首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To explore the interactions between the host, environment and bacterium responsible for the different manifestations of Helicobacter pylori infection, we examined the effect of acidic conditions on H. pylori-induced interleukin (IL)-8 expression. AGS gastric epithelial cells were exposed to acidic pH and infected with H. pylori[wild-type strain, its isogenic cag pathogenicity island (PAI) mutant or its oipA mutant]. Exposure of AGS cells to acidic pH alone did not enhance IL-8 production. However, following exposure to acidic conditions, H. pylori infection resulted in marked enhancement of IL-8 production which was independent of the presence of the cag PAI and OipA, indicating that H. pylori and acidic conditions act synergistically to induce gastric mucosal IL-8 production. In neutral pH environments H. pylori-induced IL-8 induction involved the NF-kappaB pathways, the extracellular signal-regulated kinase (ERK)-->c-Fos/c-Jun-->activating protein (AP-1) pathways, JNK-->c-Jun-->AP-1 pathways and the p38 pathways. At acidic pH H. pylori-induced augmentation of IL-8 production involved markedly upregulated the NF-kappaB pathways and the ERK-->c-Fos-->AP-1 pathways. In contrast, activation of the JNK-->c-Jun-->AP-1 pathways and p38 pathways were pH independent. These results might explain the clinical studies in which patients with duodenal ulcers had higher levels of IL-8 in the antral gastric mucosa than patients with simple H. pylori gastritis.  相似文献   

2.
Helicobacter pylori has been identified as the major aetiological agent in the development of chronic gastritis and duodenal ulcer, and it plays a role in the development of gastric carcinoma. Attachment of H. pylori to gastric epithelial cells leads to nuclear and cytoskeletal responses in host cells. Here, we show that Rho GTPases Rac1 and Cdc42 were activated during infection of gastric epithelial cells with either the wild-type H. pylori or the mutant strain cagA. In contrast, no activation of Rho GTPases was observed when H. pylori mutant strains (virB7 and PAI) were used that lack functional type IV secretion apparatus. We demonstrated that H. pylori-induced activation of Rac1 and Cdc42 led to the activation of p21-activated kinase 1 (PAK1) mediating nuclear responses, whereas the mutant strain PAI had no effect on PAK1 activity. Activation of Rac1, Cdc42 and PAK1 represented a very early event in colonization of gastric epithelial cells by H. pylori. Rac1 and Cdc42 were recruited to the sites of bacterial attachment and are therefore probably involved in the regulation of local and overall cytoskeleton rearrangement in host cells. Finally, actin rearrangement and epithelial cell motility in H. pylori infection depended on the presence of a functional type IV secretion system encoded by the cag pathogenicity island (PAI).  相似文献   

3.
Helicobacter pylori strains that harbour the Cag pathogenicity island (Cag PAI) induce interleukin (IL)-8 secretion in gastric epithelial cells, via the activation of NF- kappa B, and are associated with severe inflammation in humans. To investigate the influence of Cag PAI-mediated inflammatory responses on H. pylori adaptation to mice, a selection of H. pylori clinical isolates (n = 12) was cag PAI genotyped and tested in co-culture assays with AGS gastric epithelial cells, and in mouse colonization studies. Six isolates were shown to harbour a complete cag PAI and to induce NF- kappa B activation and IL-8 secretion in AGS cells. Of the eight isolates that spontaneously colonized mice, six had a cag PAI(-) genotype and did not induce pro-inflammatory responses in these cells. Mouse-to-mouse passage of the two cag PAI(+) -colonizing strains yielded host-adapted variants that infected mice with bacterial loads 100-fold higher than those of the respective parental strains (P= 0.001). These mouse-adapted variants were affected in their capacity to induce pro-inflammatory responses in host cells, yet no changes in cag PAI gene content were detected between the strains by DNA microarray analysis. This work provides evidence for in vivo selection of H. pylori bacteria with a reduced capacity to induce inflammatory responses and suggests that such bacteria are better adapted to colonize mice.  相似文献   

