首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 88 毫秒
1.
Q fever is a worldwide zoonosis caused by Coxiella burnetii. Domestic ruminants are considered to be the main reservoir. Sheep, in particular, may frequently cause outbreaks in humans. Because within-flock circulation data are essential to implementing optimal management strategies, we performed a follow-up study of a naturally infected flock of dairy sheep. We aimed to (i) describe C. burnetii shedding dynamics by sampling vaginal mucus, feces, and milk, (ii) assess circulating strain diversity, and (iii) quantify barn environmental contamination. For 8 months, we sampled vaginal mucus and feces every 3 weeks from aborting and nonaborting ewes (n = 11 and n = 26, respectively); for lactating females, milk was obtained as well. We also sampled vaginal mucus from nine ewe lambs. Dust and air samples were collected every 3 and 6 weeks, respectively. All samples were screened using real-time PCR, and strongly positive samples were further analyzed using quantitative PCR. Vaginal and fecal samples with sufficient bacterial burdens were then genotyped by multiple-locus variable-number tandem-repeat analysis (MLVA) using 17 markers. C. burnetii burdens were higher in vaginal mucus and feces than in milk, and they peaked in the first 3 weeks postabortion or postpartum. Primiparous females and aborting females tended to shed C. burnetii longer and have higher bacterial burdens than nonaborting and multiparous females. Six genotype clusters were identified; they were independent of abortion status, and within-individual genotype diversity was observed. C. burnetii was also detected in air and dust samples. Further studies should determine whether the within-flock circulation dynamics observed here are generalizable.  相似文献   

2.
Q fever is a widespread zoonosis that is caused by Coxiella burnetii (C. burnetii), and ruminants are identified as the main sources of human infections. Some human cases have been described, but very limited information was available about Q fever in ruminants on Reunion Island, a tropical island in the Indian Ocean. A cross-sectional study was undertaken from March 2011 to August 2012 to assess the Q fever prevalence and to identify the major risk factors of C. burnetii infection in ruminants. A total of 516 ruminants (245 cattle, 137 sheep and 134 goats) belonging to 71 farms and localized in different ecosystems of the island were randomly selected. Samples of blood, vaginal mucus and milk were concomitantly collected from females, and a questionnaire was submitted to the farmers. Ticks from positively detected farms were also collected. The overall seropositivity was 11.8% in cattle, 1.4% in sheep and 13.4% in goats. C. burnetii DNA was detected by PCR in 0.81%, 4.4% and 20.1% in cow, sheep and goat vaginal swabs, respectively. C. burnetii shedding in milk was observed in 1% of cows, 0% in sheep and 4.7% in goats. None of the ticks were detected to be positive for C. burnetii. C. burnetii infection increased when the farm was exposed to prevailing winds and when there were no specific precautions for a visitor before entering the farm, and they decreased when a proper quarantine was set up for any introduction of a new ruminant and when the animals returned to the farm at night. MLVA genotyping confirmed the role of these risk factors in infection.  相似文献   

3.
For PCR detection of Coxiella burnetii in various clinical specimens we developed a sample preparation method in which silica binding of DNA was used. This method was found to be fast, easily performed with large numbers of samples, and equally sensitive for all of the specimens tested (livers, spleens, placentas, heart valves, milk, blood). The DNA preparation method described here can also be used as an initial step in any PCR-based examination of specimens. The procedure was tested with more than 600 milk samples, which were taken from 21 cows that were seropositive for C. burnetii and reportedly had fertility problems (and therefore were suspected of shedding the agent through milk intermittently or continuously). Of the 21 cows tested, 6 were shedding C. burnetii through milk. Altogether, C. burnetii DNA was detected in 6% of the samples. There was no correlation between the shedding pattern and the serological results.  相似文献   

