首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fractal analysis is used to model the binding and dissociation kinetics of connective tissue interstitial glucose, adipose tissue interstitial glucose, insulin, and other related analytes on biosensor surfaces. The analysis provides insights into diffusion-limited analyte-receptor reactions occurring on heterogeneous biosensor surfaces. Numerical values obtained for the binding and the dissociation rate coefficients are linked to the degree of heterogeneity or roughness [fractal dimension (D(f))] present on the biosensor chip surface. The binding and dissociation rate coefficients are sensitive to the degree of heterogeneity on the surface. For example, for the binding of plasma insulin, as the fractal dimension value increases by a factor of 2.47 from D(f1)=0.6827 to D(f2)=1.6852, the binding rate coefficient increases by a factor of 4.92 from k(1)=1.0232 to k(2)=5.0388. An increase in the degree of heterogeneity on the probe surface leads to an increase in the binding rate coefficient. A dual-fractal analysis is required to fit the binding kinetics in most of the cases presented. A single fractal analysis is adequate to describe the dissociation kinetics. Affinity (ratio of the binding to the dissociation rate coefficient) values are also presented. Interferents for glucose, such as uric acid and ascorbic acid, were also detected by using glucose biosensors based on carbon nanotube (CNT) nanoelectrode ensembles (NEEs) (Lin Y, Lu F, Tu Y, Ren Z).  相似文献   

2.
3.
Twenty years on from a review in the first issue of this journal, this contribution revisits glucose sensing for diabetes with an emphasis on commercial developments in the home blood glucose testing market. Following a brief introduction to the needs of people with diabetes, the review considers defining technologies that have enabled the introduction of commercial products and then reviews the products themselves. Drawing heavily on the performance of actual instruments and publicly available information from the companies themselves, this work is designed to complement more conventional reviews based on papers published in scholarly journals. It focuses on the commercial reality today and the products that we are likely to see in the near future.  相似文献   

4.
A fractal analysis of a confirmative nature only is presented for the binding of estrogen receptor (ER) in solution to its corresponding DNA (estrogen response element, ERE) immobilized on a sensor chip surface [J. Biol. Chem. 272 (1997) 11384], and for the cooperative binding of human 1,25-dihydroxyvitamin D(3) receptor (VDR) to DNA with the 9-cis-retinoic acid receptor (RXR) [Biochemistry 35 (1996) 3309]. Ligands were also used to modulate the first reaction. Data taken from the literature may be modeled by using a single- or a dual-fractal analysis. Relationships are presented for the binding rate coefficient as a function of either the analyte concentration in solution or the fractal dimension that exists on the biosensor surface. The binding rate expressions developed exhibit a wide range of dependence on the degree of heterogeneity that exists on the surface, ranging from sensitive (order of dependence equal to 1.202) to very sensitive (order of dependence equal to 12.239). In general, the binding rate coefficient increases as the degree of heterogeneity or the fractal dimension of the surface increases. The predictive relationships presented provide further physical insights into the reactions occurring on the biosensor surface. Even though these reactions are occurring on the biosensor surface, the relationships presented should assist in understanding and in possibly manipulating the reactions occurring on cellular surfaces.  相似文献   

5.
The preparation of assemblies consisting of multiple molecular layers of bovine serum albumin (BSA), monoclonal antibodies against horseradish peroxidase (anti-HRP), and monoclonal antibodies against methotrexate (anti-MTT), as well as interaction of the assemblies with human blood plasma were observed using a grating coupler and Young interferometer (YI). The assemblies could be arranged according to decreasing amounts of nonspecific deposits bound irreversibly to them from blood plasma as follows-an adsorbed antibody monolayer saturated with adsorbed BSA, antibody multilayers linked with polycations, antibodies covalently immobilized on a BSA layer densely crosslinked with glutaraldehyde (GA), slightly crosslinked BSA double layer, slightly crosslinked antibody double layers. The occurrence of human serum albumin (HSA), human fibrinogen (Fg), IgG, and IgM in the plasma deposits was studied by binding the respective antibodies. IgG, IgM, and Fg were detected in plasma deposits on the immobilized assemblies while the composition of a plasma deposit on the unmodified sensor surface reflected roughly the plasma composition containing mainly adsorbed HSA and Fg. A crosslinked anti-HRP double layer was immobilized on a waveguiding branch of YI and a similar anti-MTT double layer was immobilized on the other branch. The sensor response to blood plasma was fairly decreased owing to a compensation of the respective optical changes in the two branches, in which a similar non-specific adsorption took place. The addition of HRP or MTT to plasma induced specific responses of the corresponding branches.  相似文献   

