首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of combined treatment with an antagonist of gonadotrophin-releasing hormone (ANT) and the antiandrogen flutamide (FL) on spermatogenesis were studied in the presence and absence of exogenous follicle-stimulating hormone (FSH). After treatment for 2 weeks, the combination of ANT (RS 68439, 450-500 micrograms/kg per day, s.c.) with 10, 20 or 40 mg FL/day, s.c. was as effective as ANT plus the Leydig cell toxin ethane dimethane sulphonate (75 mg/kg per week, i.p.) in terms of reduction in weight of testes, epididymides and seminal vesicles. Thus, a daily dose of 10 mg FL/kg was sufficient to block the androgen action in the testes of ANT-treated rats. In a second experiment, rats received ANT and ANT+FL (10 mg/kg) alone or in combination with a highly purified human FSH preparation (5 or 10 iu, twice a day) for 2 weeks. FSH did not affect testosterone concentration or weight of epididymides and seminal vesicles, but ANT+FL markedly enhanced the ANT-induced reduction of testis weight, seminiferous tubule diameter and numbers of germ cells, as revealed by qualitative and quantitative analysis of testis histology. In the absence of FL, testis size and numbers of germ cells, including elongated spermatids, were increased by FSH. In the presence of FL, the effects of FSH were less pronounced with respect to the germ cells, in terms of both numbers of cells and the effective dose of FSH. Irrespective of treatment with FL, exogenous FSH increased the inhibin concentrations in serum, indicating that Sertoli cells remained responsive to FSH. From the present study it is concluded that (i) FL accelerates ANT-induced testicular involution, (ii) FSH has a role in adult spermatogenesis and (iii) the effects of FSH on advanced germ cells are influenced by androgens.  相似文献   

2.
Androgens drive spermatogenesis by processes that are largely unknown. Direct effects on germ cells and indirect effects mediated via testicular somatic elements are currently under consideration, and specific localization of androgens in seminiferous tubules may provide information as regards this. Adult male rats were injected with ethane dimethanesulfonate (EDS; 75 mg/kg body weight) or vehicle. Testes were fixed and paraffin-embedded for localization of testosterone immunoreactivity 1 and 2 weeks after treatment, using the unlabeled antibody (PAP) technique. Plasma testosterone dropped from a pre-treatment level of 2.3 ng/ml to below 0.2 ng/ml 3 days after EDS injection and remained at low levels until the end of observation, accompanied by a progressive decrease in testicular weight. In the seminiferous tubules of vehicle-injected males, testosterone immunoreactivity was found in nuclei of spermatocytes and spermatids and in nuclei and the cytoplasm of Sertoli cells, and showed typical variations according to the stage of spermatogenesis. One week after EDS treatment, immunoreactivity had disappeared from the seminiferous epithelium. Two weeks after treatment, staining of germ cells was detected in two out of four males. The disappearance and reappearance of immunoreactivity coincided with the time course of EDS effects on rat Leydig cells, and we conclude that it corresponds to androgen specifically localized in fixed, paraffin-embedded tissue. Because staining of germ cell nuclei varied with the stage of spermatogenesis, the technique may detect a physiologically relevant androgen fraction; its location suggests that androgens may also directly affect certain germ cell stages.  相似文献   