4.
Coxiella burnetii is the bacterium responsible for Q fever, a worldwide zoonosis. Ruminants, especially cattle, are recognized as the most important source of human infections. Although a great heterogeneity between shedder cows has been described, no previous studies have determined which features such as shedding route and duration or the quantity of bacteria shed have the strongest impact on the environmental contamination and thus on the zoonotic risk. Our objective was to identify key parameters whose variation highly influences C. burnetii spread within a dairy cattle herd, especially those related to the heterogeneity of shedding.To compare the impact of epidemiological parameters on different dynamical aspects of C. burnetii infection, we performed a sensitivity analysis on an original stochastic model describing the bacterium spread and representing the individual variability of the shedding duration, routes and intensity as well as herd demography. This sensitivity analysis consisted of a principal component analysis followed by an ANOVA. Our findings show that the most influential parameters are the probability distribution governing the levels of shedding, especially in vaginal mucus and faeces, the characteristics of the bacterium in the environment (i.e. its survival and the fraction of bacteria shed reaching the environment), and some physiological parameters related to the intermittency of shedding (transition probability from a non-shedding infected state to a shedding state) or to the transition from one type of shedder to another one (transition probability from a seronegative shedding state to a seropositive shedding state).Our study is crucial for the understanding of the dynamics of C. burnetii infection and optimization of control measures. Indeed, as control measures should impact the parameters influencing the bacterium spread most, our model can now be used to assess the effectiveness of different control strategies of Q fever within dairy cattle herds.  相似文献   

5.

Background

Q fever is a zoonosis caused by Coxiella burnetii, a Gram negative bacterium present worldwide. Small ruminants are considered the main reservoirs for infection of humans. This study aimed to estimate the extent of C. burnetii infection among sheep and goats in part of The Gambia.

Methodology/Principal Findings

This survey was carried out from March to May 2012 at two areas in The Gambia. The first area comprised a cluster of seven rural villages situated 5–15 km west of Farafenni as well as the local abattoir. A second sampling was done at the central abattoir in Abuko (30 km from the capital, Banjul) in the Western Region. Serum samples were obtained from 490 goats and 398 sheep. In addition, 67 milk samples were obtained from lactating dams. Sera were tested with a Q fever ELISA kit. C. burnetii DNA was extracted from milk samples and then detected using a specific quantitative multiplex PCR assay, targeting the IS1111a element. A multivariable mixed logistic regression model was used to examine the relationship between seropositivity and explanatory variables. An overall seroprevalence of 21.6% was found. Goats had a significantly higher seroprevalence than sheep, respectively 24.2% and 18.5%. Seropositive animals were significantly older than seronegative animals. Animals from the villages had a significantly lower seroprevalence than animals from the central abattoir (15.1% versus 29.1%). C. burnetii DNA was detected in 2 out of 67 milk samples, whereas 8 samples gave a doubtful result.

Conclusion/Significance

A substantial C. burnetii seroprevalence in sheep and goats in The Gambia was demonstrated. People living in close proximity to small ruminants are exposed to C. burnetii. Q fever should be considered as a possible cause of acute febrile illness in humans in The Gambia. Future studies should include a simultaneous assessment of veterinary and human serology, and include aetiology of febrile illness in local clinics.  相似文献   

6.
Coxiella burnetii is an intracellular bacterial pathogen that causes Q fever. Infected pregnant goats are a major source of human infection. However, the tissue dissemination and excretion pathway of the pathogen in goats are still poorly understood. To better understand Q fever pathogenesis, we inoculated groups of pregnant goats via the intranasal route with a recent Dutch outbreak C. burnetii isolate. Tissue dissemination and excretion of the pathogen were followed for up to 95 days after parturition. Goats were successfully infected via the intranasal route. PCR and immunohistochemistry showed strong tropism of C. burnetii towards the placenta at two to four weeks after inoculation. Bacterial replication seemed to occur predominantly in the trophoblasts of the placenta and not in other organs of goats and kids. The amount of C. burnetii DNA in the organs of goats and kids increased towards parturition. After parturition it decreased to undetectable levels: after 81 days post-parturition in goats and after 28 days post-parturition in kids. Infected goats gave birth to live or dead kids. High numbers of C. burnetii were excreted during abortion, but also during parturition of liveborn kids. C. burnetii was not detected in faeces or vaginal mucus before parturition. Our results are the first to demonstrate that pregnant goats can be infected via the intranasal route. C. burnetii has a strong tropism for the trophoblasts of the placenta and is not excreted before parturition; pathogen excretion occurs during birth of dead as well as healthy animals. Besides abortions, normal deliveries in C. burnetii-infected goats should be considered as a major zoonotic risk for Q fever in humans.  相似文献   

