首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phenotypes measured in counts are commonly observed in nature. Statistical methods for mapping quantitative trait loci (QTL) underlying count traits are documented in the literature. The majority of them assume that the count phenotype follows a Poisson distribution with appropriate techniques being applied to handle data dispersion. When a count trait has a genetic basis, “naturally occurring” zero status also reflects the underlying gene effects. Simply ignoring or miss-handling the zero data may lead to wrong QTL inference. In this article, we propose an interval mapping approach for mapping QTL underlying count phenotypes containing many zeros. The effects of QTLs on the zero-inflated count trait are modelled through the zero-inflated generalized Poisson regression mixture model, which can handle the zero inflation and Poisson dispersion in the same distribution. We implement the approach using the EM algorithm with the Newton-Raphson algorithm embedded in the M-step, and provide a genome-wide scan for testing and estimating the QTL effects. The performance of the proposed method is evaluated through extensive simulation studies. Extensions to composite and multiple interval mapping are discussed. The utility of the developed approach is illustrated through a mouse F2 intercross data set. Significant QTLs are detected to control mouse cholesterol gallstone formation.  相似文献   

2.
Bivariate time series of counts with excess zeros relative to the Poisson process are common in many bioscience applications. Failure to account for the extra zeros in the analysis may result in biased parameter estimates and misleading inferences. A class of bivariate zero-inflated Poisson autoregression models is presented to accommodate the zero-inflation and the inherent serial dependency between successive observations. An autoregressive correlation structure is assumed in the random component of the compound regression model. Parameter estimation is achieved via an EM algorithm, by maximizing an appropriate log-likelihood function to obtain residual maximum likelihood estimates. The proposed method is applied to analyze a bivariate series from an occupational health study, in which the zero-inflated injury count events are classified as either musculoskeletal or non-musculoskeletal in nature. The approach enables the evaluation of the effectiveness of a participatory ergonomics intervention at the population level, in terms of reducing the overall incidence of lost-time injury and a simultaneous decline in the two mean injury rates.  相似文献   

3.
Lee SY  Shi JQ 《Biometrics》2001,57(3):787-794
Two-level data with hierarchical structure and mixed continuous and polytomous data are very common in biomedical research. In this article, we propose a maximum likelihood approach for analyzing a latent variable model with these data. The maximum likelihood estimates are obtained by a Monte Carlo EM algorithm that involves the Gibbs sampler for approximating the E-step and the M-step and the bridge sampling for monitoring the convergence. The approach is illustrated by a two-level data set concerning the development and preliminary findings from an AIDS preventative intervention for Filipina commercial sex workers where the relationship between some latent quantities is investigated.  相似文献   

4.
Zhu J  Eickhoff JC  Yan P 《Biometrics》2005,61(3):674-683
Observations of multiple-response variables across space and over time occur often in environmental and ecological studies. Compared to purely spatial models for a single response variable in the exponential family of distributions, fewer statistical tools are available for multiple-response variables that are not necessarily Gaussian. An exception is a common-factor model developed for multivariate spatial data by Wang and Wall (2003, Biostatistics 4, 569-582). The purpose of this article is to extend this multivariate space-only model and develop a flexible class of generalized linear latent variable models for multivariate spatial-temporal data. For statistical inference, maximum likelihood estimates and their standard deviations are obtained using a Monte Carlo EM algorithm. We also use a novel way to automatically adjust the Monte Carlo sample size, which facilitates the convergence of the Monte Carlo EM algorithm. The methodology is illustrated by an ecological study of red pine trees in response to bark beetle challenges in a forest stand of Wisconsin.  相似文献   

5.
Health researchers are often interested in assessing the direct effect of a treatment or exposure on an outcome variable, as well as its indirect (or mediation) effect through an intermediate variable (or mediator). For an outcome following a nonlinear model, the mediation formula may be used to estimate causally interpretable mediation effects. This method, like others, assumes that the mediator is observed. However, as is common in structural equations modeling, we may wish to consider a latent (unobserved) mediator. We follow a potential outcomes framework and assume a generalized structural equations model (GSEM). We provide maximum‐likelihood estimation of GSEM parameters using an approximate Monte Carlo EM algorithm, coupled with a mediation formula approach to estimate natural direct and indirect effects. The method relies on an untestable sequential ignorability assumption; we assess robustness to this assumption by adapting a recently proposed method for sensitivity analysis. Simulation studies show good properties of the proposed estimators in plausible scenarios. Our method is applied to a study of the effect of mother education on occurrence of adolescent dental caries, in which we examine possible mediation through latent oral health behavior.  相似文献   