3.
As a prerequisite for studies using mutant mice, we established a mouse model for induction of male germ cell apoptosis after deprivation of gonadotropins and intratesticular testosterone (T). We employed a potent long acting gonadotropin-releasing hormone antagonist (GnRH-A), acyline, alone or in combination with an antiandrogen, flutamide for effective induction of germ cell apoptosis in mice. Combined treatment with continuous release of acyline (3 mg/kg BW/day) with flutamide (in the form of sc pellets of 25 mg) resulted in almost the same level of suppression of spermatogenesis, as judged by testis weight and by germ cell apoptotic index, in 2 weeks as that reported for rats after treatment with 1.25 mg/kg BW Nal-Glu GnRH-A for the same time period. Within the study paradigm, the maximum suppression of spermatogenesis occurred after a single sc injection of high (20 mg/kg BW) dose of acyline with flutamide. The combined treatment resulted in complete absence of elongated spermatids. Germ cell counts at stages VII-VIII showed a significant (P < 0.05) reduction in the number of preleptotene (27.1%) and pachytene spermatocytes (81.9%), and round spermatids (96.6%) in acyline + flutamide group in comparison with controls. In fact, treatment with a single high (20 mg/kg BW) dose of acyline combined with flutamide in mice achieved same or greater level of suppression, measured by germ cell counts at stages VII-VIII, in two weeks when compared with those reported after daily treatment with Nal-Glu GnRH-A for 4 weeks in rats. Both plasma and testicular T levels were markedly suppressed after administration of acyline alone either by miniosmotic pump or by a single sc injection. Addition of flutamide to acyline had no discernible effect on plasma or intratesticular T levels when compared with acyline alone. These results demonstrate that optimum suppression of spermatogenesis through increased germ cell death is only possible in mice if total abolition of androgen action is achieved and further emphasize the usefulness of acyline + flutamide treated mice as a suitable model system to study hormonal regulation of testicular germ cell apoptosis.  相似文献   

4.
Androgens are especially important for the maintenance of spermatogenesis in adulthood and the experimental withdrawal of testosterone (T) production by ethane dimenthanesulfonate (EDS) is a valuable tool for studying androgen-dependent events of spermatogenesis. The aim of the present study was to investigate the specific changes in immunoexpression of androgen receptor (AR) in the testis in relation to degeneration and regeneration of Leydig cell (LC) population and seminiferous epithelium. Immunohistochemistry for AR and 3beta-hydroxysteroid dehydrogenase (3beta-HSD) as well as TUNEL assay for apoptosis were performed on testicular sections of control and EDS-treated rats. Serum LH and T levels were measured by RIA. Our results revealed a total loss of AR immunoexpression from the nuclei of Sertoli (SCs), LCs and peritubular cells during the first week after EDS administration and that coincided with severe drop in T levels. Two weeks after EDS administration, the AR expression was recovered in these cells but normal stage-specificity in SCs was replaced by uniform intensity of AR immunostaining at all the stages of the spermatogenic cycle. The stage-specific pattern of androgen expression in SCs with a maximum at stages VII-VIII appeared 5 weeks after treatment. LC immunoreactivity for 3beta-HSD at different time points after EDS administration correlated with values of T concentration. The maximal germ cell apoptosis on day 7 was followed by total loss of elongated spermatids 2 weeks after EDS treatment. Regeneration of seminiferous epithelium 3 weeks after EDS administration and onwards occurred in tandem with the development of new LC population indicated by the appearance of 3beta-HSD-positive cells and gradual increase in T production. The specific changes in AR after EDS including their loss and recovery in Sertoli cells paralleled with degenerative and regenerative events in Leydig and germ cell populations, confirming close functional relationship between Sertoli, Leydig and germ cells.  相似文献   

5.
After a single dose of ethane dimethanesulphonate (EDS) (75 mg/kg) to rats the prolonged antispermatogenic action is due to a temporary elimination of the functional Leydig cell population. Replacement therapy with testosterone propionate (3 mg/day) maintains the spermatogenic epithelium but the EDS effect develops when hormone treatment is discontinued. In contrast, a short treatment with hCG (10-100 i.u./day) or LH (714 micrograms/day), starting before the EDS dose, permanently protects the spermatogenic epithelium. FSH treatment was completely ineffective. Although histological protection of spermatogenesis appeared complete with testosterone or hCG, effects on fertility remained but over different periods of time. Antispermatogenic and antifertility effects were produced in mice using much higher doses of EDS (5 X 250 mg/kg) but there was no protection from androgen or hCG. It is suggested that EDS binds to Leydig cells irreversibly, interfering with the action of gonadotrophin. At the dose level used the evidence suggests that the degree of reaction renders most of the Leydig cell population non-viable. A direct cytotoxic effect of the compound upon the spermatogenic epithelium might account for the inability of testosterone or hCG alone or in combination to maintain fertility at normal levels.  相似文献   

