首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The processing of the Sindbis virus nonstructural polyprotein translated in vitro has been studied. When Sindbis virus genomic RNA was translated in a reticulocyte lysate, polyprotein P123 was cleaved efficiently to produce nsP1, nsP2, and nsP3. Inhibition of this processing by anti-nsP2 antibodies, but not by antibodies specific for nsP1, nsP3, or nsP4, suggested that the viral proteinase was present in nsP2. To localize the proteolytic activity more precisely, deletions were made in a full-length cDNA clone of Sindbis virus, and RNA was transcribed from these constructs with SP6 RNA polymerase and translated in vitro. Although virtually all of the nsP1, nsP3, and nsP4 sequences could be deleted without affecting processing, deletions in the N-terminal half of nsP2 led to aberrant processing, and deletions in the C-terminal half abolished proteolysis. However, inactive polyproteins containing the nsP2 deletions could be processed by exogenously supplied proteins translated from virion RNA, demonstrating that cleavage was virus specific and not due to a protease present in the reticulocyte lysate and that the deleted polyproteins still served as substrates for the enzyme. From these results and from experiments in which processing was studied at increasingly higher dilution, we have concluded the following: (i) the viral nonstructural proteinase is located in the C-terminal half of nsP2; (ii) in the P123 precursor the cleavage between nsP2 and nsP3 occurs efficiently as a bimolecular reaction (in trans) to remove nsP3, while the bond between nsP1 and nsP2 is cleaved inefficiently, but detectably, in trans, but no autoproteolysis of P123 was detected; (iii) once nsP3 has been removed, the bond between nsP1 and nsP2 in the P12 precursor is cleaved efficiently by autoproteolysis (in cis). This mode of processing leads to a slow rate of cleavage, particularly early in infection, suggesting that the polyproteins might play roles in virus RNA replication distinct from those of the cleaved products. A hypothesis is presented that the proteinase is a thiol protease related to papain.  相似文献   

2.
The replication of most positive-strand RNA viruses and retroviruses is regulated by proteolytic processing. Alphavirus replicase proteins are synthesized as a polyprotein, called P1234, which is cleaved into nsP1, nsP2, nsP3, and nsP4 by the carboxyl-terminal protease domain of nsP2. The cleavage intermediate P123+nsP4 synthesizes minus-strand copies of the viral RNA genome, whereas the completely processed complex is required for plus-strand synthesis. To understand the mechanisms responsible for this sequential proteolysis, we analyzed in vitro translated Semliki Forest virus polyproteins containing noncleavable processing sites or various deletions. Processing of each of the three sites in vitro required a different type of activity. Site 3/4 was cleaved in trans by nsP2, its carboxyl-terminal fragment Pro39, and by all polyprotein proteases. Site 1/2 was cleaved in cis with a half-life of about 20-30 min. Site 2/3 was cleaved rapidly in trans but only after release of nsP1 from the polyprotein exposing an "activator" sequence present in the amino terminus of nsP2. Deletion of amino-terminal amino acids of nsP2 or addition of extra amino acid residues to its amino terminus specifically inhibited the protease activity that processes the 2/3 site. This sequence of delayed processing of P1234 would explain the accumulation of P123 plus nsP4, the early short-lived minus-strand replicase. The polyprotein stage would allow correct assembly and membrane association of the RNA-polymerase complex. Late in infection free nsP2 would cleave at site 2/3 yielding P12 and P34, the products of which, nsP1-4, are distributed to the plasma membrane, nucleus, cytoplasmic aggregates, and proteasomes, respectively.  相似文献   

3.
4.
Nonstructural proteins of Sindbis virus, nsP1, nsP2, nsP3, and nsP4, as well as intermediate polyproteins, are produced from two precursor polyproteins, P123 and P1234, by a proteolytic enzyme encoded in the C-terminal half of nsP2. We studied the requirements for and the functions of the intermediate and mature processing products for Sindbis virus RNA synthesis by using site-directed mutants which have a defect(s) in processing the 1/2, 2/3, or 3/4 cleavage sites either singly or in various combinations. A mutant defective in cleaving both the 1/2 and 2/3 sites, which makes only uncleavable P123 and mature nsP4 as final products, produced 10(-3) as much virus as did the wild-type virus after 10 h at 30 degrees C and was nonviable at 40 degrees C. A mutant defective in processing the 2/3 site, which makes nsP1, nsP4, and P23 as well as precursor P123, grew 10(-1) as efficiently as wild-type virus at 30 degrees C and 10(-3) as efficiently at 40 degrees C. Early minus-strand RNA synthesis by these mutants was as efficient as that by wild-type virus, whereas plus-strand RNA synthesis was substantially decreased compared with that by wild-type virus. A mutant defective in processing the 3/4 site was nonviable at either 30 or 40 degrees C. The 3/4 site mutant could be complemented by the mutant unable to cleave either the 1/2 or 2/3 site, which can provide mature nsP4. We interpret these results to signify that (i) mature nsP4 is required for RNA replication, (ii) nsP4 and uncleaved P123 function in minus-strand RNA synthesis, and (iii) cleavage of P123 is required for efficient plus-strand RNA synthesis. We propose that Sindbis virus RNA replication is regulated by differential proteolysis of P123. Early in infection, nsP4 and uncleaved P123 form transient minus-strand RNA replication complexes which vanish upon cleavage of P123. Later in infection, an elevated level of viral proteinase activity eliminates de novo synthesis of P123, and no further synthesis of minus-strand RNA is possible. In contrast, nsP4 and cleavage products from P123 form plus-strand RNA replication complexes which are stable and remain active throughout the infection cycle.  相似文献   

