首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The objective of the experiments described in this paper was to determine the feasibility of inhibition of pre-mRNA splicing by antisense RNA in vitro. Three different types of antisense RNA were utilized: antisense RNA complementary to the spliced RNA molecule; antisense RNA complementary to the unprocessed mRNA precursor molecule; and antisense RNA complementary to the 5' and 3' splice junctions. Whereas antisense RNA complementary to mRNA had little effect on splicing, antisense RNAs complementary to mRNA precursor or to splice junctions strongly inhibited splicing of pre-mRNA molecule. The results obtained indicate that the inhibitory effect is most likely due to hybrid formation between pre-mRNA and antisense RNA molecules and that antisense RNA complementary to the exon portion but not to the intron portion of splice junction exhibit an inhibitory effect. This inhibition can be overcome by bringing together 5' and 3' splice junctions via hybrid formation with antisense RNA complementary to the spliced RNA molecule.  相似文献   

3.
4.
Maternal RNA of mouse eggs and embryos was labeled by exposure of growing ovarian oocytes to 3H-uridine in vivo 8 to 16 days before ovulation and fertilization. Labeled embryos from the 1-cell stage to the blastocyst stage were collected, fixed, and autoradiographs of plastic sections prepared. The observed grain density was similar in the pronuclei and in the cytoplasm of 1-cell embryos. Knowing the volumes of nucleus and cytoplasm, it was determined that 3% of the maternal RNA was found in the pronuclei. It is suggested that some of this nuclear RNA may be stable small nuclear RNAs (e.g. U1 RNA) retained from the germinal vesicle stage through meiotic maturation. During the 2-cell stage and beyond, maternal RNA is degraded and labeled precursor is reincorporated into nuclear RNA, making it difficult to accurately quantitate the amount of nuclear maternal RNA. It is known that about one third of the total maternal RNA is lost between the 8-cell and blastocyst stages. It was found that cytoplasmic grain densities in inner and outer cells of the morula and blastocyst were not significantly different. Thus, the loss of maternal RNA does not proceed more rapidly in the differentiating trophoblast than in the inner cell mass.  相似文献   

5.
6.
7.
RNA isolated from Urechis caupo mature oocytes and embryos was analyzed for the presence of histone messenger RNAs (mRNAs) by in vitro translation and by filter blot hybridization to determine the contribution of maternal and newly transcribed histone mRNAs to the pattern of histone synthesis during early development. Histone mRNAs were not detected in mature oocyte RNA which suggests that relatively few if any maternal histone mRNAs are sequestered in the mature oocytes. Histone mRNAs were detected in cleavage-stage RNA and increased in amount from midcleavage through late gastrula stages. The in vitro translation analysis also demonstrated that the amount of H1 histone mRNA in late cleavage- and early blastula-stage embryos exceeds that of the individual core histone mRNAs. The disproportionate accumulation of individual histone mRNAs correlates with the noncoordinate synthesis of H1 and core histones which occurs during early embryogenesis.  相似文献   

8.
9.
A developmentally regulated activity that unwinds RNA duplexes   总被引:54,自引:0,他引:54  
B L Bass  H Weintraub 《Cell》1987,48(4):607-613
We have attempted to use antisense RNA techniques in the developing Xenopus embryo and found that although hybrids form between sense and antisense RNAs, they are transient. Our studies indicate that this is due to the presence of an activity that unwinds RNA:RNA hybrids. The activity is present at low, but detectable, levels in Xenopus oocytes, increases during oocyte maturation, and exists at high levels throughout early embryogenesis. The activity has been characterized in S100 extracts. The denaturation of a specific RNA:RNA hybrid is inhibited by the addition of a second duplexed RNA but not by the addition of single-stranded RNA, single-stranded DNA, or double-stranded DNA.  相似文献   

10.
Specific mRNA degradation mediated by double-stranded RNA (dsRNA), which is termed RNA interference (RNAi), is a useful tool with which to study gene function in several systems. We report here that in mouse oocytes, RNAi provides a suitable and robust approach to study the function of dormant maternal mRNAs. Mos (originally known as c-mos) and tissue plasminogen activator (tPA, Plat) mRNAs are dormant maternal mRNAs that are recruited during oocyte maturation; translation of Mos mRNA results in the activation of MAP kinase. dsRNA directed towards Mos or Plat mRNAs in mouse oocytes effectively results in the specific reduction of the targeted mRNA in both a time- and concentration-dependent manner. Moreover, dsRNA is more potent than either sense or antisense RNAs. Targeting the Mos mRNA results in inhibiting the appearance of MAP kinase activity and can result in parthenogenetic activation. Mos dsRNA, therefore, faithfully phenocopies the Mos null mutant. Targeting the Plat mRNA with Plat dsRNA results in inhibiting production of tPA activity. Finally, effective reduction of the Mos and Plat mRNA is observed with stoichiometric amounts of Mos and Plat dsRNA, respectively.  相似文献   