7.
In humans, infection with Coxiella burnetii, the causative agent of Q fever, leads to acute or chronic infection, both associated with specific clinical symptoms. In contrast, no symptoms are observed in goats during C. burnetii infection, although infection of the placenta eventually leads to premature delivery, stillbirth and abortion. It is unknown whether these differences in clinical outcome are due to the early immune responses of the goats. Therefore, peripheral blood mononuclear cells (PBMCs) were isolated from pregnant goats. In total, 17 goats were included in the study. Six goats remained naive, while eleven goats were infected with C. burnetii. Toll-like receptor (TLR) and cytokine mRNA expression were measured after in vitro stimulation with heat-killed C. burnetii at different time points (prior infection, day 7, 35 and 56 after infection). In naive goats an increased expression of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-10 and interferon (IFN)-γ mRNA upon C. burnetii stimulation was detected. In addition, TLR2 expression was strongly up-regulated. In goats infected with C. burnetii, PBMCs re-stimulated in vitro with C. burnetii, expressed significantly more TNF-α mRNA and IFN-γ mRNA compared to naive goats. In contrast, IL-10 mRNA production capacity was down-regulated during C. burnetii infection. Interestingly, at day 7 after inoculation a decreased IFN-γ protein level was observed in stimulated leukocytes in whole blood from infected goats, whereas at other time-points increased production of IFN-γ protein was seen. Our study shows that goats initiate a robust pro-inflammatory immune response against C. burnetii in vitro. Furthermore, PBMCs from C. burnetii infected goats show augmented pro-inflammatory cytokine responses compared to PBMCs from non-infected goats. However, despite this pro-inflammatory response, goats are not capable of clearing the C. burnetii infection.  相似文献   

8.
Bifidobacteria have been recommended as potential indicators of human fecal pollution in surface waters even though very little is known about their presence in nonhuman fecal sources. The objective of this research was to shed light on the occurrence and molecular diversity of this fecal indicator group in different animals and environmental waters. Genus- and species-specific 16S rRNA gene PCR assays were used to study the presence of bifidobacteria among 269 fecal DNA extracts from 32 different animals. Twelve samples from three wastewater treatment plants and 34 water samples from two fecally impacted watersheds were also tested. The species-specific assays showed that Bifidobacterium adolescentis, B. bifidum, B. dentium, and B. catenulatum had the broadest host distribution (11.9 to 17.4%), whereas B. breve, B. infantis, and B. longum were detected in fewer than 3% of all fecal samples. Phylogenetic analysis of 356 bifidobacterial clones obtained from different animal feces showed that ca. 67% of all of the sequences clustered with cultured bifidobacteria, while the rest formed a supercluster with low sequence identity (i.e., <94%) to previously described Bifidobacterium spp. The B. pseudolongum subcluster (>97% similarity) contained 53 fecal sequences from seven different animal hosts, suggesting the cosmopolitan distribution of members of this clade. In contrast, two clades containing B. thermophilum and B. boum clustered exclusively with 37 and 18 pig fecal clones, respectively, suggesting host specificity. Using species-specific assays, bifidobacteria were detected in only two of the surface water DNA extracts, although other fecal anaerobic bacteria were detected in these waters. Overall, the results suggest that the use of bifidobacterial species as potential markers to monitor human fecal pollution in natural waters may be questionable.  相似文献   

9.
A national survey was conducted to determine the prevalence of Escherichia coli O26, O103, O111, and O145 in feces of Scottish cattle. In total, 6,086 fecal pats from 338 farms were tested. The weighted mean percentages of farms on which shedding was detected were 23% for E. coli O26, 22% for E. coli O103, and 10% for E. coli O145. The weighted mean prevalences in fecal pats were 4.6% for E. coli O26, 2.7% for E. coli O103, and 0.7% for E. coli O145. No E. coli O111 was detected. Farms with cattle shedding E. coli serogroup O26, O103, or O145 were widely dispersed across Scotland and were identified most often in summer and autumn. However, on individual farms, fecal shedding of E. coli O26, O103, or O145 was frequently undetectable or the numbers of pats testing positive were small. For serogroup O26 or O103 there was clustering of positive pats within management groups, and the presence of an animal shedding one of these serogroups was a positive predictor for shedding by others, suggesting local transmission of infection. Carriage of vtx was rare in E. coli O103 and O145 isolates, but 49.0% of E. coli O26 isolates possessed vtx, invariably vtx1 alone or vtx1 and vtx2 together. The carriage of eae and ehxA genes was highly associated in all three serogroups. Among E. coli serogroup O26 isolates, 28.9% carried vtx, eae, and ehxA—a profile consistent with E. coli O26 strains known to cause human disease.  相似文献   