5.
One of the distinguishing features of the alphaviruses is a sequential processing of the nonstructural polyproteins P1234 and P123. In the early stages of the infection, the complex of P123+nsP4 forms the primary replication complexes (RCs) that function in negative-strand RNA synthesis. The following processing steps make nsP1+P23+nsP4, and later nsP1+nsP2+nsP3+nsP4. The latter mature complex is active in positive-strand RNA synthesis but can no longer produce negative strands. However, the regulation of negative- and positive-strand RNA synthesis apparently is not the only function of ns polyprotein processing. In this study, we developed Sindbis virus mutants that were incapable of either P23 or P123 cleavage. Both mutants replicated in BHK-21 cells to levels comparable to those of the cleavage-competent virus. They continuously produced negative-strand RNA, but its synthesis was blocked by the translation inhibitor cycloheximide. Thus, after negative-strand synthesis, the ns proteins appeared to irreversibly change conformation and formed mature RCs, in spite of the lack of ns polyprotein cleavage. However, in the cells having no defects in alpha/beta interferon (IFN-alpha/beta) production and signaling, the cleavage-deficient viruses induced a high level of type I IFN and were incapable of causing the spread of infection. Moreover, the P123-cleavage-deficient virus was readily eliminated, even from the already infected cells. We speculate that this inability of the viruses with unprocessed polyprotein to productively replicate in the IFN-competent cells and in the cells of mosquito origin was an additional, important factor in ns polyprotein cleavage development. In the case of the Old World alphaviruses, it leads to the release of nsP2 protein, which plays a critical role in inhibiting the cellular antiviral response.  相似文献   

6.
7.
T J Chambers  A Grakoui    C M Rice 《Journal of virology》1991,65(11):6042-6050
The vaccinia virus-T7 transient expression system was used to further examine the role of the NS3 proteinase in processing of the yellow fever (YF) virus nonstructural polyprotein in BHK cells. YF virus-specific polyproteins and cleavage products were identified by immunoprecipitation with region-specific antisera, by size, and by comparison with authentic YF virus polypeptides. A YF virus polyprotein initiating with a signal sequence derived from the E protein fused to the N terminus of NS2A and extending through the N-terminal 356 amino acids of NS5 exhibited processing at the 2A-2B, 2B-3, 3-4A, 4A-4B, and 4B-5 cleavage sites. Similar results were obtained with polyproteins whose N termini began within NS2A (position 110) or with NS2B. When the NS3 proteinase domain was inactivated by replacing the proposed catalytic Ser-138 with Ala, processing at all sites was abolished. The results suggest that an active NS3 proteinase domain is necessary for cleavage at the diabasic nonstructural cleavage sites and that cleavage at the proposed 4A-4B signalase site requires prior cleavage at the 4B-5 site. Cleavages were not observed with a polyprotein whose N terminus began with NS3, but cleavage at the 4B-5 site could be restored by supplying the the NS2B protein in trans. Several experimental results suggested that trans cleavage at the 4B-5 site requires association of NS2B and the NS3 proteinase domain. Coexpression of different proteinases and catalytically inactive polyprotein substrates revealed that trans cleavage at the 2B-3 and 4B-5 sites was relatively efficient when compared with trans cleavage at the 2A-2B and 3-4A sites.  相似文献   

8.
The proteins of flaviviruses are translated as a single long polyprotein which is co- and posttranslationally processed by both cellular and viral proteinases. We have studied the processing of flavivirus polyproteins in vitro by a viral proteinase located within protein NS3 that cleaves at least three sites within the nonstructural region of the polyprotein, acting primarily autocatalytically. Recombinant polyproteins in which part of the polyprotein is derived from yellow fever virus and part from dengue virus were used. We found that polyproteins containing the yellow fever virus cleavage sites were processed efficiently by the yellow fever virus enzyme, by the dengue virus enzyme, and by various chimeric enzymes. In contrast, dengue virus cleavage sites were cleaved inefficiently by the dengue virus enzyme and not at all by the yellow fever virus enzyme. Studies with chimeric proteinases and with site-directed mutants provided evidence for a direct interaction between the cleavage sites and the proposed substrate-binding pocket of the enzyme. We also found that the efficiency and order of processing could be altered by site-directed mutagenesis of the proposed substrate-binding pocket.  相似文献   