6.
Win 49596 is a new orally active, steroidal androgen receptor antagonist. Win 49596 inhibited ventral prostate, seminal vesicle and levator ani weight gain in either 5 alpha-dihydrotestosterone (DHT) or testosterone propionate-treated castrated, immature male rats. In intact, adult male rats, Win 49596 significantly inhibited weight gain by the ventral prostate, dorsal lateral prostate and seminal vesicles, but not the testes at doses as low as 50 mg/kg/day x 14 p.o. However, daily oral administration of equivalent antiandrogenic doses of either Win 49596, ICI 176,334, or flutamide for 14 days to mature, intact male rats resulted in elevations of circulating testosterone of approximately 3-, 2-, and 10-fold, respectively. At doses as high as 400 mg/kg p.o., Win 49596 did not have androgenic, progestational, estrogenic or antiestrogenic activity in rat or rabbit models. However, in the Clauberg assay, Win 49596 did have weak antiprogestational activity at doses of 25-400 mg/kg/day p.o. These data indicate that Win 49596 is a peripherally selective antiandrogen that has minimal effects on circulating testosterone levels and is devoid of hormone agonist activity. Thus, Win 49596 may be useful for the treatment of androgen dependent conditions such as benign prostatic hyperplasia and prostatic cancer.  相似文献   

7.
8.
Metronidazole, a 5-nitroimidazole drug has been reported to decrease testicular weight, testicular and epididymal spermatid counts and causes abnormal sperm morphology with degeneration of seminiferous tubules with 6 weeks treatment of metronidazole (400 mg/kg, day). In contrast to DNA flow cytometry (FCM), the histological and gravimetric parameters do not allow a rapid, sensitive, objective and multiparameteric evaluation of reproductive toxicants on spermatogenesis. Moreover, the exact mechanisms for such an effect are not entirely clear. The present study was therefore undertaken to assess the effects of intraperitoneal (i.p.) administration of metronidazole 400 mg/kg daily for 30 days on testicular germ cell changes assessed by DNA (FCM) and hormone levels of testosterone, FSH and LH in pre-pubertal rats. A significant reduction in the haploid cell population in metronidazole treated groups as compared to saline treated controls was observed. The mean serum FSH, LH and testosterone value were also lowered in treated animals. Thus, the spermatotoxic effects of metronidazole were probably mediated by decrease in the circulating hormones responsible for spermatogenesis.  相似文献   

9.
Prenatal exposure to environmental chemicals that interfere with the androgen signaling pathway can cause permanent adverse effects on reproductive development in male rats. The objectives of this study were to 1) determine whether a documented antiandrogen butyl benzyl phthalate (BBP) and/or linuron (an androgen receptor antagonist) would decrease fetal testosterone (T) production, 2) describe reproductive developmental effects of linuron and BBP in the male, 3) examine the potential cumulative effects of linuron and BBP, and 4) investigate whether treatment-induced changes to neonatal anogenital distance (AGD) and juvenile areola number were predictive of adult reproductive alterations. Pregnant rats were treated with either corn oil, 75 mg/kg/day of linuron, 500 mg/kg/day of BBP, or a combination of 75 mg/kg/day linuron and 500 mg/kg/day BBP from gestational Day 14 to 18. A cohort of fetuses was removed to assess male testicular T and progesterone production, testicular T concentrations, and whole-body T concentrations. Male offspring from the remaining litters were assessed for AGD and number of areolae and then examined for alterations as young adults. Prenatal exposure to either linuron or BBP or BBP + linuron decreased T production and caused alterations to androgen-organized tissues in a dose-additive manner. Furthermore, treatment-related changes to neonatal AGD and infant areolae significantly correlated with adult AGD, nipple retention, reproductive malformations, and reproductive organ and tissue weights. In general, consideration of the dose-response curves for the antiandrogenic effects suggests that these responses were dose additive rather than synergistic responses. Taken together, these data provide additional evidence of cumulative effects of antiandrogen mixtures on male reproductive development.  相似文献   