6.
A fractal analysis is used to model the binding and dissociation kinetics between analytes in solution and estrogen receptors (ERs) immobilized on a sensor chip of a surface plasmon resonance (SPR) biosensor. The influence of different ligands is also analyzed. A better understanding of the kinetics provides physical insights into the interactions, and suggests means by which appropriate interactions (to promote correct signaling) and inappropriate interactions such as with xenoestrogens (to minimize inappropriate and deleterious to health signaling) may be better controlled. The fractal approach is applied to analyte–ER interaction data available in the literature. The units for the different parameters (rate coefficients and affinities) in fractal-type kinetics are different from those obtained in classical kinetics. Numerical values obtained for the binding and the dissociation rate coefficients are linked to the degree of roughness or heterogeneity (fractal dimension, Df) present on the biosensor chip surface. In general, the binding and the dissociation rate coefficients are very sensitive to the degree of heterogeneity on the surface. A single-fractal analysis is adequate in some cases. In others (that exhibit complexities in the binding or the dissociation curves) a dual-fractal analysis is required to obtain a better fit. This has biomedical and environmental implications in that the dissociation (and the binding) rate coefficient may be used to alleviate (deleterious effects) or enhance (beneficial effects) by selective modulation of the surface. The affinity values obtained in the analysis are consistent with the numbers required to (a) promote signaling between the correct analyte and the estrogen receptor, and (b) minimize the signaling between xenoestrogens and the estrogen receptor.  相似文献   

7.
Detection of small organic analytes by fluorescing molecular switches   总被引:4,自引:0,他引:4  
A sensor system was developed for the determination of theophylline concentrations based on a theophylline-dependent allosteric ribozyme (Soukup, G. A.; Breaker, R. R. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 3584) in combination with an RNA substrate which is double-labeled with a fluorophore and a quencher dye. In the presence of theophylline, a hammerhead ribozyme domain is switched into an active conformation by the action of a theophylline-binding aptamer domain. Upon substrate cleavage, the quencher is removed from the vicinity of the fluorophore, causing an increased fluorescence signal. Real-time analysis of the cleavage reactions both under single and multiple turnover conditions revealed a dependence on the cleavage rate within a range from 0.01 to 2mM theophylline. The structurally similar molecule caffeine, however, had no detectable influence on the fluorescence signal.  相似文献   

8.
9.
Microband glucose biosensors were fabricated by screen-printing a water-based carbon ink formulation containing cobalt phthalocyanine redox mediator and glucose oxidase (GOD) enzyme, then insulating and sectioning through the thick (20mum) film to expose a 3mm-long working electrode edge. The performance of these biosensors for glucose analysis was investigated at 25 degrees C. Voltammetry in glucose-containing buffer solutions established that an operating potential of +0.4V vs. Ag/AgCl was suitable for analysis under both stirring and quiescent conditions. The influence of pH on biosensor performance was established and an operational pH of 8.0 was selected. Steady-state responses were obtained under quiescent conditions, suggesting a mixed mechanism predominated by radial diffusion, indicative of microelectrode behaviour. Calibration studies obtained with these biosensors showed steady-state currents that were linearly dependent on glucose concentration from the limit of detection (0.27mM) up to 2.0mM, with a precision for replicate biosensors of 6.2-10.7%. When applied to the determination of glucose in human serum, the concentration compared favourably to that determined by a spectroscopic method. These results have demonstrated a simple means of fabricating biosensors for glucose measurement and determination in situations where low-current real-time monitoring under quiescent conditions would be desirable.  相似文献   

