HepG2 cells expressing various PDGF receptor mutants. These mutants included a kinase-deficient receptor and receptors in which various combinations of the tyrosine residues required for the binding of PI3K (Tyr(740) and Tyr(751)), GAP (Tyr(771)), SHP-2 (Tyr(1009)), or PLC-gamma1 (Tyr(1021)) were mutated to Phe. PDGF failed to increase H(2)O(2) production in cells expressing either the kinase-deficient mutant or a receptor in which the two Tyr residues required for the binding of PI3K were replaced by Phe. In contrast, PDGF-induced H(2)O(2) production in cells expressing a receptor in which the binding sites for GAP, SHP-2, and PLC-gamma1 were all mutated was slightly greater than that in cells expressing the wild-type receptor. Only the PI3K binding site was alone sufficient for PDGF-induced H(2)O(2) production. The effect of PDGF on H(2)O(2) generation was blocked by the PI3K inhibitors LY294002 and wortmannin or by overexpression of a dominant negative mutant of Rac1. These results suggest that a product of PI3K is required for PDGF-induced production of H(2)O(2) in nonphagocytic cells, and that Rac1 mediates signaling between the PI3K product and the putative NADPH oxidase.  相似文献   

17.
Signals propagated via the gp130 subunit of the interleukin-6 (IL-6)-type cytokine receptors mediate, among various cellular responses, proliferation of hematopoietic cells and induction of acute-phase plasma protein (APP) genes in hepatic cells. Hematopoietic growth control by gp130 is critically dependent on activation of both STAT3 and protein tyrosine phosphatase 2 (SHP-2). To investigate whether induction of APP genes has a similar requirement for SHP-2, we constructed two chimeric receptors, G-gp130 and G-gp130(Y2F), consisting of the transmembrane and cytoplasmic domains of gp130 harboring either a wild-type or a mutated SHP-2 binding site, respectively, fused to the extracellular domain of the granulocyte colony-stimulating factor (G-CSF) receptor. Rat hepatoma H-35 cells stably expressing the chimeric receptors were generated by retroviral transduction. Both chimeric receptors transmitted a G-CSF-induced signal characteristic of that triggered by IL-6 through the endogenous gp130 receptor; i.e., both activated the appropriate JAK, induced DNA binding activity by STAT1 and STAT3, and up-regulated expression of the target APP genes, those for α-fibrinogen and haptoglobin. Notwithstanding these similarities in the patterns of signaling responses elicited, mutation of the SHP-2 interaction site in G-gp130(Y2F) abrogated ligand-activated receptor recruitment of SHP-2 as expected. Moreover, the tyrosine phosphorylation state of the chimeric receptor, the associated JAK activity, and the induced DNA binding activity of STAT1 and STAT3 were maintained at elevated levels and for an extended period of time in G-gp130(Y2F)-expressing cells following G-CSF treatment compared to that in cells displaying the G-gp130 receptor. H-35 cells ectopically expressing G-gp130(Y2F) were also found to display an enhanced sensitivity to G-CSF and a higher level of induction of APP genes. Overexpression of the enzymatically inactive SHP-2 enhanced the signaling by the wild-type but not by the Y2F mutant G-gp130 receptor. These results indicate that gp130 signaling for APP gene induction in hepatic cells differs qualitatively from that controlling the proliferative response in hematopoietic cells in not being strictly dependent on SHP-2. The data further suggest that SHP-2 functions normally to attenuate gp130-mediated signaling in hepatic (and, perhaps, other) cells by moderating JAK action.  相似文献   

18.
19.
20.
In macrophages, chemotactic stimuli cause the activation of Rac and PAK, but little is known about the signaling pathways involved and their role in chemotactic gradient sensing. Herein, we report that in macrophages, the chemokine RANTES (regulated on activation normal T cell expressed and secreted)/CCL5 activates the small GTPase Rac and its downstream target PAK2 within seconds. This response depends on Gi activation and largely on the subsequent triggering of phosphoinositide 3-kinase gamma (PI3Kgamma) and Rac. Retroviral transduction of tagged Rac1 and -2 indicates that RANTES/CCL5-mediated activation of PI3Kgamma triggers Rac1 but not Rac2. In agreement, silencing of Rac1 by shRNA blocks PAK2 activity and inhibits RANTES/CCL5-induced macrophage polarization and directional migration. On the other hand, the tyrosine kinase receptor agonist CSF-1 activates PAK2 independently of PI3Kgamma and Rac. Our results thus demonstrate a chemokine-specific signaling pathway in which Gi and PI3Kgamma coordinate to drive Rac1 and PAK2 activation that eventually controls the chemotactic response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号