首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mutagenicity of benzidine and 4-aminobiphenyl towards Salmonella typhimurium strain TA1538 was measured in the presence of isolated hepatocytes from rat, hamster and guinea pig. The mutagenic potency of these compounds was also assayed with S9 (9000 × g supernatant) prepared from disrupted hepatocytes of these aryl amines was investigated.For all 3 animal species it was found that the mutagenicity of benzidine is higher with intact hepatocytes than with S9 prepared from disrupted hepatocytes. Addition of acetyl coenzyme A to the S9 fraction increased the mutagenicity of benzidine. In contrast to benzidine, the mutagenicity of 4-aminobiphenyl appeared to be lower with hepatocytes than with S9. Addition of acetyl coenzyme A to the S9 fraction decreased the mutagenicity of 4-aminobiphenyl.The mutagenic potency of 4-aminobiphenyl was almost equal in the presence of the liver preparations from the 3 different species, whereas obvious species differences were seen with benzidine.  相似文献   

2.
All the methanol extracts did not show mutagenic activity in Ames/Salmonella and Z. mays MI test systems. Furthermore, some extracts showed significant antimutagenic activity against 9-AA in Ames test system. Inhibition rates for 9-AA mutagenicity ranged from 25.51% (P. furfuracea??0.05 ??g/plate) to 66.14% (C. islandica??0.05 ??g/plate). In addition, all of the extracts showed significant antimutagenic activity against sodium azide (NaN3) mutagenicity on MI values of Z. mays.  相似文献   

3.
Quercetin, rhamnetin, isorhamnetin, apigenin and luteolin were isolated from medicinal herbs: Erigeron canadensis L., Anthyllis vulneraria L. and Pyrola chloranta L. The mutagenicity of these naturally occurring flavonoids was tested by the Ames method with S. typhimurium strains TA1535, TA1538, TA97, TA98, TA100 and TA102 in the presence and absence of metabolic activation. Of the above flavonoids only quercetin and rhamnetin revealed mutagenic activity in the Ames test. Quercetin induced point mutations in strains TA97, TA98, TA100 and TA102 of S. typhimurium. The presence of S9 rat liver microsome fraction markedly enhanced the mutagenic activity of quercetin in these strains. Rhamnetin appeared to be a much weaker mutagen in the Ames test. The compound induced mutations in strains TA97, TA98 and TA100 of S. typhimurium but only in the presence of metabolic activation.Comparison of the structure of the studied flavonoids with their mutagenic activity indicates that the mutagenicity of flavonoids is dependent on the presence of hydroxyl groups in the 3′ and 4′ positions of the B ring, and that the presence of a free hydroxy or methoxy group in the 7 position of the A ring also probably contributes to the appearance of mutagenic activity of flavonoids in the Ames test. It also appeared that the presence of methoxy groups, particularly in the B ring of the flavonoid molecule, markedly decreases the mutagenic activity of the compound.  相似文献   

4.
The Ames II bacterial mutagenicity assay is a new version of the standard Ames test for screening chemicals for genotoxic activity. However, the use of plastic micro-titer plates has drawbacks in the case of testing hydrophobic mutagens, since sorptive and other losses make it difficult to control and define the exposure concentrations, and they reduce availability for bacterial uptake or to the S9 enzymes. With passive dosing, a biocompatible polymer such as silicone is loaded with the test compound and acts as a partitioning source. It compensates for any losses and results in stable freely dissolved concentrations. Passive dosing using silicone O-rings was applied in the Ames II assay to measure PAH mutagenicity in strains TA98 and TAMix – a mixture of six different bacterial strains detecting six different base-pair substitutions – after metabolic activation by S9. Initially, 10 PAHs were tested with passive dosing from saturated O-rings, aiming at levels in the test medium close to aqueous solubility. Fluoranthene, pyrene and benzo(a)pyrene were mutagenic in both TA98 and TAMix, whereas benz(a)anthracene was mutagenic in TA98 only. The concentration-dependent mutagenic activity of benzo(a)pyrene was then compared for passive dosing and solvent spiking. With spiking, nominal concentrations greatly exceeded aqueous solubility before mutagenicity was observed, due to sorptive losses and limiting dissolution kinetics. In contrast, the passive dosing concentration-response curves were more reproducible, and shifted towards lower concentrations by several orders of magnitude. This study raises fundamental questions about how to introduce hydrophobic test substances in the Ames II assay with biotransformation, since the measured mutagenicity not only depends on the compound potency but also on its supply, sorption and consumption during the assay.  相似文献   