10.
The present studies were undertaken to determine the testicular cell type(s) affected by the antispermatogenic indenopyridine CDB-4022. At the oral threshold dose (2.5 mg/kg), CDB-4022 induced infertility in all males. CDB-4022 did not alter (P > 0.05) Leydig cell function as assessed by circulating testosterone, seminal vesicle, and ventral prostate weights or body weight gain compared to controls. Conversely, CDB-4022 reduced (P < 0.05) testicular weight, spermatid head counts, and percentage of seminiferous tubules undergoing spermatogenesis. In a second study, adult male rats received a maximally effective oral dose of CDB-4022 (12.5 mg/kg), dipentylphthalate (DPP; 2200 mg/kg; a Sertoli cell toxicant), or vehicle and were necropsied 3, 6, or 12 h after dosing to determine acute effects. Serum inhibin B levels were suppressed (P < 0.05) by 6 h after CDB-4022 or DPP treatment, but epididymal androgen-binding protein (ABP) levels were not altered (P > 0.05), compared to controls. CDB-4022 and DPP increased (P < 0.05) the percentage of tubules with apoptotic germ cells, particularly differentiating spermatogonia and spermatocytes, by 12 h after dosing. Microscopic examination of the testis indicated a greater degree of vacuolation in Sertoli cells and initial signs of apical germ cell sloughing/shedding by 3 or 12 h after CDB-4022 or DPP treatment, respectively. In a third study, prepubertal male rats were treated with vehicle, 12.5 mg/kg of CDB-4022, or 2200 mg/kg of DPP, and the efferent ducts of the right testis were ligated 23 h before necropsy. Seminiferous tubule fluid secretion (difference in weight of testes), serum inhibin B levels, and ABP levels in the unligated epididymis were reduced (P < 0.05) at 24 and 48 h after dosing in CDB-4022- and DPP-treated rats compared to controls. Collectively, these data suggest that CDB-4022 disrupts spermatogenesis by inducing apoptosis in early stage germ cells via a direct action on the Sertoli cell.  相似文献   

11.
The ability of testicular steroids to maintain the quantitative aspects of spermatogenesis was compared with reference to their androgenic properties. Hypophysectomized rats were injected daily with 0.2 mg progesterone, 20 alpha-dihydroprogesterone, 3 beta-hydroxy-5 alpha-pregnan-20-one, testosterone or testosterone propionate for 30 days beginning 2 days after the operation. Testosterone propionate was the most potent steroid tested both in terms of its peripheral androgenic effects and its ability to prevent the post-operative decline in the weight of the testis and seminiferous tubules and the numbers of germ cells throughout their differentiation. The natural androgen, testosterone, exhibited weak gametogenic properties and only partly maintained the normal measures of spermatogenesis. Progesterone exhibited low intrinsic androgenic potency yet was significantly more effective than testosterone in maintaining spermatogenesis; it prevented the degeneration of spermatocytes during the later stages of meiotic prophase and the reduction divisions resulting in an increased yield of step 7 spermatids. Low androgenic and gametogenic properties were exhibited by 20 alpha-dihydroprogesterone and 3 beta-hydroxy-5 alpha-pregnan-20-one. These results may indicate that testosterone produced locally in the seminiferous tubules from progesterone is more effective in maintaining spermatogenesis than androgens entering from the circulation. Alternatively, progesterone may act more directly on the germ cells than previously envisaged.  相似文献   