10.
In this study, the microbiological quality of roof-harvested rainwater was assessed by monitoring the concentrations of Escherichia coli, enterococci, Clostridium perfringens, and Bacteroides spp. in rainwater obtained from tanks in Southeast Queensland, Australia. Samples were also tested using real-time PCR (with SYBR Green I dye) for the presence of potential pathogenic microorganisms. Of the 27 rainwater samples tested, 17 (63%), 21 (78%), 13 (48%), and 24 (89%) were positive for E. coli, enterococci, C. perfringens, and Bacteroides spp., respectively. Of the 27 samples, 11 (41%), 7 (26%), 4 (15%), 3 (11%), and 1 (4%) were PCR positive for the Campylobacter coli ceuE gene, the Legionella pneumophila mip gene, the Aeromonas hydrophila lip gene, the Salmonella invA gene, and the Campylobacter jejuni mapA gene. Of the 21 samples tested, 4 (19%) were positive for the Giardia lamblia β-giardin gene. The binary logistic regression model indicated a positive correlation (P < 0.02) between the presence/absence of enterococci and A. hydrophila. In contrast, the presence/absence of the remaining potential pathogens did not correlate with traditional fecal indicators. The poor correlation between fecal indicators and potential pathogens suggested that fecal indicators may not be adequate to assess the microbiological quality of rainwater and consequent health risk.  相似文献   

11.
Asian freshwater clams, Corbicula fluminea, exposed for 24 h to 38 liters of water contaminated with infectious Cryptosporidium parvum oocysts (1.00 × 106 oocysts/liter; approximately 1.9 × 105 oocysts/clam) were examined (hemolymph, gills, gastrointestinal [GI] tract, and feces) on days 1, 2, 3, 7, and 14 postexposure (PE). No oocysts were detected in the water 24 h after the contamination event. The percentage of oocyst-containing clams varied from 20 to 100%, depending on the type of tissue examined and the technique used—acid-fast stain (AFS) or immunofluorescent antibody (IFA). The oocysts were found in clam tissues and feces on days 1 through 14 PE; the oocysts extracted from the tissues on day 7 PE were infectious for neonatal BALB/c mice. Overall, the highest number of positive samples was obtained when gills and GI tracts were processed with IFA (prevalence, 97.5%). A comparison of the relative oocyst numbers indicated that overall, 58.3% of the oocysts were found in clam tissues and 41.7% were found in feces when IFA was used; when AFS was used, the values were 51.9 and 48.1%, respectively. Clam-released oocysts were always surrounded by feces; no free oocysts or oocysts disassociated from fecal matter were observed. The results indicate that these benthic freshwater clams are capable of recovery and sedimentation of waterborne C. parvum oocysts. To optimize the detection of C. parvum oocysts in C. fluminea tissue, it is recommended that gill and GI tract samples be screened with IFA (such as that in the commercially available MERIFLUOR test kit).  相似文献   

12.
Different tests performed on bulk tank milk samples (BTM) are available to determine the C. burnetii status of herds. However, these tests, which are based on the detection of either antibodies directed against C. burnetii (ELISA) or bacterial DNA (PCR), have limitations. A currently disease-free herd infected in the past may continue to test positive with ELISA due to the persistence of antibodies in animals that were infected and that subsequently cleared the infection. Infectious herds can also be misclassified using PCR because of the absence of bacteria in the BTM when the test is performed. Recently, PCR has been used for bacterial DNA detection in the farm environment, which constitutes the main reservoir of C. burnetii. The objectives of this study were to assess and compare the sensitivities and specificities of one commonly used PCR test in BTM (PCR BTM) and of a PCR applied to environmental samples (PCR DUST) in dairy cattle farms. BTM and dust samples were collected (using environmental swabs) in 95 herds. The evaluation of the performance of the 2 tests was conducted using latent class models accounting for within herd disease dynamics. Parameter estimation was carried out using MCMC, within a Bayesian framework. Two types of priors were used for the specificity of PCR DUST. A model with a uniform prior on 0–1 fitted the data better than a model with a uniform prior on 0.95–1. With the best model PCR DUST had a lower sensitivity than PCR BTM (0.75 versus 0.83) and a specificity of 0.72. The moderately low value for the specificity of PCR DUST suggests that the presence of bacteria on farm is not always associated with persistent infections and shedding of bacteria in milk.  相似文献   