5.
Nitrogen-containing analogs of chrysene, 1,10-diazachrysene (1,10-DAC) and 4,10-DAC, were tested for mutagenicity in Salmonella typhimurium TA100 in the presence of rat liver S9 and human liver microsomes to investigate the effect of nitrogen-substitution. Although these DACs could not be converted to the bay-region diol epoxide because of their nitrogen atoms in the bay-region epoxide or diol moiety, DACs were mutagenic in the Ames test with rat liver S9. Both DACs also showed mutagenicity in the Ames test using pooled human liver microsomes, although chrysene itself was not mutagenic in the presence of pooled human liver microsomes. The mutagenicity of DACs (50nmol/plate) in Ames tests using human liver microsome preparations from 10 individuals was compared with cytochrome P450 (CYP) activity in each microsome preparation to investigate the CYP isoform involved in the activation of DACs to the genotoxic forms. The numbers of induced revertants obtained by 1,10-DAC varied 6.2-folds (109-680) and those by 4,10-DAC 4.8-folds (155-751) among the 10 individuals. The number of induced revertants obtained by 1,10-DAC significantly correlated with the CYP1A2-selective catalytic activity (r=0.84, P<0.01) in each microsome preparation. On the other hand, the number of induced revertants obtained by 4,10-DAC significantly correlated with the combined activity of CYP2A6 and 1A2 (CYP2A6+0.51xCYP1A2; r=0.75, P<0.01). However, in Ames tests using microsomes from insect cells expressing various human CYP isoforms, the mutagenicity of 1,10-DAC was induced only by recombinant human CYP1A2, whereas both recombinant human CYP2A6 and 1A2 contributed to the mutagenicity of 4,10-DAC. These results suggest that 1,10-DAC shows the mutagenicity through involvement of CYP1A2 in human liver, and 4,10-DAC does so through both CYP2A6 and 1A2. In conclusion, our results suggested that the difference in the nitrogen-substituted position in the chrysene molecule might affect the mutagenic activity through influencing the ratio of participation of the metabolic activation enzyme isoforms of CYP.  相似文献   

6.
The metabolic activation of MABZ and DABZ, forming products mutagenic towards Salmonella typhimurium TA1538, was studied with isolated hepatocytes from rat, hamster and guinea pig and the S9 fraction (9000 X g supernatant) prepared from these hepatocytes. Special attention was given to the influence of acetyl-CoA, the cofactor for N-acetylation, on the mutagenicity of these arylamides. The rat and guinea pig S9 preparation activated MABZ as well as DABZ to a much higher degree than the intact hepatocytes of these animal species. Addition of acetyl-CoA to the S9 preparation decreased the mutagenicity of MABZ and DABZ. On the contrary, for the hamster the mutagenicity of MABZ and DABZ appeared to be lower with the S9 preparation than with intact hepatocytes. Addition of acetyl-CoA to the S9 here increased the mutagenic activity of these arylamides. In the presence of intact hepatocytes obvious interspecies differences were observed in the activation of MABZ and DABZ. DABZ was far more effectively activated by hamster hepatocytes than by rat hepatocytes. This was not found with MABZ. Both substrates were poorly activated by guinea pig hepatocytes.  相似文献   