12.
The aim of the study was to investigate the effects of pharmacologically induced hormonal imbalance in adult male rats treated with letrozole and rats exposed to soya isoflavones on the testicular morphology and c-Kit receptor (c-Kit-R) expression in germ cells. The study was conducted during all developmental periods: prenatal period, lactation, youth, and sexual maturity. Morphological and morphometrical analyses were performed on testicular section, and c-Kit-R was identified using immunohistochemistry. In addition, concentration of circulating steroids was measured in mature rats exposed to soya isoflavones. A significant reduction in testosterone level in rats exposed to soya isoflavones, and the sloughing of the premature germ cells into the lumen of the seminiferous tubules in the testes of both groups of rats were observed. Immunohistochemistry showed a decrease in c-Kit-R expression in germ cells of both experimental groups. Morphometric analysis indicated a decreased thickness of the layers occupied by c-Kit-R-positive spermatogonia, and a decreased diameter of the seminiferous tubules in the testes of both experimental groups of animals. In conclusion, the pharmacologically induced reduction of the estradiol level in adult rats and the diminished level of testosterone in rats exposed to soya isoflavones during the prenatal period, lactation and up to maturity caused similar morphological and functional changes associated with the decreased c-Kit-R expression in germ cells in the seminiferous epithelium. These findings demonstrate the importance of the estrogen/androgen balance for normal testicular morphology and spermatogenesis.  相似文献   

13.
This review centers around studies which have used ethane dimethane sulphonate (EDS) selectively to destroy all of the Leydig cells in the adult rat testis. With additional manipulations such as testosterone replacement and/or experimental induction of severe seminiferous tubule damage in EDS-injected rats, the following questions have been addressed: 1) What are the roles and relative importance of testosterone and other non-androgenic Leydig cell products in normal spermatogenesis and testicular function in general? 2) What are the factors controlling Leydig cell proliferation and maturation? 3) Is it the Leydig cells or the seminiferous tubules (or both) which control the testicular vasculature? The findings emphasize that in the normal adult rat testis there is a complex interaction between the Leydig cells, the Sertoli (and/or peritubular) cells, the germ cells, and the vasculature, and that testosterone, but not other Leydig cell products, plays a central role in many of these interactions. The Leydig cells drive spermatogenesis via the secretion of testosterone which acts on the Sertoli and/or peritubular cells to create an environment which enables normal progression of germ cells through stage VII of the spermatogenic cycle. In addition, testosterone is involved in the control of the vasculature, and hence the formation of testicular interstitial fluid, presumably again via effects on the Sertoli and/or peritubular cells. When Leydig cells regenerate and mature after their destruction by EDS, it can be shown that both the rate and the location of regenerating Leydig cells is determined by an interplay between endocrine (LH and perhaps FSH) and paracrine factors; the latter emanate from the seminiferous tubules and are determined by the germ cell complement. Taken together with other data on the paracrine control of Leydig cell testosterone secretion by the seminiferous tubules, these findings demonstrate that the functions of all of the cell types in the testis are interwoven in a highly organized manner. This has considerable implications with regard to the concentration of research effort on in vitro studies of the testis, and is discussed together with the need for a multidisciplinary approach if the complex control of spermatogenesis is ever to be properly understood.  相似文献   