11.
Maternal poly(A)+RNA, histone mRNA, and actin mRNA exhibit unique spatial distributions in the different ooplasmic regions of ascidian eggs. These RNAs also appear to migrate with their respective ooplasms during the episode of extensive cytoplasmic rearrangement that occurs after fertilization, suggesting they are associated with a structural framework. The role of the cytoskeletal framework (CF) in determining the spatial distribution of maternal mRNA was tested by subjecting Triton X-100 extracted (Styela plicata) eggs and early embryos to in situ hybridization with poly(U) and cloned DNA probes. Grain counts indicated that substantial proportions of the egg poly(A)+RNA, histone mRNA, and actin mRNA were present in the CF and that there was no alteration in the extent of mRNA-CF interactions during the period between fertilization and the two-cell stage. Analysis of grain distributions indicated that poly(A)+RNA, histone mRNA, and actin mRNA were concentrated in the same regions of detergent-extracted eggs as they are in intact eggs. The proportions and spatial distribution of these RNAs in the CF were not affected when the actin cytoskeleton was destabilized by cytochalasin B or DNAse I. The data suggest that maternal mRNA is associated with the CF, that this association is responsible for mRNA rearrangement during ooplasmic segregation, and that mRNA-CF interactions are not dependent on the integrity of the actin cytoskeleton.  相似文献   

12.
A wheat germ cell-free translation system has been used to analyze populations of abundant messenger RNA from sea urchin eggs and embryos and from amphibian oocytes and ovaries. We show directly that sea urchin eggs and embryos contain translatable mRNA of three general classes: poly(A)+ mRNA, poly(A)? histone mRNA, and poly(A)? nonhistone mRNA. Additionally, some histone synthesis appears to be promoted by poly(A)+ RNA. Sea urchin eggs seem to contain a higher proportion of prevalent poly(A)? nonhistone mRNAS than do embryos. Some differences in the proteins encoded by poly(A)+ and poly(A)? RNAs are detectable. Many coding sequences in the egg appear to be represented in both poly(A)+ and poly(A)? RNAs, since the translation products of the two RNA classes exhibit many common bands when run on one-dimensional polyacrylamide gels. However, some of this overlap is probably due to fortuitous comigration of nonidentical proteins. Distinct stage-specific changes in the spectra of prevalent translatable mRNAs of all three classes occur, although many mRNAs are detectable throughout early development. Particularly striking is the presence of an egg poly(A)? mRNA, encoding a 70,000–80,000 molecular weight protein, which is not detected in morula or later-stage embryos. In amphibian (Xenopus laevis and Triturus viridescens) ovary RNA, the translation assay detects the following three mRNA classes: poly(A)+ nonhistone mRNA, poly(A)? histone mRNA, and poly(A)+ histone mRNA. Amphibian ovary RNA appearently lacks an abundant poly(A)? nonhistone mRNA component of the magnitude detectable in sea urchin eggs. mRNA encoding histone-like proteins is found in the very earliest (small stage 1) oocytes of Xenopus as well as in later stage oocytes. During oogenesis there appear to be no striking qualitative changes in the spectra of prevalent translatable mRNAs which are detected by the cell-free translation assay.  相似文献   

13.
14.
We have attempted to analyze the function of a maternal mRNA xlgv7 which is distributed as an animal-vegetal gradient in stage 6 oocytes using a combination of antisense oligodeoxynucleotide injection into oocytes followed by in vitro maturation and fertilization. Injection of 20 ng of the antisense oligodeoxynucleotide resulted in the destruction of the xlgv7 mRNA to undetectable levels. Upon maturation and fertilization the resulting embryos develop with no specific defects suggesting that the maternal store of xlgv7 in stage 6 oocytes is not required and that the embryo can develop solely with the maternal store of the xlgv7 protein. Also, these results demonstrate the feasibility of this approach in destroying a specific maternal RNA and assaying its effect on development.  相似文献   

15.
We previously succeeded in constructing a cDNA library, CPF7, enriched with cDNA derived from maternal RNAs with the extended poly(A) tail in mouse fertilized eggs. In this study, we performed RNA blot analysis to examine the elongation in maternal RNAs using 20 representative clones isolated from CPF7 as probes. Various patterns of elongation, shortening, and/or degradation of maternal RNAs were observed from fully grown oocytes to early 2-cell embryos and could be roughly classified into three types and seven subtypes. These findings indicate that poly(A) elongation and shortening of maternal RNAs are not restricted to certain types of maternal RNAs but occur in many of them, and suggest a complex mechanism governing modification of the 3' end of maternal RNAs during the oocyte-to-embryo transition.  相似文献   