7.
The Pinus wallichiana, Daphne oleiodes and Bidens chinensis have a long history of being used traditionally for treatment of various types of disorders. Most of the uses have been without any scientific evidence and toxicological assessment. We evaluated the mutagenic and cytotoxic capabilities of various parts of P. wallichiana, D. oleoides and B. chinensis. Ames Salmonella mutagenicity assay determined the mutagenicity activity against TA 98 and TA 100 bacterial strains of Salmonella typhimurium without metabolic activator S9 system. The number of mutant colonies in negative control was considered as limit to determine the mutagenicity effects of every extract. Brine shrimps lethality bioassay was used to determine the cytotoxic capabilities of the selected plants. The P. wallichiana, D. oleiodes and B. chinensis did not showed any mutagenic activity both for frameshift mutation (TA98) and base-pair substitution (TA100) without S9 mixture. The crude methanolic extract of P. wallichiana stem showed moderate cytotoxicity (53.33%) at 1000 μg/ml with LD50 value 599.634. The D. oleoides fruit showed a toxicity of 60% at 1000 μg/ml with LD50 value 367.730. The B. chinensis (whole plant) showed lethality of 63.3% at 1000 μg/ml, with LD50 204.833. The absence of any mutagenic activity of crude extract of the tested plants in both bacteria strains, TA 98 and TA 100 without the S9 mix confirms the safety of these plants to the consumers.  相似文献   

8.
The antiserotonin and antihistamine activities of Rhodnius prolixus salivary secretion were studied using the rat uterus and the guinea pig ileum preparations. Serotonin antagonism was not competitive and the salivary secretion dose which abolished a half-maximal uterine contraction was 13 ± 2 (S.E.) μg protein/ml (n = 9). No inhibition was seen for the acetylcholine and bradikinin contractures. On the other hand, the observed antihistamine activity was typically competitive. The mean concentration of Rhodnius salivary secretion of 14 ± 2 (S.E.) μg protein/ml (n = 9) reduced the effect of histamine to that of a half dose. Specificity was demonstrated when testing salivary secretion in the acetylcholine and BaCl2-induced guinea pig ileum contractures. In both antagonisms, no preincubation was needed for the full expression of the inhibitory effect, which did not persist after washing the preparation. The presence of enzymes that could be degrading the amines was excluded.Susceptibility to trypsin and heat treatments as well as the behaviour of the principles on gel filtration and preparative agarose electrophoresis experiments, suggest that the activities reside in the same peptide molecule with an apparent molecular weight of 39,000 daltons.  相似文献   

9.
AimThe evaluation of mutagenic properties of imidapril hydrochloride (IMD) and its degradation impurity, diketopiperazine derivative (DKP), nitrosation mixtures was conducted in order to analyze the carcinogenic risk of IMD long-term treatment in patients. In this study an in vitro Ames test with Salmonella enterica serovar Typhimurium TA 98 and TA 100 strains was used.BackgroundIMD and DKP contain nitrogen atoms, which makes them theoretically vulnerable to in vivo nitrosation with the production of N-nitroso compounds (NOC). NOC, in turn, are known animal mutagens indicating that their endogenous production from nitrosable drugs constitutes a carcinogenic hazard.Materials and methodsPure IMD sample was exposed to forced degradation conditions of increased temperature and dry air in order to achieve a DKP sample. Both samples were then treated with a nitrosating agent and the obtained nitrosation mixtures were subjected to mutagenicity analysis by the Ames test with S. typhimurium TA 98 and TA 100 strains in the presence and absence of metabolic activation system (S9 mix) using a commercial Ames MPF 98/100 microplate format mutagenicity assay kit.ResultsNone of the six concentrations of the investigated nitrosation mixtures exhibited any mutagenic potential in both S. typhimurium strains. The addition of S9 mix did not alter the non-mutagenic properties of the studied compounds.ConclusionsThe nitrite treatment of both studied compounds has no impact on their mutagenic properties under the conditions of the present studies. Hence, IMD and DKP nitrosation mixtures are classified as non-mutagens in this test.  相似文献   

10.
D Kupfer  J Navarro 《Life sciences》1976,18(5):507-513
This study demonstrates the metabolic transformation of prostaglandin A1 (PGA1) by guinea pig and rat liver microsomes. The transformation, which required NADPH and oxygen, yielded polar (presumably hydroxylated) products. Incubations with guinea pig liver microsomes yielded one zone of product on tlc, whereas rat liver microsomes produced two discernable metabolic zones. It was demonstrated that PGA1 metabolism in the guinea pig and the rat was inhibited by the addition of SKF-525A, metyrapone, carbon monoxide and cytochrome C; nicotinamide (10 mM) inhibited only the guinea pig system. These findings indicate that the enzymatic activity responsible for PGA1 metabolism is composed of a typical cytochrome P-450 monooxygenase system.  相似文献   