13.
The objectives of the study described here were (i) to investigate the dynamics of Escherichia coli O157:H7 fecal and hide prevalence over a 9-month period in a feedlot setting and (ii) to determine how animals shedding E. coli O157:H7 at high levels affect the prevalence and levels of E. coli O157:H7 on the hides of other animals in the same pen. Cattle (n = 319) were distributed in 10 adjacent pens, and fecal and hide levels of E. coli O157:H7 were monitored. When the fecal pen prevalence exceeded 20%, the hide pen prevalence was usually (25 of 27 pens) greater than 80%. Sixteen of 19 (84.2%) supershedder (>104 CFU/g) pens had a fecal prevalence greater than 20%. Significant associations with hide and high-level hide (≥40 CFU/100 cm2) contamination were identified for (i) a fecal prevalence greater than 20%, (ii) the presence of one or more high-density shedders (≥200 CFU/g) in a pen, and (iii) the presence of one or more supershedders in a pen. The results presented here suggest that the E. coli O157:H7 fecal prevalence should be reduced below 20% and the levels of shedding should be kept below 200 CFU/g to minimize the contamination of cattle hides. Also, large and unpredictable fluctuations within and between pens in both fecal and hide prevalence of E. coli O157:H7 were detected and should be used as a guide when preharvest studies, particularly preharvest intervention studies, are designed.It is now well established that at the time of harvest, hides are the major source of Escherichia coli O157:H7 contamination on beef carcasses (1, 4, 22). Thus, reducing the levels of food-borne pathogens on cattle hides has been the focus of many pre- and postharvest research efforts. For postharvest applications, hide interventions (i.e., washing of hide-on carcasses with various antimicrobial agents) are direct approaches and have been shown to be efficacious for reducing hide and carcass contamination rates (2, 4, 5, 22).In the area of preharvest research, several approaches have been taken to reduce the prevalence of E. coli O157:H7 in feces of cattle presented for slaughter. These approaches include, among others, feeding cattle probiotics (dietary administration of beneficial bacteria to compete with E. coli O157:H7), vaccination, and bacteriophage treatment (8, 24, 30). These intervention approaches are indirect. By reducing the fecal pathogen load, the pathogen prevalence and the level on hides are reduced through lower cross-contamination at the feedlot, and subsequently, carcass contamination rates decrease. While the effectiveness of preharvest interventions varies, no preharvest intervention is 100% effective in reducing the fecal prevalence of E. coli O157:H7. It is not known what level of pathogen reduction in feces would be necessary to significantly reduce hide and carcass contamination during processing. Key pieces of information needed to address this question are the number of shedding cattle in a pen needed to contaminate the hides of most of the cattle in the same pen and at what level the shedding cattle are contaminated.Aside from the number of cattle shedding a pathogen, the concentration of the pathogen in feces plays a pivotal role in spreading the pathogen between animals. Recently, cattle shedding E. coli O157:H7 at levels of >104 CFU/g (“supershedders”) have been associated with high rates of transmission of the pathogen between cohort animals (18, 23). Matthews et al. reported that 20% of the E. coli O157:H7 infections in cattle on Scottish farms were responsible for 80% of the transmission of the organism between animals (18). Another study reported similar findings; 9% of the animals shedding E. coli O157:H7 produced over 96% of the total E. coli O157:H7 fecal load for the group (23). While a number of studies have indicated the importance of supershedders in fecal transmission dynamics, there is a general lack of information concerning the effects of high shedding rates on hide prevalence and load. Accordingly, the objectives of this study were (i) to investigate the dynamics of E. coli O157:H7 prevalence and levels in feces and on hides of feedlot cattle over time and (ii) to determine how pathogen prevalence and levels on hides in a pen are affected by individuals shedding E. coli O157:H7 at high levels.In the analysis presented here, fecal shedding was analyzed using the following three categories based on the level of E. coli O157:H7 being shed: shedding positive (presumed concentration, ≥1 CFU/g), high-density shedder (≥200 CFU/g), and supershedder (≥104 CFU/g). Several definitions of E. coli O157:H7 supershedders have been offered previously. One-time shedding levels of >103 or >104 CFU/g have been used in multiple studies (17, 23, 24), while other groups have required persistent colonization of the rectoanal junction, as well as high cell counts, for an animal to qualify as a supershedder (10). Recently, Chase-Topping et al. (9) reviewed the requirements for supershedder status and provided a working definition: an animal that excretes >104 CFU/g. In doing this, Chase-Topping et al. noted the high stringency of this definition and acknowledged that with such a definition some supershedders will be missed if they are sampled at times other than peak shedding times (9). In the current study, this was a concern. In an attempt to investigate the link between high-shedding-level animals and hide contamination, greater leeway was needed in the classification. When it is sampled on a monthly basis, an animal shedding at high levels can have a large impact on the hide status of pen cohorts between sampling intervals but not be shedding at peak levels on the day of sample collection. Hence, the categories described above were selected to analyze the relationship between fecal shedding and hide contamination.  相似文献   