10.
Electrochemical growth was used to form the organic conducting salt of tetrathiafulvalene (TTF) and tetracyanoquinodimethane (TCNQ) on platinum wires inserted in a glass capillary. Glucose oxidase, lactate oxidase and xanthine oxidase were deposited and crosslinked on the salt structure to produce mediated biosensors responsive to the corresponding analytes. Reliability, stability, interference, and the effect of oxygen on the electrode's response were studied. Among three common electroactive interfering substances tested, ascorbic acid was very active at the TTF-TCNQ structure and the highest response was exhibited by the enzyme-free electrode. Acetaminophen and uric acid displayed similar behaviour at a lower magnitude. The presence of oxygen significantly decreased the current responses of all electrodes.

The xanthine oxidase-bearing mediated electrodes were able to assay the hypoxanthine content of either the fish extract, fish homogenate or slurry of manually ground tissue, yielding results in good agreement with conventional enzymatic assays. The electrodes were stable more than 120 days and could be reused more than 30 times without losing their original activities.  相似文献   


11.
An optical array biosensor encapsulated with hydrolase and oxidoreductase using sol-gel immobilization technique has been fabricated for simultaneous analysis and screening of multiple samples to determine the presence of multianalytes which are clinically important in relation to renal failure. Urease and creatinine deiminase were used to detect urea and creatinine, while glucose oxidase and uricase were coimmobilized with horseradish peroxidase to quantify glucose and uric acid. Moreover, the concentrations of analytes in fetal calf serum were measured and quantified using the developed sensing system. The array biosensor showed good specificity for the simultaneous analysis of multiple samples for multianalytes without obvious cross-interference. The analytical ranges of the four analytes were between 0.01 and 10mM with detection limits of 2.5-80 microM. High precision with relative standard deviations of 3.8-9.2% (n=45) was also demonstrated. The reproducibility of array-to-array in 3 consecutive months was 5.4% (n=3). Moreover, the concentrations of analytes in fetal calf serum were 5.9 mM for urea, 0.13 mM for creatinine, 3.3mM for glucose, and 0.15 mM for uric acid, which were in good agreement with results obtained using the traditional spectroscopic methods. These results demonstrate the first use of a sol-gel-derived optical array biosensor for simultaneous analysis of multiple samples for the presence of multiple clinically important renal analytes.  相似文献   

12.
Micro glucose biosensors were used to measure net extracellular glucose produced by natural microphytobenthos and three diatom cultures (Amphora coffeaeformis, Navicula menisculus, Nitzschia longissima) from southern Tasmania, Australia. They were exposed to a light gradient in either nutrient‐replete or nutrient‐limiting conditions. Glucose exudation in the natural communities increased with increased light but the response in the cultures was variable. Similarly, nutrient‐replete conditions elicited lower rates of glucose exudation in the natural communities but produced variable species‐specific responses in the cultures. Increased glucose exudation mostly correlated with a reduction in maximum quantum yield (Fv/Fm). The same trend was observed in the natural communities for relative maximum electron transfer rates (rETRmax) but responses in the cultures were again variable and species‐specific. Responses of the three species to increased light and nutrient deficiency were variable, although glucose exudation, Fv/Fm and rETRmax was mostly lower in the nutrient‐limited media. In a second set of experiments species/communities were treated with/without antibiotics. In the dark, glucose concentrations in treatments with antibiotics remained unchanged, while in those with bacteria, it fell rapidly. In the sediment communities, glucose consumption in the dark was ~25% the rate of exudation at the highest light level. In culture, exudation rates were up to 100% greater than those with active bacteria. Rates of glucose consumption in the dark in the antibiotic–treated samples were negligible and up to 104 times lower than those with active bacteria. These results demonstrate the important role extracellular glucose exudation has on maintaining an active microbial loop.  相似文献   