11.
Guinea pig ethanol metabolism as well as distribution and activities of ethanol metabolizing enzymes were studied. Alcohol dehydrogenase (ADH; EC 1.1.1.1) is almost exclusively present in liver except for minor activities in the cecum. All other organ tissues tested (skeletal muscle, heart, brain, stomach, and testes) contained only negligible enzyme activities. In fed livers, ADH could only be demonstrated in the cytosolic fraction (2.94 μmol/g liver/min at 38 °C) and its apparent Km value of 0.42 mm for ethanol as substrate is similar to the average Km of the human enzymes. Acetaldehyde dehydrogenase (ALDH; EC 1.2.1.3) of guinea pig liver was measured at low (0.05 mm) and high (10 mm) acetaldehyde concentrations and its subcellular localization was found to be mainly mitochondrial. The total acetaldehyde activity in liver amounts to 3.56 μmol/g/ min. Fed and fasted animals showed similar zero-order alcohol elimination rates after intraperitoneal injection of 1.7 or 3.0 g ethanol/kg body wt. The ethanol elimination rate of fed animals after 1.7 g ethanol/kg body wt (2.59 μmol/g liver/min) was inhibited by 80% after intraperitoneal injection of 4-methylpyrazole. Average ethanol elimination rates in vivo after 1.7 g/kg ethanol commanded only 88% of the totally available ADH activity in fed guinea pig livers. Catalase (EC 1.11.1.6), an enzyme previously implicated in ethanol metabolism, is of 3.4-fold higher activity in guinea pig (10,400 U/g liver) than in rat livers (3,100 U/g liver), but 98% inhibition by 3-amino-1,2,4-triazole did not significantly alter ethanol elimination rates. After ethanol injection, fed and fasted guinea pigs reacted with prolonged hyperglycemia.  相似文献   

12.
《Mutation Research Letters》1993,301(4):213-222
Alkylhydrazines are important carcinogens. However, they show generally only weak mutagenicity and the activities reported from different laboratories are contradictory. We have developed a sensitive method to detect the mutagenicity of alkylhydrazines. The method is based on a modified preculturing procedures in the Ames test, the emphasis in the modification being a change in the growth period of tester strains. The optimal growth periods were found to be 11 h in Salmonella typhimurium TA100 and 5 h in Salmonella typhimurium TA102. We tested the mutagenic activity of 12 alkylhydrazines; 1,2-dimetehylhydrazine, 1,2-diethylhydrazine, 1,2-dipropylhydrazine. 1,2-dibutylhydrazine, 1,1-dimethylhydrazine, 1,1-diethylhydrazine, 1,1-dipropylhydrazine, 1,1-dibutylhydrazine, methylhydrazine, ethylhydrazine, propylhydrazine, and butylhdyrazine. All 12 alkylhydrazines were clearly mutagenic in Salmonella typhimurium TA102, and 10 hydrazines were mutagenic in Salmonella typhimurium TA100, both in the absence of S9 mix. The mutagenicity was inhibited by the addition of S9 mix or bovine serum albumin. This suggests deactivation of the mutagens by proteins.  相似文献   

13.
Low doses of -cysteine (CYS), cysteinyl-glycine (CYSGLY) and reduced glutathione (GSH) activated by γ-glutamyl transpeptidase (GGT) were mutagenic in strain IC203 (oxyR), whereas higher doses were required to observe a weak mutagenicity in the oxyR+ strain WP2 uvrA/pKM101 (denoted IC188). This indicates that thiol mutagenesis is suppressed by OxyR-regulated antioxidant defenses and confirms its oxidative character. The mutagenesis by low doses of CYS, CYSGLY and GSH+GGT detected in IC203 was abolished by rat liver S9, through the activity of catalase, as well as by the metal chelator diethyldithiocarbamate (DETC), supporting the dependence of this mutagenesis on H2O2 production, probably in thiol autoxidation reactions in which transition metals are involved. Surprisingly, low DETC concentrations greatly potentiate the mutagenicity of low CYS doses. Mutagenesis by high doses of CYS and CYSGLY occurred in both IC203 and IC188 in the presence of liver S9, and was resistant to inhibition by catalase, although it was prevented by DETC. Mutagenesis by GSH activated by rat kidney S9, rich in GGT, was detected in IC203 and IC188 only at high doses since catalase and glutathione peroxidase, both present in kidney S9, might inhibit its induction by low GSH doses. In the presence of liver S9, almost deficient in GGT, GSH was not mutagenic. The mutagenicity of a high GSH dose occurring in the presence either of GGT plus liver S9 or of kidney S9 was weakly prevented by DETC.  相似文献   