4.
Helicobacter pylori infection causes a Th1-driven mucosal immune response. Cyclooxygenase (COX)-2 is up-regulated in lamina propria mononuclear cells in H. pylori gastritis. Because COX-2 can modulate Th1/Th2 balance, we determined whether H. pylori activates COX-2 in human PBMCs, and the effect on cytokine and proliferative responses. There was significant up-regulation of COX-2 mRNA and PGE(2) release in response to H. pylori preparations. Addition of COX-2 inhibitors or an anti-PGE(2) Ab resulted in a marked increase in H. pylori-stimulated IL-12 and IFN-gamma production, and a decrease in IL-10 levels. Addition of PGE(2) or cAMP, the second messenger activated by PGE(2), had the opposite effect. Similarly, stimulated cell proliferation was increased by COX-2 inhibitors or anti-PGE(2) Ab, and was decreased by PGE(2). Our findings indicate that COX-2 has an immunosuppressive role in H. pylori gastritis, which may protect the mucosa from severe injury, but may also contribute to the persistence of the infection.  相似文献   

5.
Helicobacter pylori is recognized as the main cause of gastritis and is associated with gastric carcinogenesis. Syndecan-4 represents the major source of heparan sulfate (HS) in the gastric cells. HS proteoglycans expressed on the cell surface constitute targets for H. pylori at the early stage of infection. The aim of this study was to determine whether H. pylori induction of syndecan-4 expression is affected by the virulence characteristics of the infecting strain, namely the cytotoxic-associated gene ( cag ) pathogenicity island (PAI). We observed that individuals infected with highly pathogenic H. pylori strains express syndecan-4 in the foveolar epithelium of the gastric mucosa. The association between the cag PAI status of the infecting strain and syndecan-4 expression was further demonstrated by infection of gastric epithelial cell lines with a panel of cag PAI+ and cag PAI H. pylori strains, showing that expression of syndecan-4 was significantly increased in response to infection with the highly pathogenic strains. Moreover, infection of gastric cells with cag A and cag E mutant strains further confirmed that syndecan-4 induction is dependent on an intact cag PAI. The present study shows that highly pathogenic H. pylori strains induce syndecan-4 expression, both in human gastric mucosa and in gastric cell lines, in a cag PAI-dependent manner.  相似文献   

6.
7.
The cagA gene is a key marker for the Helicobacter pylori cag pathogenicity island (PAI), which may vary in composition in different strains with insertion sequence mediated interruptions and deletions of genes. While presence of cagA has been associated with increased risk for peptic ulcer disease and gastric cancer, the precise link with virulence is controversial. We investigated H. pylori from dyspeptics in one location in England (mid-Essex) with reference to the prevalence and distribution by age cohort of different cag PAI forms to determine if presence of the insertion element IS605 had a modifying effect on the severity of associated disease. H. pylori isolated from gastric biopsies over a 4-year period were screened by specific PCR assays for the presence of cagA, cagD, cagE and virD4 genes in the cag PAI, and for the presence of IS605 in the PAI and elsewhere in the genome. Most (68%) of the 166 isolates of H. pylori contained a PAI based on detection of cagA whereas 29% had no detectable PAI using multiple loci. The cagA+ genotype frequencies were similar in the peptic ulcer and non-ulcer dyspepsia-gastritis groups (79% vs. 74%) whereas frequencies in the NUD-oesophagitis and normal mucosa groups were lower (58%) but not significantly different (P>0.41). Genomic IS605 inserts were present at an overall frequency of 32% and were widely distributed with respect to patient age and disease severity. The combined cagA+/IS- strain genotype was common but not significantly associated with PUD compared to endoscopically normal mucosa (P> or =0.807). We concluded that presence of the IS605 element, whether in cagA+ or cagA- strains of H. pylori, did not systematically modify the severity of associated disease in the study population.  相似文献   