16.
17.
18.
The rat erbA alpha locus encodes two overlapping mRNAs, alpha 1 and alpha 2, which are identical except for their most 3' exons. alpha 1 mRNA encodes a thyroid hormone receptor, while alpha 2 encodes an altered ligand binding domain of unknown function. Previous studies have shown that the ratio of alpha 1 to alpha 2 is highest in cells expressing a high level of a third RNA, Rev-ErbA alpha mRNA, which is transcribed in the opposite direction and is complementary to alpha 2 but not alpha 1 mRNA. It was hypothesized that base pairing with Rev-ErbA alpha blocks splicing of alpha 2 mRNA, thereby favoring formation of the non-overlapping alpha 1. To test this model, a system was developed in which alpha 2 pre-mRNAs were accurately spliced in vitro. Splicing was inhibited by the addition of a 5-fold excess of antisense RNAs containing the 3' end of Rev-ErbA alpha mRNA. Both an antisense RNA extending across the 3' splice site and a shorter RNA complementary only to exon sequences efficiently blocked splicing. However, splicing was only inhibited by complementary RNAs. These observations are consistent with a mechanism in which base pairing with a complementary RNA regulates alternative processing of alpha 1 and alpha 2 mRNAs.  相似文献   

19.
A cDNA library prepared from fertilized eggs of the ascidian Halocynthia roretzi was screened for prelocalized mRNAs in the early embryo by means of whole-mount in situ hybridization using a digoxigenin-labeled antisense RNA of each clone. Random mass screening of 150 cDNAs in a fertilized egg yielded six different clones which showed mRNA localization in the posterior-vegetal cytoplasm of the 8-cell embryo. An in situ hybridization study of the detailed spatial distribution of each mRNA in embryos of various stages revealed that there are, in contrast to the identical localization in embryos after the 16-cell stage, two distinct patterns of RNA distribution at earlier stages. One is colocalization with the myoplasm from the prefertilization stage to the 8-cell stage (type I postplasmic RNAs). The other is delayed accumulation of RNA at the posterior-vegetal cytoplasm after fertilization (type II postplasmic RNAs). We found that both types of RNAs associate with the cytoskeleton, but that they show different sensitivities to inhibitors of the cytoskeleton; translocation of the type I RNAs is dependent upon microfilaments during the first phase of ooplasmic segregation and dependent upon microtubules during the second phase of segregation, whereas translocation of the type II RNAs is dependent upon microfilaments throughout ooplasmic segregation. These results show that there are two pathways for the localization of the RNAs at the posterior-vegetal cytoplasm in the 8-cell embryo of the ascidian H. roretzi.  相似文献   

20.
Cytoplasmic poly(A) elongation is one mechanism that regulates translational recruitment of maternal mRNA in early development. In Xenopus laevis, poly(A) elongation is controlled by two cis elements in the 3' untranslated regions of responsive mRNAs: the hexanucleotide AAUAAA and a U-rich structure with the general sequence UUUUUAAU, which is referred to as the cytoplasmic polyadenylation element (CPE). B4 RNA, which contains these sequences, is polyadenylated during oocyte maturation and maintains a poly(A) tail in early embryos. However, cdk2 RNA, which also contains these sequences, is polyadenylated during maturation but deadenylated after fertilization. This suggests that cis-acting elements in cdk2 RNA signal the removal of the poly(A) tail at this time. By using poly(A) RNA-injected eggs, we showed that two elements which reside 5' of the CPE and 3' of the hexanucleotide act synergistically to promote embryonic deadenylation of this RNA. When an identical RNA lacking a poly(A) tail was injected, these sequences also prevented poly(A) addition. When fused to CAT RNA, the cdk2 3' untranslated region, which contains these elements, as well as the CPE and the hexanucleotide, promoted poly(A) addition and enhanced chloramphenicol acetyltransferase activity during maturation, as well as repression of these events after fertilization. Incubation of fertilized eggs with cycloheximide prevented the embryonic inhibition of cdk2 RNA polyadenylation but did not affect the robust polyadenylation of B4 RNA. This suggests that a maternal mRNA, whose translation occurs only after fertilization, is necessary for the cdk2 deadenylation or inhibition of RNA polyadenylation. This was further suggested when poly(A)+ RNA isolated from two-cell embryos was injected into oocytes that were then allowed to mature. Such oocytes became deficient for cdk2 RNA polyadenylation but remained proficient for B4 RNA polyadenylation. These data show that CPE function is developmentally regulated by multiple sequences and factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号