首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reversion of Frameshift Mutations by Mutator Genes in Escherichia coli   总被引:15,自引:6,他引:9  
The Escherichia coli mutator genes mutU4, mutS3, and mut-25 (a possible allele of mutL), previously known to induce transitional base changes, increased significantly the frequencies of reversion of lacZ frameshift mutations. mutT1, previously shown to induce only the transversion of adenine-thymine to cytosine-guanine, had no effect on the reversion of lacZ frameshift mutations. With mutator genes other than mutT1, small increases were found in the frequencies of reversion of trpA frameshift mutations.  相似文献   

2.
Frameshift mutations occur when the coding region of a gene is altered by addition or deletion of a number of base pairs that is not a multiple of three. The occurrence of a deletion versus an insertion type of frameshift depends on the nature of the transient intermediate structure formed during DNA synthesis. Extrahelical bases on the template strand give rise to deletions, whereas extrahelical bases on the strand being synthesized produce insertions. We previously used reversion of a +1 frameshift mutation to analyze the role of the mismatch repair (MMR) machinery in correcting -1 frameshift intermediates within a defined region of the yeast LYS2 gene. In this study, we have used reversion of a -1 frameshift mutation within the same region of LYS2 to analyze the role of the MMR machinery in the correction of frameshift intermediates that give rise to insertion events. We found that insertion and deletion events occur at similar rates but that the reversion spectra are very different in both the wild-type and MMR-defective backgrounds. In addition, analysis of the +1 spectra revealed novel roles for Msh3p and Msh6p in removing specific types of frameshift intermediates.  相似文献   

3.
The mutagenic potency of the simple reversible intercalators isopropyl-OPC (iPr-OPC) and 9-aminoacridine (9-AA) is assessed in E. coli using reversion assays based on plasmids derived from pBR322 carrying various frameshift mutations within the tetracycline resistance gene in repetitive sequences: +/- 2 frameshift mutations within alternating GC sequences; +/- 1 frameshift mutation at runs of guanines. The results obtained show that iPr-OPC and 9-AA have a sequence specificity for mutagenesis: they revert +1 and -1 frameshift mutations within runs of monotonous G:C base pairs. The precise determination of the size of a small restriction fragment which contains the mutation allowed us to demonstrate that reversion occurred by -1 deletions for the +1 frameshift mutations and by +1 additions for the -1 frameshift mutations. The possible relations of this specific reversion with the base sequence specificity of the mutagenesis are briefly discussed.  相似文献   

4.
In order to understand the role of yeast polymerases in spontaneous mutagenesis in non-growing cells we have studied the effects of mutations that impair the 3'--> 5' exonuclease function of polymerases delta (pol3-01) and epsilon (pol2-4) on the spontaneous reversion frequency of the frameshift mutation his7-2 in cells starved for histidine. We showed that for each exonuclease-deficient mutant the rate of reversion per viable cell per day observed in stationary-phase cells remained constant up to the 9th day of starvation (while the number of viable cells dropped), and was very similar to that observed in the same mutants during the growth phase. These data suggest that both DNA polymerases are involved in the control of mutability in non-growing cells.  相似文献   

5.
Roles of recA mutant allele (recA495) in frameshift mutagenesis   总被引:1,自引:0,他引:1  
The chemical carcinogen N-acetoxy-N-2-acetylaminofluorene (N-AcO-AAF) induces frameshift mutations located within two types of specific sequences (mutation hot spots): i) contiguous guanine sequences and ii) alternating GC sequences. The genetic requirements of these frameshift events were investigated using specific reversion assays. AAF-induced -2 frameshift mutagenesis at alternating GC sequences is peculiar in that it requires a LexA- controlled function which is not UmuDC and occurs in the absence of RecA protein, provided the SOS regulon is derepressed. Moreover, the non-activated form of the RecA protein was shown to act as an inhibitor in this mutation pathway. As we were interested in elucidating this mutation pathway, we have developed a convenient spot reversion assay specific for the detection of this class of mutations. This assay allowed us to isolate E coli mutants affected either in repair or mutagenesis functions. One particular mutant, recA495, is very sensitive to UV and N-AcO-AAF, and is defective in recombination and UV mutagenesis. The RecA495 protein exhibits very low binding to both single- and double-stranded DNA. We show that when the SOS regulon is derepressed, the recA495 allele has two contrasting roles in frameshift mutagenesis: i) it prevents the induction of -1 frameshift mutations at repetitive sequences and ii) it is permissive for the induction of -2 frameshift mutations within alternating GC sequences.  相似文献   