13.
A fractal analysis of the association and dissociation (whereever applicable) of Cre-loxP interactions and drug-liposome interactions on a sensor chip surface is presented. In both of these cases a dual-fractal analysis is required to adequately describe the association kinetics. The dissociation kinetics for Cre-loxP interactions is adequately described by a single-fractal analysis. The dual-fractal analysis used to describe the association kinetics of Cre-loxP interactions is consistent with the original two-step mechanism presented using a surface plasmon resonance biosensor. Our analysis includes both diffusion and surface effects by introducing the fractal dimension which makes quantitative the degree of heterogeneity on the sensor chip surface. Affinities are provided. Only the association kinetics were analysed for drug-liposome interactions since the initial sections of the dissociation curves were too steep to obtain reasonable drug-liposome complex concentration values on the sensor chip with time. Attempts made to relate the association rate coefficients with the molecular weight of the drug were unsuccessful. On using desipramine and imipramine as "arbitrarily selected standards" or "references" (only C, H, and N atoms present), it was noticed from the data analysed that the inclusion of the O and S atoms in the drug leads to a decrease in the association rate coefficients, ka1 (or k1) and ka2 (or k2) (compared with the arbitrarily selected standards or references). Similarly, the addition of the Cl atom in the drug leads to an increase in the association rate coefficient (compared with the arbitrarily selected standards or references). More data needs to be analysed to determine whether this is true for other drugs also.  相似文献   

14.
Solubilization of glucose and related sugars by lecithin   总被引:1,自引:0,他引:1  
  相似文献   

15.
Many Gram-negative bacteria use N-acyl homoserine lactones (AHLs) as quorum-sensing (QS) signal molecules. AHL QS has been the subject of extensive investigation in the last decade and has become a paradigm for bacterial intercellular signaling. Research in AHL QS has been considerably aided by simple methods devised to detect AHLs using bacterial biosensors that phenotypically respond when exposed to exogenous AHLs. This article reviews and discusses the currently available bacterial biosensors which can be used in detecting and studying the different AHLs.  相似文献   

16.
Indirectly heated electrodes operating in a non-isothermal mode have been used as transducers for reagentless glucose biosensors. Pyrroloquinoline quinone-dependent soluble glucose dehydrogenase (PQQ-sGDH) was entrapped on the electrode surface within a redox hydrogel layer. Localized polymer film precipitation was invoked by electrochemically modulating the pH-value in the diffusion zone in front of the electrode. The resulting decrease in solubility of an anodic electrodeposition paint (EDP) functionalized with Osmium complexes leads to precipitation of the redox hydrogel concomitantly entrapping the enzyme. The resulting sensor architecture enables a fast electron transfer between enzyme and electrode surface. The glucose sensor was operated at pre-defined temperatures using a multiple current-pulse mode allowing reproducible indirect heating of the sensor. The sensor characteristics such as the apparent Michaelis constants K(M)(app) and maximum currents I(max)(app) were determined at different temperatures for the main substrate glucose as well as a potential interfering co-substrate maltose. The limit of detection increased with higher temperatures for both substrates (0.020 mM for glucose, and 0.023 mM for maltose at 48 degrees C). The substrate specificity of PQQ-sGDH is highly temperature dependent. Therefore, a mathematical model based on a multiple linear regression approach could be applied to discriminate between the current response for glucose and maltose. This allowed accurate determination of glucose in a concentration range of 0-0.1mM in the presence of unknown maltose concentrations ranging from 0 to 0.04 mM.  相似文献   

17.
Sensors for the simultaneous determinations of sucrose and glucose, lactose and glucose, and starch and glucose were prepared by a combination of the enzyme system shown below and an oxygen electrode: The mechanism for separating the substrates with the proposed sensors is based on the time lag arising from reaction and diffusion. Invertase, beta-galactosidase, amyloglucosidase, mutarotase, and glucose oxidase were covalently immobilized on triacetyl cellulose membranes containing 1,8-diamino-4-aminomethyloctane. A glucose oxidase membrane, mutarotase membrane, three sheets of triacetyl cellulose membranes, and invertase, or beta-galactosidase or amyloglucosidase membrane were placed in that order on the tip of the oxygen electrode. Calibration curves for sucrose, lactose, and starch were linear up to 40 mM, 60-180 mM, and 10%, respectively. The simultaneous determination of sucrose and glucose, lactose and glucose, and starch and glucose was possible when the amount of glucose coexised was in the range of 2-16% sucrose, 2.8-8.3% lactose, or 0.1-1% starch. The relative errors were +/-4% for sucrose and +/-3% for lactose in 100 assays. The starch sensor was reused only five times. Each enzyme membrane was fairly stable for more than 10 days.  相似文献   