14.
Regulation of spermatogenesis involves stage-dependent androgen action on Sertoli cells, but the pathways involved are unclear. We assessed if cyclin D2 could play a role. In rats, Sertoli cell nuclear, stage-dependent immunoexpression of cyclin D2 switched on after Day 10 and persisted through Day 35, but disappeared by adulthood. However, ethane dimethane sulfonate (EDS)-induced testosterone withdrawal in adult rats for 6 days induced stage-dependent cyclin D2 immunoexpression in Sertoli cells, with highest expression at stages IX-XII and nondetectable at stages VI-VIII (opposite that for androgen receptor [AR] immunoexpression). In EDS-treated rats, a single injection of testosterone but not of estrogen reversed this change in 4 h, and testosterone administration from the time of EDS treatment prevented expression of cyclin D2 in Sertoli cells. The EDS-induced changes in cyclin D2 immunoexpression were matched by changes in expression of Ccnd2 (cyclin D2) mRNA in isolated stage-dissected tubules. Treatment of adult rats with flutamide induced stage-dependent cyclin D2 immunoexpression in Sertoli cells within 18 h, and confocal microscopy revealed that immunoexpression of AR and cyclin D2 were mutually exclusive within individual seminiferous tubules in these animals. Sertoli cell-selective ablation of the AR in mice using Cre/loxP technology also resulted in stage-dependent Sertoli cell cyclin D2 immunoexpression. Downstream from cyclin D2 action is retinoblastoma 1 (RB1), a tumor suppressor protein, immunoexpression of which paralleled stage-dependent AR expression in Sertoli cells; RB1 stage specificity disappeared after EDS treatment. These results point to a non-cell cycle role for cyclin D2 and RB1 in mature Sertoli cells in the stage-dependent mechanisms regulated by AR expression and androgen action.  相似文献   

15.
Although the adult mouse Leydig cell (LC) has been considered refractory to cytotoxic destruction by ethane dimethanesulfonate (EDS), the potential consequences of exposure during reproductive development in this species are unknown. Herein pregnant CD-1 mice were treated with 160 mg/kg on Gestation Days 11-17, and reproductive development in male offspring was evaluated. Prenatal administration of EDS compromised fetal testosterone (T) levels, compared with controls. EDS-exposed pups recovered their steroidogenic capacities after birth because T production by hCG-stimulated testis parenchyma from prepubertal male offspring was unchanged. However, prepubertal testes from prenatally exposed males contained seminiferous tubules (STs) devoid of germ cells, indicating a delay in spermatogenesis. In adults, some STs in exposed males still contained incomplete germ cell associations corroborating observed reductions in epididymal sperm reserves, fertility ratios, and litter size. Morphometry revealed an EDS-induced increase in interstitial area and a concomitant decrease in ST area, but stereology revealed an unexpected decrease in the number and size of the LCs per testis in exposed males. Paradoxically, there was an increase in both serum LH and T production by adult testis parenchyma, indicating that the LCs were hyperstimulated. These data demonstrate permanent lesions in LC development and spermatogenesis caused by prenatal exposure in mice. Thus, although adult mouse LCs are insensitive to EDS, EDS appears to have direct action on fetal LCs, resulting in abnormal testis development.  相似文献   

16.
The pubertal initiation of spermatogenesis is reliant on androgens, and during this time, 5alpha-reduced androgens such as dihydrotestosterone (DHT) are the predominant androgens in the testis. Two 5alpha-reductase (5alphaR) isoenzymes (5alphaR1 and 5alphaR2) have been identified, which catalyze the conversion of testosterone to the more potent androgen DHT. The present study aimed to investigate the developmental pattern of 5alphaR isoenzymes and their relationship to the production of 5alpha-reduced androgens in the postnatal rat testis. Both 5alphaR1 and 5alphaR2 isoenzyme mRNAs were measured by real-time polymerase chain reaction, isoenzyme activity levels by specific assays, and testicular androgens by radioimmunoassay after high-performance liquid chromatographic separation. Both 5alphaR1 and 5alphaR2 mRNAs and activity levels were low in the 10-day-old (prepubertal) testis, peaked between Days 20 and 40 during puberty, and then declined to low levels at 60-160 days of age. The developmental pattern of both 5alphaR isoenzyme activity levels was mirrored by the testicular production of 5alpha-reduced metabolites. Although 5alphaR1 was greater than 5alphaR2 at all ages, it is likely, given the substrate preferences of the two, that both isoenzymes contribute to the pubertal peak of 5alpha-reduced androgen biosynthesis. The peak in 5alphaR isoenzymes and 5alpha-reduced metabolite production coincided with the first wave of spermatogenesis in the rat, suggesting a role for 5alpha-reduced metabolites in the initiation of spermatogenesis. This was explored by acute administration of a 5alphaR inhibitor (L685,273) to immature rats. The L685,273 markedly suppressed testicular 5alphaR activity during puberty by 75%-86%. However, a marked increase was observed in testicular testosterone levels (in the absence of changes in LH), and no decrease was observed in the absolute levels of 5alpha-reduced metabolites. Therefore, whether the formation of DHT in the presence of low testosterone levels in the pubertal testis is required for the initiation of spermatogenesis cannot be tested using 5alphaR inhibitors. We conclude that both 5alphaR1 and 5alphaR2 isoenzymes are involved in the peak of 5alpha-reduced androgen biosynthesis in the testis during the pubertal initiation of spermatogenesis.  相似文献   