6.
S. L. Holbeck  J. N. Strathern 《Genetics》1997,147(3):1017-1024
Recombinational repair of double-strand breaks (DSBs), traditionally believed to be an error-free DNA repair pathway, was recently shown to increase the frequency of mutations in a nearby interval. The reversion rate of trp1 alleles (either nonsense or frameshift mutations) near an HO-endonuclease cleavage site is increased at least 100-fold among cells that have experienced an HO-mediated DSB. We report here that in strains deleted for rev3 this DSB-associated reversion of a nonsense mutation was greatly decreased. Thus REV3, which encodes a subunit of the translesion DNA polymerase &, was responsible for the majority of these base substitution errors near a DSB. However, rev3 strains showed no decrease in HO-stimulated recombination, implying that another DNA polymerase also functioned in recombinational repair of a DSB. Reversion of trp1 frameshift alleles near a DSB was not reduced in rev3 strains, indicating that another polymerase could act during DSB repair to make these frameshift errors. Analysis of spontaneous reversion in haploid strains suggested that Rev3p had a greater role in making point mutations than in frameshift mutations.  相似文献   

7.
8.
9.
Temperature-sensitive (ts) mutants representative of a number of genes of phage T4 were crossed with rII mutants to allow isolation of ts, rII double-mutant recombinants. The rII mutations used were characterized as frameshift mutations primarily on the basis of their revertability by proflavine. For each ts, rII double mutant, the effect of the ts mutation on spontaneous reversion of the rII mutation was determined over a range of incubation temperatures. A strong enhancement in reversion of two different rII mutants was detected when they were combined with tsL56, a mutation in gene 43 [deoxyribonucleic acid (DNA) polymerase]. Three other mutants defective in gene 43 enhanced reversion about fourfold. Two mutations in gene 32, which specifies a protein necessary for DNA replication, enhanced reversion about 5-fold and 18-fold, respectively. Two additional mutations in gene 43 and two in gene 32 had no effect. Fivefold and threefold enhancements in reversion were also found with mutations in genes 44 (DNA synthesis) and 47 (deoxyribonuclease), respectively. No significant effect was found with mutations in seven additional genes. The results of other workers suggest that frameshift mutations arise from errors in strand alignment during repair synthesis occurring at chromosome tips. Our results show that such errors can be enhanced by mutations in the DNA polymerase, the gene 32 protein, and the enzymes specified by genes 44 and 47. This implies that these proteins are employed in the repair process occurring at chromosome tips and that mutational errors in these proteins can lead to loss of ability to recognize and reject strand misalignments.  相似文献   

10.
UV irradiation, a known carcinogen, induces the formation of dipyrimidine dimers with the predominant lesions being cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone adducts (6-4PPs). The relative roles of the yeast translesion synthesis DNA polymerases Pol zeta and Pol eta in UV survival and mutagenesis were examined using strains deficient in one or both polymerases. In addition, photoreactivation was used to specifically remove CPDs, thus allowing an estimate to be made of the relative contributions of CPDs vs. 6-4PPs to overall survival and mutagenesis. In terms of UV-induced mutagenesis, we focused on the +1 frameshift mutations detected by reversion of the lys2deltaA746 allele, as Pol zeta produces a distinct mutational signature in this assay. Results suggest that CPDs are responsible for most of the UV-associated toxicity as well as for the majority of UV-induced frameshift mutations in yeast. Although the presence of Pol eta generally suppresses UV-induced mutagenesis, our data suggest a role for this polymerase in generating some classes of +1 frameshifts. Finally, the examination of frameshift reversion spectra indicates a hierarchy between Pol eta and Pol zeta with respect to the bypass of UV-induced lesions.  相似文献   