14.
To determine the prevalence of Shiga toxin (Stx)-producing Escherichia coli (STEC) in slaughter animals in Dhaka, Bangladesh, we collected rectal contents immediately after animals were slaughtered. Of the samples collected from buffalo (n = 174), cows (n = 139), and goats (n = 110), 82.2%, 72.7%, and 11.8% tested positive for stx1 and/or stx2, respectively. STEC could be isolated from 37.9%, 20.1%, and 10.0% of the buffalo, cows, and goats, respectively. STEC O157 samples were isolated from 14.4% of the buffalo, 7.2% of the cows, and 9.1% of the goats. More than 93% (n = 42) of the STEC O157 isolates were positive for the stx2, eae, katP, etpD, and enterohemorrhagic E. coli hly (hlyEHEC) virulence genes. STEC O157 isolates were characterized by seven recognized phage types, of which types 14 (24.4%) and 31 (24.4%) were predominant. Subtyping of the 45 STEC O157 isolates by pulsed-field gel electrophoresis showed 37 distinct restriction patterns, suggesting a heterogeneous clonal diversity. In addition to STEC O157, 71 STEC non-O157 strains were isolated from 60 stx-positive samples from 23.6% of the buffalo, 12.9% of the cows, and 0.9% of the goats. The STEC non-O157 isolates belonged to 36 different O groups and 52 O:H serotypes. Unlike STEC O157, most of the STEC non-O157 isolates (78.9%) were positive for stx1. Only 7.0% (n = 5) of the isolates were positive for hlyEHEC, and none was positive for eae, katP, and etpD. None of the isolates was positive for the iha, toxB, and efa1 putative adhesion genes. However, 35.2% (n = 25), 11.3% (n = 8), 12.7% (n = 9), and 12.7% (n = 9) of the isolates were positive for the lpfO113, saa, lpfAO157/01-141, and lpfAO157/OI-154 genes, respectively. The results of this study provide the first evidence that slaughtered animals like buffalo, cows, and goats in Bangladesh are reservoirs for STEC, including the potentially virulent STEC strain O157.  相似文献   

15.
The prevalence and diversity of tick-borne zoonotic bacteria (Borrelia spp., Anaplasma phagocytophilum, Coxiella burnetii, and spotted fever group rickettsiae) infecting 253 small mammals captured in the Basque Country (Spain) were assessed using PCR and reverse line blot hybridization. Trapping sites were selected around sheep farms (study 1, 2000 to 2002) and recreational parks (study 2, 2003 to 2005). The majority of the studied mammals (162) were wood mice (Apodemus sylvaticus), but six other different species were also analyzed: yellow-necked mice (Apodemus flavicollis), shrews (Crocidura russula and Sorex coronatus), bank voles (Clethrionomys glareolus), domestic mice (Mus domesticus), and moles (Talpa europaea). The results showed an infection rate ranging from 10.7% to 68.8%, depending on the small mammal species. One C. russula shrew and one A. sylvaticus mouse gave positive reactions for A. phagocytophilum, and C. burnetii was detected in two domestic mice and one A. sylvaticus mouse in a farm. The DNA of Borrelia spp. was detected in 67 animals (26.5%), most of them presenting positive hybridization with the probe for Borrelia sp. strain R57, the new Borrelia species previously detected in small mammals in our region. Furthermore, a second PCR and reverse line blot hybridization specific for B. burgdorferi sensu lato revealed the presence of Borrelia afzelii in 6.3% of C. glareolus voles and 14.3% of S. coronatus shrews. All small mammals were negative for spotted fever group rickettsiae. These results highlight the relevance of small mammals as reservoirs of some zoonotic bacteria.  相似文献   

16.

Background

Q fever is a worldwide zoonotic disease caused by Coxiella burnetii. Epidemiologically, animals are considered reservoirs and humans incidental hosts.

Methodology/Principal Findings

We investigated Q fever in rural Senegal. Human samples (e.g., sera, saliva, breast milk, feces) were screened in the generally healthy population of two villages of the Sine-Saloum region. Ticks were collected in four regions. Seroprevalence was studied by immunofluorescence, and all other samples were tested by two qPCR systems for detection of C. burnetii. Positive samples were genotyped (multispacer typing) by amplification and sequencing of three spacers. Strains were isolated by cell culture. We found that the seroprevalence may be as high as 24.5% (59 of 238 studied) in Dielmo village. We identified spontaneous excretion of C. burnetii by humans through faeces and milk. Hard and soft ticks (8 species) were infected in 0–37.6%. We identified three genotypes of C. burnetii. The previously identified genotype 6 was the most common in ticks in all studied regions and the only one found in human samples. Three strains of genotype 6 of C. burnetii were also recovered from soft tick Ornithodoros sonrai. Two other genotypes found in ticks, 35 and 36, were identified for the first time.