8.
Helicobacter pylori infection outcome might depend on genotypic polymorphisms of both the bacterium and the host. We ascertained: (1) the functionality of H. pylori oipA gene; (2) the polymorphism of the hostinterleukin (IL-1beta) gene (-31 C/T) and of the IL-1RN gene (intron 2 VNTR); (3) the association between the above genes and the histological and pathological outcome of H. pylori infection. One hundred and sixty-five H. pylori positive and 137 H. pylori negative subjects (23 gastric adenocarcinoma, 58 peptic ulcer, 221 gastritis) were studied. oipA was sequenced, IL-1beta was RFLP analysed. Antral and body mucosal biopsies were histologically evaluated. Functional oipA genes were correlated with cagA gene; both genes were significantly associated with gastritis activity, peptic ulcer and gastric adenocarcinoma. In these patients heterozygousIL-1RN 1/2 and IL-1beta C/T genotypes were more frequent than in gastritis patients. Intestinal metaplasia was associated with cagA, functional oipA and IL-1RN 2 allele. In conclusion, peptic ulcer and the preneoplastic intestinal metaplasia are associated with H. pylori virulence genes and with IL-1RN 2 host allele. An interplay between bacterial virulence factors and cytokines genotypes, is probably the main route causing H. pylori infection to lead to benign mild disease, benign severe disease or preneoplastic lesions.  相似文献   

9.
10.
Paxillin is involved in the regulation of Helicobacter pylori-mediated gastric epithelial cell motility. We investigated the signaling pathways regulating H. pylori-induced paxillin phosphorylation and the effect of the H. pylori virulence factors cag pathogenicity island (PAI) and outer inflammatory protein (OipA) on actin stress fiber formation, cell phenotype, and IL-8 production. Gastric cell infection with live H. pylori induced site-specific phosphorylation of paxillin tyrosine (Y) 31 and Y118 in a time- and concentration-dependent manner. Activated paxillin localized in the cytoplasm at the tips of H. pylori-induced actin stress fibers. Isogenic oipA mutants significantly reduced paxillin phosphorylation at Y31 and Y118 and reduced actin stress fiber formation. In contrast, cag PAI mutants only inhibited paxillin Y118 phosphorylation. Silencing of epidermal growth factor receptor (EGFR), focal adhesion kinase (FAK), or protein kinase B (Akt) expression by small-interfering RNAs or inhibiting kinase activity of EGFR, Src, or phosphatidylinositol 3-kinase (PI3K) markedly reduced H. pylori-induced paxillin phosphorylation and morphologic alterations. Reduced FAK expression or lack of Src kinase activity suppressed H. pylori-induced IL-8 production. Compared with infection with the wild type, infection with the cag PAI mutant and oipA mutant reduced IL-8 production by nearly 80 and 50%. OipA-induced IL-8 production was FAK- and Src-dependent, although a FAK/Src-independent pathway for IL-8 production also exists, and the cag PAI may be mainly involved in this pathway. We propose paxillin as a novel cellular target for converging H. pylori-induced EGFR, FAK/Src, and PI3K/Akt signaling to regulate cytoskeletal reorganization and IL-8 production in part, thus contributing to the H. pylori-induced diseases.  相似文献   

11.
BACKGROUND: Helicobacter pylori infection leads to gastritis, peptic ulcer, and gastric cancer, in part due to epithelial damage following bacteria binding to the epithelium. Infection with cag pathogenicity island (PAI) bearing strains of H. pylori is associated with increased gastric inflammation and a higher incidence of gastroduodenal diseases. It is now known that various effector molecules are injected into host epithelial cells via a type IV secretion apparatus, resulting in cytoskeletal changes and chemokine secretion. Whether binding of bacteria and subsequent apoptosis of gastric epithelial cells are altered by cag PAI status was examined in this study. METHODS: AGS, Kato III, and N87 human gastric epithelial cell lines were incubated with cag PAI-positive or cag PAI-negative strains of H. pylori in the presence or absence of clarithromycin. Binding was evaluated by flow cytometry and scanning electron microscopy. Apoptosis was assessed by detection of DNA degradation and ELISA detection of exposed histone residues. RESULTS: cag PAI-negative strains bound to gastric epithelial cells to the same extent as cag PAI-positive strains. Both cag PAI-positive and cag PAI-negative strains induced apoptosis. However, cag PAI-positive strains induced higher levels of DNA degradation. Incubation with clarithromycin inactivated H. pylori but did not affect binding. However, pretreatment with clarithromycin decreased infection-induced apoptosis. CONCLUSIONS: cag PAI status did not affect binding of bacteria to gastric epithelial cells but cag PAI-positive H. pylori induced apoptosis more rapidly than cag PAI-negative mutant strains, suggesting that H. pylori binding and subsequent apoptosis are differentially regulated with regard to bacterial properties.  相似文献   