14.
Benzo[a]pyrene (BaP), an environmental carcinogen, shows genotoxicity after metabolic transformation into the bay-region diol epoxide, BaP-7,8-diol 9,10-epoxide. 10-Azabenzo[a]pyrene (10-azaBaP), in which a ring nitrogen is located in the bay-region, is also a carcinogen and shows mutagenicity in the Ames test in the presence of the rat liver microsomal enzymes. In order to evaluate the effect of aza-substitution on in vivo genotoxicity, BaP and 10-azaBaP were assayed for their in vivo mutagenicity using the lacZ-transgenic mouse (Muta™Mouse). BaP was potently mutagenic in all of the organs examined (liver, lung, kidney, spleen, forestomach, stomach, colon, and bone marrow), as described in our previous report, whereas, 10-azaBaP was slightly mutagenic only in the liver and colon. The in vitro mutagenicities of BaP and 10-azaBaP were evaluated by the Ames test using liver homogenates prepared from several sources, i.e. CYP1A-inducer-treated rats, CYP1A-inducer-treated and non-treated mice, and humans. BaP showed greater mutagenicities than 10-azaBaP in the presence of a liver homogenate prepared from CYP1A-inducer-treated rodents. However, 10-azaBaP showed mutagenicities similar to or more potent than BaP in the presence of a liver homogenate or S9 from non-treated mice and humans. These results indicate that 10-aza-substitution markedly modifies the nature of mutagenicity of benzo[a]pyrene in both in vivo and in vitro mutagenesis assays.  相似文献   

15.
Cyracure UVR 6105 is a cycloaliphatic epoxy monomer and has both carboxylate and epoxy groups, with the potential for rapid polymerization. It is widely used in industry for the preparation of inks, resins, coatings, and was proposed for incorporation into dental composites. The objective of this study was to determine the mutagenic potential of this chemical related to its metabolite products. Several doses of Cyracure UVR 6105 were dissolved in DMSO and subjected to the Ames Salmonella mutagenicity assay. A metabolic activation system (S9-mix) was used consisting of Arochlor-induced liver S9 homogenate enriched with NADP and glucose-6-phosphate cofactors. In contrast to studies without S9-mix, Cyracure UVR 6105 exhibited enhanced genotoxic activities with strains TA100 and TA1535 in the presence of liver S9-mix. From in vitro metabolism of Cyracure UVR 6105 with S9-mix, as used in the Ames assay, several metabolites were identified. The alcohol metabolite, 3,4-epoxycyclohexylmethanol, containing intact epoxy group was identified in the organic solvent extract. This metabolite was synthesized and proved to be mutagenic against TA100 when assayed in the presence and absence of S9-mix. Results showed that the increased mutagenicity of Cyracure UVR-6105 in the presence of liver enzymes is due to the formation of the mutagenic metabolite 3,4-epoxycyclohexylmethanol.  相似文献   

16.
The mutagenicity of several test compounds was verified by the Salmonella/microsome mutagenicity test (Ames test), using both human liver and rat liver (untreated or pretreated with Aroclor 1254) S9 under identical experimental conditions. Aflatoxin B1, 3-methylcholanthrene, and cigarette-smoke condensate were less mutagenic in the presence of human-liver S9 than in the presence of rat-liver S9 (particularly after treatment with Aroclor 1254). The opposite was observed with 2-aminonanthracene and to a lesser degree with 2-aminofluorene; correlation studies indicate that the two compounds were activated by the same or by very similar enzymes, probably cytochrome P-450s. These results clearly indicate that human-liver S9, as an activating system, behaves differently than rat-liver S9; therefore, it may constitute a useful, additional tool for the study of mutagenicity and probably, carcinogenicity in man.  相似文献   