6.
Tan M  Fang HB  Tian GL  Houghton PJ 《Biometrics》2002,58(3):612-620
In cancer drug development, demonstrating activity in xenograft models, where mice are grafted with human cancer cells, is an important step in bringing a promising compound to humans. A key outcome variable is the tumor volume measured in a given period of time for groups of mice given different doses of a single or combination anticancer regimen. However, a mouse may die before the end of a study or may be sacrificed when its tumor volume quadruples, and its tumor may be suppressed for some time and then grow back. Thus, incomplete repeated measurements arise. The incompleteness or missingness is also caused by drastic tumor shrinkage (<0.01 cm3) or random truncation. Because of the small sample sizes in these models, asymptotic inferences are usually not appropriate. We propose two parametric test procedures based on the EM algorithm and the Bayesian method to compare treatment effects among different groups while accounting for informative censoring. A real xenograft study on a new antitumor agent, temozolomide, combined with irinotecan is analyzed using the proposed methods.  相似文献   

7.
TNF is an exciting cytokine which has helped to establish many paradigms in immunology. Although TNF itself has found only very limited use in the clinic, anti-cytokine therapy, which targets this single molecule, has enjoyed astounding success in treatment of a growing number of human diseases. However, since TNF mediates unique physiologic functions, in particular those related to host defense, TNF blockade may result in unwanted consequences. Much of our understanding about TNF intrinsic functions in the body, as well as about consequences of its overexpression and ablation, is based on studying phenotypes of various genetically engineered mice. Here we review mouse studies aimed at understanding TNF physiologic functions using transgenic and knockout models, and we discuss additional mouse models that may be helpful in the future.  相似文献   

8.
Bartolucci F  Forcina A 《Biometrics》2001,57(3):714-719
In this article, we show that, if subjects are assumed to be homogeneous within a finite set of latent classes, the basic restrictions of the Rasch model (conditional independence and unidimensionality) can be relaxed in a flexible way by simply adding appropriate columns to a basic design matrix. When discrete covariates are available so that subjects may be classified into strata, we show how a joint modeling approach can achieve greater parsimony. Parameter estimates may be obtained by maximizing the conditional likelihood (given the total number of captures) with a combined use of the EM and Fisher scoring algorithms. We also discuss a technique for obtaining confidence intervals for the size of the population under study based on the profile likelihood.  相似文献   

9.
Ding J  Wang JL 《Biometrics》2008,64(2):546-556
Summary .   In clinical studies, longitudinal biomarkers are often used to monitor disease progression and failure time. Joint modeling of longitudinal and survival data has certain advantages and has emerged as an effective way to mutually enhance information. Typically, a parametric longitudinal model is assumed to facilitate the likelihood approach. However, the choice of a proper parametric model turns out to be more elusive than models for standard longitudinal studies in which no survival endpoint occurs. In this article, we propose a nonparametric multiplicative random effects model for the longitudinal process, which has many applications and leads to a flexible yet parsimonious nonparametric random effects model. A proportional hazards model is then used to link the biomarkers and event time. We use B-splines to represent the nonparametric longitudinal process, and select the number of knots and degrees based on a version of the Akaike information criterion (AIC). Unknown model parameters are estimated through maximizing the observed joint likelihood, which is iteratively maximized by the Monte Carlo Expectation Maximization (MCEM) algorithm. Due to the simplicity of the model structure, the proposed approach has good numerical stability and compares well with the competing parametric longitudinal approaches. The new approach is illustrated with primary biliary cirrhosis (PBC) data, aiming to capture nonlinear patterns of serum bilirubin time courses and their relationship with survival time of PBC patients.  相似文献   

10.
We present a method for estimating the parameters in random effects models for survival data when covariates are subject to missingness. Our method is more general than the usual frailty model as it accommodates a wide range of distributions for the random effects, which are included as an offset in the linear predictor in a manner analogous to that used in generalized linear mixed models. We propose using a Monte Carlo EM algorithm along with the Gibbs sampler to obtain parameter estimates. This method is useful in reducing the bias that may be incurred using complete-case methods in this setting. The methodology is applied to data from Eastern Cooperative Oncology Group melanoma clinical trials in which observations were believed to be clustered and several tumor characteristics were not always observed.  相似文献   

11.
12.
Roy J  Lin X 《Biometrics》2000,56(4):1047-1054
Multiple outcomes are often used to properly characterize an effect of interest. This paper proposes a latent variable model for the situation where repeated measures over time are obtained on each outcome. These outcomes are assumed to measure an underlying quantity of main interest from different perspectives. We relate the observed outcomes using regression models to a latent variable, which is then modeled as a function of covariates by a separate regression model. Random effects are used to model the correlation due to repeated measures of the observed outcomes and the latent variable. An EM algorithm is developed to obtain maximum likelihood estimates of model parameters. Unit-specific predictions of the latent variables are also calculated. This method is illustrated using data from a national panel study on changes in methadone treatment practices.  相似文献   