12.
Protein-protein interactions among Helicobacter pylori cag proteins   总被引:4,自引:0,他引:4       下载免费PDF全文
Many Helicobacter pylori isolates contain a 40-kb region of chromosomal DNA known as the cag pathogenicity island (PAI). The risk for development of gastric cancer or peptic ulcer disease is higher among humans infected with cag PAI-positive H. pylori strains than among those infected with cag PAI-negative strains. The cag PAI encodes a type IV secretion system that translocates CagA into gastric epithelial cells. To identify Cag proteins that are expressed by H. pylori during growth in vitro, we compared the proteomes of a wild-type H. pylori strain and an isogenic cag PAI deletion mutant using two-dimensional difference gel electrophoresis (2D-DIGE) in multiple pH ranges. Seven Cag proteins were identified by this approach. We then used a yeast two-hybrid system to detect potential protein-protein interactions among 14 Cag proteins. One heterotypic interaction (CagY/7 with CagX/8) and two homotypic interactions (involving H. pylori VirB11/ATPase and Cag5) were similar to interactions previously reported to occur among homologous components of the Agrobacterium tumefaciens type IV secretion system. Other interactions involved Cag proteins that do not have known homologues in other bacterial species. Biochemical analysis confirmed selected interactions involving five of the proteins that were identified by 2D-DIGE. Protein-protein interactions among Cag proteins are likely to have an important role in the assembly of the H. pylori type IV secretion apparatus.  相似文献   

13.
NF-kappaB is a critical regulator of genes involved in inflammation. Gastric epithelial cells and macrophages are considered the main sources of pro-inflammatory cytokines. We investigated NF-kappaB activation by Helicobacter pylori in MKN45 gastric epithelial cells and THP-1 monocytic cells. Although, cag pathogenicity island (PAI)-positive H. pylori (wild type) activated NF-kappaB in both cells, isogenic mutant of cagE (DeltacagE) activated it only in THP-1 cells. Supernatant from the wild type culture could activate NF-kappaB in THP-1 cells but not in MKN45 cells. High density cDNA array analysis revealed that mRNA expression of NF-kappaB-regulated genes such as interleukin (IL)-8, tumor necrosis factor-alpha (TNFalpha), and IL-1beta was significantly up-regulated by the wild type in both cells, whereas it was up-regulated by DeltacagE only in THP-1 cells. Experiments using CD14-neutralizing antibody and IL-1 receptor-associated kinase (IRAK) assay showed that both wild type and DeltacagE H. pylori activated NF-kappaB through CD14 and IRAK in THP-1 cells but not in MKN45 cells. Macrophages from C3H/HeJ mice carrying point mutation in the Toll-like receptor 4 (TLR4) gene showed decreased NF-kappaB activation and TNFalpha secretion compared with C3H/HeN mouse macrophage when treated with H. pylori. In conclusion, H. pylori-induced NF-kappaB activation in epithelial cells is dependent on cag PAI and contact but does not involve CD14 and IRAK, whereas in macrophage/monocytic cells it is independent of cag PAI or contact but involves CD14 and TLR4.  相似文献   