17.
In the Ames test, after the addition of glutathione (GSH) or uridine-5'-diphosphoglucuronic acid (UD-PGA), we observed for Trp-P-1 an unchanged or a reduced mutagenicity by both the liver and intestine S9 fraction. For Trp-P-2, the same was true when we used the intestine S9 fraction. In the presence of liver S9 fraction, Trp-P-2 mutagenicity was also decreased by the addition of UDPGA but was increased by the addition of GSH. These results show that cofactors for glucuronide and GSH conjugation may alter the metabolic activation of Trp-P-1 and Trp-P-2 and consequently their mutagenicity.  相似文献   

18.
Cardiac ion channels and their respective accessory subunits are critical in maintaining proper electrical activity of the heart. Studies have indicated that the K+ channel interacting protein 2 (KChIP2), originally identified as an auxiliary subunit for the channel Kv4, a component of the transient outward K+ channel (Ito), is a Ca2+ binding protein whose regulatory function does not appear restricted to Kv4 modulation. Indeed, the guinea pig myocardium does not express Kv4, yet we show that it still maintains expression of KChIP2, suggesting roles for KChIP2 beyond this canonical auxiliary interaction with Kv4 to modulate Ito. In this study, we capitalize on the guinea pig as a system for investigating how KChIP2 influences the cardiac action potential, independent of effects otherwise attributed to Ito, given the endogenous absence of the current in this species. By performing whole cell patch clamp recordings on isolated adult guinea pig myocytes, we observe that knock down of KChIP2 significantly prolongs the cardiac action potential. This prolongation was not attributed to compromised repolarizing currents, as IKr and IKs were unchanged, but was the result of enhanced L-type Ca2+ current due to an increase in Cav1.2 protein. In addition, cells with reduced KChIP2 also displayed lowered INa from reduced Nav1.5 protein. Historically, rodent models have been used to investigate the role of KChIP2, where dramatic changes to the primary repolarizing current Ito may mask more subtle effects of KChIP2. Evaluation in the guinea pig where Ito is absent, has unveiled additional functions for KChIP2 beyond its canonical regulation of Ito, which defines KChIP2 as a master regulator of cardiac repolarization and depolarization.  相似文献   

19.
Particulates exhausted from two types of diesel engines (DEPs), burning-derived particulates from three types of coal (CBPs) and burning-derived particulates from three types of wood (WBPs) were separated into four fractions by silica-gel column chromatography using n-hexane, n-hexane–dichloromethane (3:1, v/v), dichloromethane and methanol, as the corresponding eluents. The indirect-acting mutagenicity of each fraction was assayed by the Ames test using the Salmonella typhimurium TA100 strain with S9 mix and the direct-acting mutagenicity was assayed using the S. typhimurium TA98 strain without S9 mix. The polycyclic aromatic hydrocarbons (PAHs) and nitropolycyclic aromatic hydrocarbons (NPAHs) of each fraction were determined by high-performance liquid chromatography (HPLC). Both direct- and indirect-acting of mutagenicities were the highest in samples of DEPs. The contributions of PAHs in samples of WBPs and NPAHs in DEPs were the largest, respectively.  相似文献   

20.
GSH peroxidase II activity is not associated with all GSH-S-transferase (EC 2.5.1.18) proteins. In guinea pig liver GSH peroxidase II (nonseleno and specific for organic hydroperoxides) is associated almost entirely with GSH-S-transferase peak aa and a smaller peak designated aa′. Transferase a shows a slight peroxidase activity, transferase b is absent, and transferase c has no peroxidase activity. GSH peroxidase II of guinea pig liver has an isoelectric point of 8.9 and a molecular weight of 45,000. It consists of two subunits of similar size (26,000). The GSH peroxidase II and the GSH-S-transferase activities of transferase aa have not been resolved into separate proteins and presumably reside in the same protein. In rat liver GSH peroxidase II activity is present with the highest specific activity in GSH-S-transferase AA. There is no AA′. Transferase B also shows peroxidase activity. Transferases A and C show low but measurable peroxidase activity. Transferase peak E shows peroxidase activity, but it is contaminated by large amounts of GSH peroxidase I (EC 1.11.1.9), recognized by its activity on H2O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号