18.
A novel amperometric biosensor based on polypyrrole (PPy) nanotube array deposited on a Pt plated nano-porous alumina substrate and its performances are described. Glucose oxidase (GOx) enzyme was selected as the model enzyme in this study. Commercially available nano-porous alumina discs were used to fabricate electrodes in order to study the feasibility of enzyme entrapment by physical adsorption. A PPy/PF6- film comprising of nanotube array was synthesized using a solution containing 0.05 M Pyrrole and 0.1 M NaPF6 at a current density of 0.3 mA/cm2 for 90 s. The immobilization was done by physical adsorption of 5 microL of GOx (from a stock solution of 2 mg/mL of 210 U/mg) on each electrode. A sensitivity of 7.4 mA cm(-2) M(-1) was observed with PPy nanotube array where the maximum tube diameter was 100 nm. A linear range of 500 microM-13 mM and a response time of about 3 s were observed with a nanotube array where the maximum tube diameter was 200 nm. The synthesized nanotube arrays were characterized by galvanostatic electrochemical technique. Calculated value of apparent Michaelis-Menten constant (Km) was 7.01 mM. The use of nano-porous template electrodes leads to an efficient enzyme loading and provides an increased surface area for sensing the reaction. These factors contribute to increase the characteristic performances of the novel biosensor.  相似文献   

19.
The quantitative determination of sarcosine is of great importance in clinical chemistry, food and fermentation industries. Elevated sarcosine levels are associated with Alzheimer, dementia, prostate cancer, colorectal cancer, stomach cancer and sarcosinemia. This review summarizes the various methods for quantitative analysis of sarcosine with special emphasis on various strategies of biosensors and their analytical performance. The current bio sensing methods have overcome the drawbacks of conventional methods. Sarcosine biosensors work optimally at pH 7.0 to 8.0 in the linear range of 0.1 to 100?μM within 2 to 17?s and between 25 and 37?°C, within a limit of detection (LOD) between 0.008 and 500?mM. The formulated biosensors can be reused within a stability period of 3–180?days. Future research could be focused to modify existing sarcosine biosensors, leading to simple, reliable, and economical sensors ideally suited for point-of-care treatment.
  • Clinical significance
  • Elevated sarcosine levels are associated with prostate and colorectal cancer, Alzheimer, dementia, stomach cancer and sarcosinemia.

  • Quantitative determination of sarcosine is of great importance in clinical chemistry as well as food and fermentation industries.

  • Attempts made in development of sarcosine biosensors have been reviewed with their advantages and disadvantages, so that scientist and clinicians can improvise the methods of developing more potent sarcosine biosensor applicable in multitudinous fields.

  • This is the first comprehensive review which compares the various immobilization methods, sensing principles, strategies used in biosensors and their analytical performance in detail.

  相似文献   

20.
Biosensors with the composition of carbon/Prussian blue/(glucose oxidase+glutaraldehyde+polytyramine) were constructed. Before tyramine monomers were electropolymerized, glucose oxidase and tyramine monomers were cross-linked with glutaraldehyde onto the surface of Prussian-blue-modified electrodes. The constructed biosensors produced highly reproducible and stable devices. The biosensors exhibited neglectable decrease in current response after 10 repeated uses or after 1 month of dry storage. The resultant biosensors had a linear range of 0.1-1 mM glucose and a detection limit of 0.05 mM. Since the following electrocatalytic process proceeds at a low electrode potential (ca. -0.3 V vs Ag/AgCl), ascorbate and uric acid do not produce observable interfering signal for the determination of glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号