11.
Three strains Salmonella typhimurium carrying frameshift mutations affecting the histidine genes (hisC3076, hisD3052 and hisC207) showed increased sensitivity to mutagenesis by ICR-191 (as judged by measuring back mutation to prototrophy), if they were made deficient in excision repair by deleting the uvrB gene. One frameshift strain, hisC3076, also showed increased sensitivity to mutagenesis by ICR-191 when it carried either of two different polA alleles, whereas the hidD305 and hisD207 frameshifts reduced sensitivity to mutagenesis in the presence of these alleles. Studies of spontaneous back mutation to prototrophy revealed siginificant mutator effects of the polA1 mutation on reversion of the hisD3052 frameshift and of the polA3 mutation on reversion of the hisC3076 frameshift. Other smaller mutator effects of the polA alleles on reversion of the his mutations may also be present. In an attempt to explain the complex interactions between different polA alleles and different frameshift mutations, it is tentatively suggested that deletion frameshift may arise mainly during DNA replication, while addition frameshifts may arise mainly during post-replication repair.  相似文献   

12.
Both the acridine half-mustard, ICR191, and the nonalkylating azaacridine derivative, ICR364-OH, induce three classes of frameshift mutations in the histidine operon of Salmonella typhimurium. (i) One class is completely stable in reversion tests and is presumed to represent deletion of one or a few critical nucleotide pairs or two nearby frameshifts. One extended deletion was found out of 11 stable mutations. (ii) Of two spontaneously reverting classes which also are considered to predominantly involve base deletions, one is unaffected in reversion with ICR191, nitrosoguanidine, and diethylsulfate, and the other is induced to revert with ICR191. (iii) A third class, considered to predominantly involve base additions, responds in reversion tests with ICR191 as well as with nitrosoguanidine and diethylsulfate. Other investigators have shown that one mutant of this class is a "plus" frameshift and that nitrosoguanidine acts in reversion to delete a guanine plus cytosine base pair. Although such plus frameshifts are found with high frequency among mutations selected from acridine-treated bacteria or when strong selection pressure is applied for their detection in reversion tests, data from this laboratory indicate that this class of plus frameshifts is rare among mutations derived spontaneously or after treatment with a variety of other mutagens. Finally, we demonstrate that the alkylating ICR191 and the nonalkylating ICR364-OH preferentially cause mutations in different chromosome regions and that their spectra of activity only partially overlap that found for spontaneous frameshift mutations.  相似文献   

13.
The range of specificity of the rev2-1 mutation, an allele that reduces the frequency of ochre revertants induced by UV in Saccharomyces cerevisiae (LEMONTT 1971a), has been investigated by examining its influence on the reversion of eleven well-defined and contrasting cyc1 mutations. We have shown, in support of a suggestion of LEMONTT (1971a), that the REV2 gene product is concerned only with the reversion of ochre alleles; it plays virtually no role in the reversion of amber, missense or frameshift mutations. We have also shown that its effect is specific and confined to only some highly revertible ochre alleles. The REV2 gene product appears to enhance reversion at these sites by facilitating the conversion of two otherwise nonmutagenic photo-products into a single premutational lesion. UV-induced killing of rev2-1 strains was found to be significantly greater on fermentable rather than on nonfermentable media.  相似文献   

14.
A Major Role for Bacteriophage T4 DNA Polymerase in Frameshift Mutagenesis   总被引:6,自引:2,他引:4  
T4 DNA polymerase strongly influences the frequency and specificity of frameshift mutagenesis. Fifteen of 19 temperature-sensitive alleles of the DNA polymerase gene substantially influenced the reversion frequencies of frameshift mutations measured in the T4 rII genes. Most polymerase mutants increased frameshift frequencies, but a few alleles (previously noted as antimutators for base substitution mutations) decreased the frequencies of certain frameshifts while increasing the frequencies of others. The various patterns of enhanced or decreased frameshift mutation frequencies suggest that T4 DNA polymerase is likely to play a variety of roles in the metabolic events leading to frameshift mutation. A detailed genetic study of the specificity of the mutator properties of three DNA polymerase alleles (tsL56, tsL98 and tsL88) demonstrated that each produces a distinctive frameshift spectrum. Differences in frameshift frequencies at similar DNA sequences within the rII genes, the influence of mutant polymerase alleles on these frequencies, and the presence or absence of the dinucleotide sequence associated with initiation of Okazaki pieces at the frameshift site has led us to suggest that the discontinuities associated with discontinuous DNA replication may contribute to spontaneous frameshift mutation frequencies in T4.  相似文献   