14.
Gastritis due to Helicobacter pylori in mice and humans is considered a Th1-mediated disease, but the specific cell subsets and cytokines involved are still not well understood. The goal of this study was to investigate the immunopathogenesis of H. pylori-induced gastritis and delayed-type hypersensitivity (DTH) in mice. C57BL/6-Prkdc(scid) mice were infected with H. pylori and reconstituted with CD4+, CD4-depleted, CD4+CD45RB(high), or CD4+CD45RB(low) splenocytes from wild-type C57BL/6 mice or with splenocytes from C57BL/6(IFN-gamma-/-) or C57BL/6(IL-10-/-) mice. Four or eight weeks after transfer, DTH to H. pylori Ags was determined by footpad injection; gastritis and bacterial colonization were quantified; and IFN-gamma secretion by splenocytes in response to H. pylori Ag was determined. Gastritis and DTH were present in recipients of unfractionated splenocytes, CD4+ splenocytes, and CD4+CD45RB(high) splenocytes, but absent in the other groups. IFN-gamma secretion in response to H. pylori Ags was correlated with gastritis, although splenocytes from all groups of mice secreted some IFN-gamma. Gastritis was most severe in recipients of splenocytes from IL-10-deficient mice, and least severe in those given IFN-gamma-deficient splenocytes. Bacterial colonization in all groups was inversely correlated with gastritis. These data indicate that 1) CD4+ T cells are both necessary and sufficient for gastritis and DTH due to H. pylori in mice; 2) high expression of CD45RB is a marker for gastritis-inducing CD4+ cells; and 3) IFN-gamma contributes to gastritis and IL-10 suppresses it, but IFN-gamma secretion alone is not sufficient to induce gastritis. The results support the assertion that H. pylori is mediated by a Th1-biased cellular immune response.  相似文献   

15.
幽门螺杆菌cag PAI编码的Ⅳ型分泌系统   总被引:1,自引:0,他引:1  
幽门螺杆菌(Helicobacter pylori,H.pylori)是定植于人胃部特定的病原菌,感染呈全球分布,感染率高达50%以上。现已证实它是轻度胃炎,消化性溃疡及胃癌的主要病因。Ⅰ型H.pylori菌株含有一个约40kb的特殊基因片段,即cag致病岛(cytotoxin associated gene pathogenicity island,cag PAI),该片段只出现于致病相关菌株,基因呈高密度分布并编码一个分泌转运系统称为Ⅳ型分泌系统(type Ⅳ secretion system,TFSS),通过转运相关毒素而参与H.pylori诱导上皮细胞细胞内的酪氨酸磷酸化、细胞骨架重排、基垫结构形成、活化核转录因子NF-κB、诱导促炎细胞因子白细胞介素-8的表达等,故在H.pylori的致病中起着关键作用。近年来,研究者们致力于研究Ⅳ型分泌系统的功能,但是对于这个装置是如何转运蛋白进入宿主细胞的确切机制还是知之甚少,因此,对Ⅳ型分泌系统的研究将有助于进一步明确H.pylori致病机制,并为临床诊断和治疗提供新的靶点。  相似文献   

16.
BACKGROUND: Helicobacter pylori has been shown to induce pronounced gastric inflammation in the absence of interleukin-10 (IL-10) by 6 weeks post inoculation. The ability of IL-10(-/-) mice to eradicate H. pylori has not been demonstrated, possibly due to early sacrifice. Therefore, the long-term effect of enhanced gastritis on H. pylori colonization was determined in IL-10(-/-) mice. METHODS: C57BL/6 and IL-10(-/-) mice were infected with H. pylori and assessed for the degree of gastritis, bacterial load, and in vitro T-cell recall response at 4 and 16 weeks of infection. RESULTS: Infection of IL-10(-/-) mice resulted in significantly more severe gastritis than wild-type control mice and eradication of H. pylori by 4 weeks post inoculation. By 16 weeks, the level of gastritis in IL-10(-/-) was reduced to the levels observed in wild-type mice. Splenocytes from IL-10(-/-) mice were prone to produce significantly greater amounts of IFN-gamma than wild-type mice when stimulated with bacterial antigens. CONCLUSIONS: These results indicate that the host is capable of spontaneously eradicating H. pylori from the gastric mucosa when inflammation is elevated beyond the chronic inflammation induced in wild-type mice, and that the gastritis dissipates following bacterial eradication. Additionally, these data provide support for a model of gastrointestinal immunity in which naturally occurring IL-10-producing regulatory T cells modulate the host response to gastrointestinal bacteria.  相似文献   