Conclusions/Significance

Q fever should be considered a significant public health threat in Senegal. Humans, similar to other mammals, may continuously excrete C. burnetii.  相似文献   

17.
The study investigated the prevalence of Campylobacter spp. in Finnish cattle at slaughter and carcass contamination after slaughter. During the period January to December 2003, bovine rectal fecal samples (n = 952) and carcass surface samples (n = 948) from 12 out of 15 Finnish slaughterhouses were examined. In total, campylobacters were detected in 31.1% of fecal samples and in 3.5% of carcass surface samples. Campylobacter jejuni was isolated from 19.5%, Campylobacter coli from 2.2%, and presumptive Campylobacter hyointestinalis from 10.8% of fecal samples. Campylobacters were detected in 4.4% and 37.4% of the fecal samples examined both by direct culture and by enrichment (n = 730), respectively, suggesting a low level of campylobacters in the intestinal content. A slightly increasing trend was observed in the overall prevalence of campylobacters towards the end of summer and autumn. Seventeen different serotypes were detected among the fecal C. jejuni isolates using a set of 25 commercial antisera for serotyping heat-stable antigens (Penner) of C. jejuni by passive hemagglutination. The predominant serotypes, Pen2 and Pen4-complex, were isolated from 52% of the fecal samples. Subtyping by pulsed-field gel electrophoresis (SmaI) yielded 56 and 20 subtypes out of 330 fecal and 70 carcass C. jejuni isolates, respectively. MICs of ampicillin, enrofloxacin, erythromycin, gentamicin, nalidixic acid, and oxytetracycline for 187 C. jejuni isolates were determined using a commercial broth microdilution method. Sixteen (9%) of the isolates were resistant to at least one of the antimicrobials tested. Resistance to nalidixic acid was most commonly detected (6%). No multiresistance was observed.  相似文献   

18.
A new strategy for the detection of infectious Cryptosporidium parvum oocysts in water samples, which combines immunomagnetic separation (IMS) for recovery of oocysts with in vitro cell culturing and PCR (CC-PCR), was field tested with a total of 122 raw source water samples and 121 filter backwash water grab samples obtained from 25 sites in the United States. In addition, samples were processed by Percoll-sucrose flotation and oocysts were detected by an immunofluorescence assay (IFA) as a baseline method. Samples of different water quality were seeded with viable C. parvum to evaluate oocyst recovery efficiencies and the performance of the CC-PCR protocol. Mean method oocyst recoveries, including concentration of seeded 10-liter samples, from raw water were 26.1% for IMS and 16.6% for flotation, while recoveries from seeded filter backwash water were 9.1 and 5.8%, respectively. There was full agreement between IFA oocyst counts of IMS-purified seeded samples and CC-PCR results. In natural samples, CC-PCR detected infectious C. parvum in 4.9% (6) of the raw water samples and 7.4% (9) of the filter backwash water samples, while IFA detected oocysts in 13.1% (16) of the raw water samples and 5.8% (7) of the filter backwash water samples. All CC-PCR products were confirmed by cloning and DNA sequence analysis and were greater than 98% homologous to the C. parvum KSU-1 hsp70 gene product. DNA sequence analysis also revealed reproducible nucleotide substitutions among the hsp70 fragments, suggesting that several different strains of infectious C. parvum were detected.  相似文献   