15.
Expression of the umuDC operon is required for UV and most chemical mutagenesis in Escherichia coli. The closely related species Salmonella typhimurium has two sets of umuDC-like operons, umuDC ST on the chromosome and samAB on a 60-MDa cryptic plasmid. The roles of theumuDC-like operons in chemically induced frameshift mutagenesis of the hisD3052 allele of S. typhimurium were investigated. Introduction of a pBR322-derived plasmid carrying umuDCST increased the rate of reversion of hisD3052, following treatment with 1-nitropyrene (1-NP) or 1,8-dinitropyrene (1,-8DNP) tenfold and fivefold, respectively, whereas it did not substantially increase the rate of reversion induced by other frameshift mutagens, i.e. 2-nitrofluorene (2NF) and 2-amino- 3-methyldipyrido[1,2-a:3 ′,2′-d]imi-dazole (Glu-P-1). Introduction of a pBR322-derived plasmid carrying samAB did not increase the incidence of reversion of hisD3052 observed with any of the mutagens examined. Deletion of umuDC STSubstantially lowered the reversion rate induced by l-NP or 1,8-DNP, but it did not affect reversion induced by 2-NF, Glu-P-1 or N-hydroxyacetylaminofluorene (N-OH-AAF). Deletion of samAB had little impact on reversion incidence induced by any of the five frameshift mutagens. DNA amplification using the polymerase chain reaction technique followed by restriction enzyme analysis using BssHII, suggested that the mutations induced by the five frameshift mutagens were all CG deletions at the CGCGCGCG sequence in hisD3052. These results suggest that umuDCST, but not samAB, is involved in the -2 frameshift mutagenesis induced by l-NP and 1,8-DNP at the repetitive CG sequence, whereas neither operon participates in induction of the same type of mutations by 2-NF, Glu-P-1 or N-OH-AAF.  相似文献   

16.
Spontaneous DNA damage can be dealt with by multiple repair/bypass pathways that have overlapping specificities. We have used a frameshift reversion assay to examine spontaneous mutations that accumulate in yeast strains defective for the high-fidelity nucleotide excision repair or recombination pathways. In contrast to the simple frameshift mutations that occur in wild-type strains, the reversion events in mutant strains are often complex in nature, with the selected frameshift mutation being accompanied by one or more base substitutions. Genetic analyses demonstrate that the complex events are dependent on the Pol zeta translesion polymerase, thus implicating the DNA damage bypass activity of low-fidelity translesion polymerases in hypermutation phenomena.  相似文献   

17.
The data reported in this paper extend earlier results on the effects of hycanthone in Drosophila. The main findings are the following. (1) A refined brood-pattern analysis of hycanthone-induced sex-linked recessive lethals confirmed the specific sensitivity of mid- and late spermatids. Injection of young males (0–20 h old) did not cause a shift in the brood pattern, but tended to produce higher rates of recessive lethals than injection of 4-day-old males, although the difference was not significant. (2) An autosomal recessive lethal test (chromosome 2) similarly showed a low sensitivity of premeiotic stages. (3) Feeding of hycanthone was much less effective than injection. This difference was not observed for the methyl analog lucanthone. From the observation that hycanthone- and lucanthone-induced mutations exhibited different germ-cell-stage sensitivity patterns, it was concluded that lucanthone does not (at least not exclusively) act via metabolic activation to hycanthone. (4) After injection, the hycanthone analogs IA-4-N-oxide and IA-4-N-oxide were marginally mutagenic. (5) It was shown previously that hycanthone was ineffective in producing breakage events, in Drosophila. In this report, hycanthone is shown to be weakly active in inducing ring-X chromosome loss. This emphasizes the relat ive sensitivity of the ring-X-loss test, in comaprison with the tests that etect translocations or dominant lethals.  相似文献   