17.
The 80-kDa human sperm antigen (HSA) has demonstrated to be a promising candidate for development of an antifertility vaccine because it is a sperm-specific, conserved, and immunogenic protein. The present study demonstrates the androgen-regulated expression of 80-kDa HSA in testis and epididymis of rat by immunohistochemistry (IHC), using its specific antibodies. Developmental expression of 80-kDa HSA was investigated on days 10, 20, 40, 60, and 90 of age in the testis and epididymis by IHC, and relative staining intensity was estimated by image analysis using BIOVIS software. On days 10 and 20, no significant staining was observed in the testis and epididymis, whereas it gradually increased from day 40 onwards. The highest staining was seen on day 90 in both testis and epididymis. Gradual increase in expression of 80-kDa HSA after day 40 suggests that it is possibly regulated by androgen. To study the androgen-regulated expression of 80-kDa, adult male rats were treated with 75 mg/kg body weight of ethylene dimethane sulfonate (EDS), which selectively destroys Leydig cells and thus induces complete androgen withdrawal. It was observed that the staining intensity decreased following EDS treatment in rat testis as well as epididymis, and it was regained after supplementation with dihydrotestosterone. Increased expression during sexual maturation at the time of testosterone surge and its regulation by antiandrogen/androgen treatment suggest androgen-dependent expression of 80-kDa HSA in rat testis and epididymis.  相似文献   

18.
Cadmium (Cd) is one of the environmental pollutants that affect various tissues and organs including testis. Harmful effect of cadmium on testis is known to be germ cell degeneration and impairment of testicular steroidogenesis. In the present study, the effect of diallyl sulfide (DAS), a sulfur-containing volatile compound present in garlic, and zinc (Zn) was investigated on cadmium-induced testicular toxicity in rats. Male adult Wistar rats treated with cadmium (2.5 mg/kg body wt, five times a week for 4 weeks) showed decreased body weight, paired testicular weight, relative testicular weight, serum testosterone, luteinizing hormone, follicle-stimulating hormone, and testicular total antioxidant capacity (TAC) and protein levels. Testicular steroidogenic enzymes, such as 3beta-hydroxysteroid dehydrogenase (3beta-HSD) and 17beta-hydroxysteroid dehydrogenase (17beta-HSD), and marker enzymes, such as sorbitol dehydrogenase (SDH), lactate dehydrogenase (LDH), acid phosphatase (ACP), alkaline phosphatase (ALP), and glucose-6-phosphate dehydrogenase (G6PD), showed a significant decrease in activities whereas that of gamma-glutamyl transferase was significantly increased after cadmium exposure. The results have revealed that concurrent treatment with DAS or zinc restored key steroidogenic enzymes, SDH, LDH, and G6PD and increased testicular weight significantly. DAS restored the TAC level and increased testosterone level and relative testicular weight significantly. Zinc restored testicular protein level and body weight. It can be concluded that cadmium causes testicular toxicity and inhibits androgen production in adult male rats probably by affecting pituitary gonadotrophins and that concurrent administration of DAS or zinc provides protection against cadmium-induced testicular toxicity.  相似文献   