19.
Our objectives were to evaluate the prevalence of Escherichia coli O157:H7 in cattle fed diets supplemented with 20 or 40% dried distillers'' grains (DG) (DDG) or wet DG (WDG) and assess whether removing DG from diets before slaughter affected fecal shedding of E. coli O157:H7. Eight hundred forty steers were allocated to 70 pens (12 steers/pen). Treatments were no DG (control), 20% DDG or WDG, and 40% DDG or WDG, and each was replicated in 14 pens. In phase 1, eight floor fecal samples were collected from each pen every 2 weeks for 12 weeks for isolation of E. coli O157:H7 and detection of high shedders. In phase 2, half of the pens with DG were transitioned to the no-DG control diet, and pen floor fecal samples were collected weekly from all pens for 4 weeks. During phase 1, prevalence of E. coli O157:H7 was 20.8% and 3.2% for high shedders. The form of DG had no significant effect on fecal E. coli O157:H7 shedding. The prevalence levels of E. coli O157:H7 and the numbers of high shedders were not different between diets with 0 or 20% DG; however, cattle fed 40% DG had a higher prevalence and more high shedders than cattle fed 0 or 20% DG (P ≤ 0.05). During phase 2, overall and high-shedder prevalence estimates were 3.3% and <0.1%, respectively, and there were no differences between those for different DG forms and inclusion levels or when DG was removed from diets. The form of DG had no impact on E. coli O157:H7; however, fecal shedding was associated with the DG inclusion level.Cattle are asymptomatic reservoirs for Escherichia coli O157:H7, a food-borne pathogen associated with gastrointestinal disease in thousands of Americans each year. The organism colonizes the hindgut of cattle (18, 27) and is shed in cattle feces. Once shed, E. coli O157:H7 can contaminate food and water, creating a food safety risk (20). Contamination of beef products occurs during slaughter and is associated with the prevalence of E. coli O157:H7 in feces and on the hides of cattle at harvest (5, 8, 12).The prevalence of E. coli O157:H7 in cattle is associated with many factors, including season, geographic location, and diet. Previous work has shown that cattle fed diets containing distillers'' grains (DG), an ethanol fermentation coproduct, have a higher prevalence of E. coli O157:H7 than cattle fed diets without DG (10, 28). Distillers'' grains are a valuable feed commodity for cattle producers, and use of these coproducts has increased with the expansion of the ethanol industry (14, 17). Distillers'' grains for use in cattle diets are available in wet (WDG) or dry (DDG) form. The association between feeding DG and E. coli O157:H7 prevalence has been shown with both forms (10, 28), but no study has directly compared the two forms. The levels of DG supplementation in cattle diets generally range from 10 to 50% (dry matter basis) depending on whether the coproduct is used as a protein or energy source. As a protein supplement, DG is included at 10 to 15%; as an energy source, the DG level is generally dictated by coproduct availability and grain price (14). There is some indication that E. coli O157:H7 prevalence is different for cattle fed different levels of DG (19). However, no study has specifically evaluated the relationship between E. coli O157:H7 prevalence and DG inclusion level. Evaluation of these two factors (form and inclusion level) is important for furthering our understanding of the association between DG and E. coli O157:H7 in cattle.We also were interested in determining whether removing the DG component of the diet would lower fecal prevalence of E. coli O157:H7. Such a strategy may lead to potential mitigation options and would provide further evidence of a positive association between feeding DG and E. coli O157:H7 prevalence in cattle. In this two-phase study, our objectives were to (i) concurrently evaluate the effect of DG inclusion level and form on E. coli O157:H7 prevalence in feedlot cattle and (ii) determine if removing DG from cattle diets subsequently reduces the fecal prevalence of E. coli O157:H7.  相似文献   

20.
A specific and sensitive combined selection and enrichment PCR procedure was developed for the detection of Clostridium botulinum types B, E, and F in fecal samples from slaughtered pigs. Two enrichment PCR assays, using the DNA polymerase rTth, were constructed. One assay was specific for the type B neurotoxin gene, and the other assay was specific for the type E and F neurotoxin genes. Based on examination of 29 strains of C. botulinum, 16 strains of other Clostridium spp., and 48 non-Clostridium strains, it was concluded that the two PCR assays detect C. botulinum types B, E, and F specifically. Sample preparation prior to the PCR was based on heat treatment of feces homogenate at 70°C for 10 min, enrichment in tryptone-peptone-glucose-yeast extract broth at 30°C for 18 h, and DNA extraction. The detection limits after sample preparation were established as being 10 spores per g of fecal sample for nonproteolytic type B, and 3.0 × 103 spores per g of fecal sample for type E and nonproteolytic type F with a detection probability of 95%. Seventy-eight pig fecal samples collected from slaughter houses were analyzed according to the combined selection and enrichment PCR procedure, and 62% were found to be PCR positive with respect to the type B neurotoxin gene. No samples were positive regarding the type E and F neurotoxin genes, indicating a prevalence of less than 1.3%. Thirty-four (71%) of the positive fecal samples had a spore load of less than 4 spores per g. Statistical analysis showed that both rearing conditions (outdoors and indoors) and seasonal variation (summer and winter) had significant effects on the prevalence of C. botulinum type B, whereas the effects of geographical location (southern and central Sweden) were less significant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号