17.
18.
Somatostatin inhibits dendritic cell responsiveness to Helicobacter pylori   总被引:2,自引:0,他引:2  
Somatostatin is a regulatory peptide found in abundance in the stomach. We have previously shown that somatostatin is required for IL-4-mediated resolution of Helicobacter pylori gastritis. In the current study, we hypothesize that somatostatin acts directly on antigen-presenting cells in the stomach to lessen the severity of gastritis. To test this hypothesis, we first show that CD11c+ dendritic cells are present in the infected tissue of mice with H. pylori-induced gastritis. Pretreatment of bone marrow-derived dendritic cells with somatostatin results in decreased IL-12 production, and lower splenocyte proliferation induced by H. pylori-stimulated dendritic cells. Furthermore, octreotide, a somatostatin analogue, is more potent than somatostatin in suppressing IL-12 release by H. pylori-stimulated dendritic cells through an NF-kappaB-independent pathway. In addition, IL-4 stimulates somatostatin secretion from dendritic cells. In conclusion, somatostatin inhibits dendritic cell activation by H. pylori; a possible mechanism by which IL-4 mediates resolution of gastritis. We suggest that octreotide may be effective in treating immune-mediated diseases of the stomach.  相似文献   

19.
目的观察幽门螺杆菌(H.pylori)相关性胃病患者血清Th1/Th2细胞因子(干扰素-γ,IFN-γ、白细胞介素-4,IL-4)水平变化,以探讨其在发病中的可能免疫致病机制。方法采用酶联免疫吸附测定法(ELISA)测定17例慢性浅表性胃炎、15例胃癌前病变和20例胃癌患者血清IFN-γ及IL-4的含量。比较H.pylori阳性3组患者之间、H.pylori阳性与阴性各相应组患者之间血清2种细胞因子的差异。结果 H.pylori阳性的浅表性胃炎组、胃癌前病变组及胃癌组血清IL-4含量随病变的进展有逐渐升高的趋势,但3组之间差异无统计学意义(P>0.05);H.pylori阳性的3组血清IFN-γ含量差异无统计学意义(P>0.05);H.pylori阳性与阴性的各相应组血清IFN-γ含量差异无统计学意义(P>0.05);H.pylori阳性的胃癌前病变组和胃癌组与H.pylori阴性的相应组血清IL-4含量差异无统计学意义(P>0.05);H.pylori阳性的浅表性胃炎组血清IL-4含量较H.pylori阴性的浅表性胃炎组明显降低(P<0.05)。结论 H.pylori感染可能抑制Th2型免疫应答,导致H.pylori感染持续存在;H.pylori感染相关胃部病变进展过程中,可能存在Th1型应答向Th2型应答漂移,与胃癌的发生可能有一定的相关性。  相似文献   

20.
Helicobacter pylori has been reported to induce interleukin-6 (IL-6) production in monocytes/macrophages and in chronically inflamed gastric tissues. The mechanism by which H. pylori induces IL-6 production in macrophages, however, has not been investigated. To identify the H. pylori factor responsible for this activity, we fractionated soluble proteins from H. pylori strain 26695 by ion exchange and size exclusion chromatography and screened the fractions for IL-6-inducing activity on RAW 264.7 macrophages. A single protein was purified and identified by mass spectrometry as H. pylori heat shock protein 60 (HSP60). Consistent with the observed IL-6-inducing activity of H. pylori HSP60, soluble protein extracts of H. pylori 26695 and SS1 strains that were depleted of this protein by affinity chromatography had dramatically reduced IL-6-inducing activities. The immunopurified HSP60 stimulated IL-6 production in macrophages. When stimulated with H. pylori HSP60 or intact bacteria, peritoneal macrophages from mice deficient in Toll-like receptor (TLR)-2, TLR-4, TLR-2/TLR-4, and myeloid differentiation factor 88 produced the same amount of IL-6 than macrophages from wild-type mice, demonstrating the independence of H. pylori HSP60 responses from these signaling molecules. H. pylori HSP60-induced IL-6 mRNA expression, and NF-kappaB activation in RAW 264.7 cells was abrogated in the presence of MG-132, a proteasome inhibitor. In contrast, inhibitors of protein kinase A or C, mitogen-activated protein kinase kinase, and phosphoinositide 3-kinase had no effect on IL-6 mRNA levels. This study demonstrates the induction of innate immune responses by H. pylori HSP60, thereby implicating this highly conserved protein in the pathophysiology of chronic gastritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号