19.
The goals of this study were to determine the CDB-4022 dose-response relationship for induction of acute decreases in testicular weight and germ cell depopulation in rats; establish the threshold dose of CDB-4022 required to induce infertility; and investigate whether CDB-4022-induced testicular damage could be prevented by a GnRH agonist (Lupron Depot). Reduction of testis weight and germ cell depopulation were observed 7 days after a single oral dose of 1 mg CDB-4022/kg, whereas 0.5 mg/kg had no observable effect. These effects were maximal at 12.5 or 25 mg CDB-4022/kg. After a single oral dose of either 2.5 or 5 mg/kg, CDB-4022 induced infertility in five of five treated rats by Week 5, whereas only one of five males was rendered infertile at a dose of 1 mg/kg. Proven fertile male rats (6/group) were treated with vehicle, CDB-4022 alone (2.5 mg/kg on Day 0), CDB-4022 plus Lupron Depot (on Weeks -1, 2, 5, and 8), or Lupron Depot alone. Control males demonstrated normal fertility throughout a 32-wk cohabitation period. Five of six rats were rendered transiently infertile with Lupron Depot alone, but all recovered fertility. CDB-4022 treatment resulted in infertility in all six rats, and only one of six regained fertility. Combined treatment also caused infertility in all six rats, but four of six recovered fertility (P = 0.08 compared to CDB-4022 alone). Testicular weight was decreased in the three treatment groups compared to vehicle controls; testicular weights were ranked from highest to lowest as follows: vehicle > Lupron Depot > Lupron Depot + CDB-4022 > CDB-4022. The tubule differentiation index of Lupron Depot-treated rats (96 +/- 4%) was not different from vehicle-treated rats (100%). CDB-4022 treatment decreased the number of differentiating tubules (15 +/- 8%). Lupron Depot plus CDB-4022 treatment resulted in a greater number of differentiating tubules (53 +/- 12%) than CDB-4022 alone, but this was still lower than vehicle- or Lupron Depot-treated rats. These data indicate that 2.5 mg/kg of CDB-4022 was the oral threshold dose that caused testicular damage rendering the majority of adult male rats permanently infertile within the study interval; 12.5 mg/kg of CDB-4022 induced maximal testicular damage. Suppression of gonadotropins and/or testosterone production by treatment with Lupron Depot before and after CDB-4022 prevented the CDB-4022-induced irreversible testicular damage.  相似文献   

20.
The morphological response of the Sertoli cells to partial or complete withdrawal of testosterone was studied in adult rats following hypophysectomy or administration of ethane dimethanesulphonate (EDS), a toxicant known to destroy selectively the Leydig cells of the testis. To assess the role of germ cells in effecting changes to Sertoli cells following withdrawal of testosterone, germ cell-deficient rats with Sertoli-cell-only testes (SCO) were treated with EDS to remove the source of testosterone. At 6 days after hypophysectomy or 4,6 and 8 days after EDS treatment, stage VII and VIII seminiferous tubules showed degenerating germ cells and numerous basally-located vacuoles approximately 1–15 m in diameter. Ultrastructural analysis indicated that most of the vacuoles were multiple focal dilations of the intercellular space associated with Sertoli cell junctional complexes. In SCO rats, treatment with EDS resulted in a significant (P<0.05) increase in the formation of many vacuoles particularly in the base but also in the trunk of the Sertoli cells and again electron microscopic analysis showed multiple, localized expansions of the intercellular space associated with Sertoli cell junctional complexes. The appearance of intercellular spaces in SCO testes following androgen withdrawal cannot be attributed to shrinkage of degenerating germ cells since the seminiferous tubules did not contain germ cells. It is concluded that withdrawal of androgen induces early morphological alterations of the Sertoli cell junctional complexes in which the sites of membrane fusions representing tight junctions remain intact whereas the intercellular spaces exhibit major focal dilations. The results are discussed in relation to the fluid secretion by the seminiferous tubules which is regulated by the Sertoli cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号