13.
In epidemiology, capture–recapture models are commonly used to estimate the size of an unknown population based on several incomplete lists of individuals. The method operates under two main assumptions: independence between the lists (local independence) and homogeneity of capture probabilities of individuals. In practice, these assumptions are rarely satisfied. We introduce a multinomial latent class model that can account for both list dependence and heterogeneity. Parameter estimation is performed by maximizing the conditional likelihood function with the use of the EM algorithm. In addition, a new approach for evaluating the standard errors of the parameter estimates is discussed, which considerably reduces the computational burden associated with the evaluation of the variance of the population size estimate.  相似文献   

14.
Bartolucci F  Pennoni F 《Biometrics》2007,63(2):568-578
We propose an extension of the latent class model for the analysis of capture-recapture data which allows us to take into account the effect of a capture on the behavior of a subject with respect to future captures. The approach is based on the assumption that the variable indexing the latent class of a subject follows a Markov chain with transition probabilities depending on the previous capture history. Several constraints are allowed on these transition probabilities and on the parameters of the conditional distribution of the capture configuration given the latent process. We also allow for the presence of discrete explanatory variables, which may affect the parameters of the latent process. To estimate the resulting models, we rely on the conditional maximum likelihood approach and for this aim we outline an EM algorithm. We also give some simple rules for point and interval estimation of the population size. The approach is illustrated by applying it to two data sets concerning small mammal populations.  相似文献   

15.
Liu W  Wu L 《Biometrics》2007,63(2):342-350
Semiparametric nonlinear mixed-effects (NLME) models are flexible for modeling complex longitudinal data. Covariates are usually introduced in the models to partially explain interindividual variations. Some covariates, however, may be measured with substantial errors. Moreover, the responses may be missing and the missingness may be nonignorable. We propose two approximate likelihood methods for semiparametric NLME models with covariate measurement errors and nonignorable missing responses. The methods are illustrated in a real data example. Simulation results show that both methods perform well and are much better than the commonly used naive method.  相似文献   

16.
17.
We introduce a method of parameter estimation for a random effects cure rate model. We also propose a methodology that allows us to account for nonignorable missing covariates in this class of models. The proposed method corrects for possible bias introduced by complete case analysis when missing data are not missing completely at random and is motivated by data from a pair of melanoma studies conducted by the Eastern Cooperative Oncology Group in which clustering by cohort or time of study entry was suspected. In addition, these models allow estimation of cure rates, which is desirable when we do not wish to assume that all subjects remain at risk of death or relapse from disease after sufficient follow-up. We develop an EM algorithm for the model and provide an efficient Gibbs sampling scheme for carrying out the E-step of the algorithm.  相似文献   

18.
19.
Horton NJ  Laird NM 《Biometrics》2001,57(1):34-42
This article presents a new method for maximum likelihood estimation of logistic regression models with incomplete covariate data where auxiliary information is available. This auxiliary information is extraneous to the regression model of interest but predictive of the covariate with missing data. Ibrahim (1990, Journal of the American Statistical Association 85, 765-769) provides a general method for estimating generalized linear regression models with missing covariates using the EM algorithm that is easily implemented when there is no auxiliary data. Vach (1997, Statistics in Medicine 16, 57-72) describes how the method can be extended when the outcome and auxiliary data are conditionally independent given the covariates in the model. The method allows the incorporation of auxiliary data without making the conditional independence assumption. We suggest tests of conditional independence and compare the performance of several estimators in an example concerning mental health service utilization in children. Using an artificial dataset, we compare the performance of several estimators when auxiliary data are available.  相似文献   

20.
Roy J  Lin X 《Biometrics》2005,61(3):837-846
We consider estimation in generalized linear mixed models (GLMM) for longitudinal data with informative dropouts. At the time a unit drops out, time-varying covariates are often unobserved in addition to the missing outcome. However, existing informative dropout models typically require covariates to be completely observed. This assumption is not realistic in the presence of time-varying covariates. In this article, we first study the asymptotic bias that would result from applying existing methods, where missing time-varying covariates are handled using naive approaches, which include: (1) using only baseline values; (2) carrying forward the last observation; and (3) assuming the missing data are ignorable. Our asymptotic bias analysis shows that these naive approaches yield inconsistent estimators of model parameters. We next propose a selection/transition model that allows covariates to be missing in addition to the outcome variable at the time of dropout. The EM algorithm is used for inference in the proposed model. Data from a longitudinal study of human immunodeficiency virus (HIV)-infected women are used to illustrate the methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号