18.
gamma-Radiation mutagenesis (oxic versus anoxic) was examined in wild-type, umuC and recA strains of Escherichia coli K-12. Mutagenesis [argE3(Oc)----Arg+] was blocked in a delta (recA-srlR)306 strain at the same doses that induced mutations in umuC122::Tn5 and wild-type strains, indicating that both umuC-independent and umuC-dependent mechanisms function within recA-dependent misrepair. Analyses of various suppressor and back mutations that result in argE3 and hisG4 ochre reversion and an analysis of trpE9777 (+1 frameshift) reversion were performed on umuC and wild-type cells irradiated in the presence and absence of oxygen. While the umuC strain showed the gamma-radiation induction of base substitution and frameshifts when irradiated in the absence of oxygen, the umuC mutation blocked all oxygen-dependent base-substitution mutagenesis, but not all oxygen-dependent frameshift mutagenesis. For anoxically irradiated cells, the yields of GC----AT [i.e., at the supB and supE (Oc) loci] and AT----GC transitions (i.e., at the argE3 and hisG4 loci) were essentially umuC independent, while the yields of (AT or GC)----TA transversions (i.e., at the supC, supL, supM, supN and supX loci) were heavily umuC dependent. These data suggest new concepts about the nature of the DNA lesions and the mutagenic mechanisms that lead to gamma-radiation mutagenesis.  相似文献   

19.
The ultraviolet (UV) and gamma radiation-induced reversion of the trpA21, trpA9813, and trpE9777 sequenced-frameshift mutations were studied in Escherichia coli K-12 with or without the plasmid pKM101. Radiation induced the reversion of all 3 frameshifts, and pKM101 enhanced this reversion 10-50-fold. Factors influencing the differential radiation revertability of frameshifts are discussed. The two most revertable frameshifts, trpE9777 and trpA9813, were used as probes to understand the role of the umuDC genes in radiation-induced frameshift reversion. Unlike the UV radiation-induced reversion of base-substitution mutations, the reversion of these frameshifts was not enhanced in a uvrA umuC strain by photoreactivation after a post-UV-irradiation incubation. The UmuDC proteins are suggested to have functions in the radiation induction of frameshifts that are more complex than are their functions in the induction of base substitutions.  相似文献   

20.
Expression of the umuDC operon is required for UV and most chemical mutagenesis in Escherichia coli. The closely related species Salmonella typhimurium has two sets of umuDC-like operons, umuDC ST on the chromosome and samAB on a 60-MDa cryptic plasmid. The roles of theumuDC-like operons in chemically induced frameshift mutagenesis of the hisD3052 allele of S. typhimurium were investigated. Introduction of a pBR322-derived plasmid carrying umuDCST increased the rate of reversion of hisD3052, following treatment with 1-nitropyrene (1-NP) or 1,8-dinitropyrene (1,-8DNP) tenfold and fivefold, respectively, whereas it did not substantially increase the rate of reversion induced by other frameshift mutagens, i.e. 2-nitrofluorene (2NF) and 2-amino- 3-methyldipyrido[1,2-a:3 ,2-d]imi-dazole (Glu-P-1). Introduction of a pBR322-derived plasmid carrying samAB did not increase the incidence of reversion of hisD3052 observed with any of the mutagens examined. Deletion of umuDC STSubstantially lowered the reversion rate induced by l-NP or 1,8-DNP, but it did not affect reversion induced by 2-NF, Glu-P-1 or N-hydroxyacetylaminofluorene (N-OH-AAF). Deletion of samAB had little impact on reversion incidence induced by any of the five frameshift mutagens. DNA amplification using the polymerase chain reaction technique followed by restriction enzyme analysis using BssHII, suggested that the mutations induced by the five frameshift mutagens were all CG deletions at the CGCGCGCG sequence in hisD3052. These results suggest that umuDCST, but not samAB, is involved in the -2 frameshift mutagenesis induced by l-NP and 1,8-DNP at the repetitive CG sequence, whereas neither operon participates in induction of the same type of mutations by 2-NF, Glu-P-1 or N-OH-AAF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号