9.
Flavivirus proteins are produced by co- and posttranslational proteolytic processing of a large polyprotein by both host- and virus-encoded proteinases. The viral serine proteinase, which consists of NS2B and NS3, is responsible for cleavage of at least four dibasic sites (2A/2B, 2B/3, 3/4A, and 4B/5) in the nonstructural region. Since the amino acid sequence preceding NS4B shares characteristics with signal peptides used for translocation of nascent polypeptides into the lumen of the endoplasmic reticulum, it has been proposed that cleavage at the 4A/4B site is mediated by a cellular signal peptidase. In this report, cell-free translation and in vivo transient expression assays were used to study processing in the NS4 region of the yellow fever virus polyprotein. With a construct which contained NS4B preceded by 17 residues constituting the putative signal peptide (sig4B), membrane-dependent cleavage at the 4A/4B site was demonstrated in vitro. Surprisingly, processing of NS4A-4B was not observed in cell-free translation studies, and in vivo expression of several yellow fever virus polyproteins revealed that the 4A/4B cleavage occurred only during coexpression of NS2B and the proteinase domain of NS3. Examination of mutant derivatives of the NS3 proteinase domain demonstrated that cleavage at the 4A/4B site correlated with expression of an active NS2B-3 proteinase. From these results, we propose a model in which the signalase cleavage generating the N terminus of NS4B requires a prior NS2B-3 proteinase-mediated cleavage at a novel site (called the 4A/2K site) which is conserved among flaviviruses and located 23 residues upstream of the signalase site. In support of this model, mutations at the 4A/4B signalase site did not eliminate processing in the NS4 region. In contrast, substitutions at the 4A/2K site, which were engineered to block NS2B-3 proteinase-mediated cleavage, eliminated signalase cleavage at the 4A/4B site. In addition, the size of the 3(502)-4A product generated by trans processing of a truncated polyprotein, 3(502)-5(356), was consistent with cleavage at the 4A/2K site rather than at the downstream 4A/4B signalase site.  相似文献   

10.
The substrate recognition properties of the polio-virus type 1 and coxsackievirus B3 3C proteinases have been examined in vitro by allelic and suballelic exchange of 3C between the cloned virus genomes. The activity of the altered 3C proteinases was examined by translation of synthetic RNA in a rabbit reticulocyte lysate/HeLa cell extract translation system. Analysis of the subsequent processing of virus polyproteins by the altered 3C proteinases showed that all of the mutant proteinases maintained some catalytic activity. The disruption of polyprotein cleavages mediated by 3C followed a distinct pattern, suggesting a specific order of events in processing the polyprotein. Differences in cleavage activity of mutant proteinases when tested on coxsackievirus or poliovirus protein substrates suggest that, although structural elements throughout the proteinase play a role in efficient substrate utilization, the carboxyl-terminal region of the 3C proteinase contains elements most important in species-specific substrate recognition.  相似文献   

11.
The determinants of cleavage site specificity of the yellow fever virus (YF) NS3 proteinase for its 2B/3 cleavage site have been studied by using site-directed mutagenesis. Mutations at residues within the GARR decreases S sequence were tested for effects on cis cleavage of an NS2B-3(181) polyprotein during cell-free translation. At the P1 position, only the conservative substitution R-->K exhibited significant levels of cleavage. Conservative and nonconservative substitutions were tolerated at the P1' and P2 positions, resulting in intermediate levels of cleavage. Substitutions at the P3 and P4 positions had no effects on cleavage efficiency in the cell-free assay. Processing at other dibasic sites was studied by using transient expression of a sig2A-5(356) polyprotein. Cleavage at the 2B/3 site was not required for processing at downstream sites. However, increased accumulation of high-molecular-weight viral polyproteins was generally observed for mutations which reduced cleavage efficiency at the 2B/3 site. Several mutations were also tested for their effects on viral replication. Virus was not recovered from substitutions which blocked or substantially reduced cleavage in the cell-free assay, suggesting that efficient cleavage at the 2B/3 site is required for flavivirus replication.  相似文献   

12.
Processing of the hepatitis C virus (HCV) H strain polyprotein yields at least nine distinct cleavage products: NH2-C-E1-E2-NS2-NS3-NS4A-NS4B-NS5A-NS5B-CO OH. As described in this report, site-directed mutagenesis and transient expression analyses were used to study the role of a putative serine proteinase domain, located in the N-terminal one-third of the NS3 protein, in proteolytic processing of HCV polyproteins. All four cleavages which occur C terminal to the proteinase domain (3/4A, 4A/4B, 4B/5A, and 5A/5B) were abolished by substitution of alanine for either of two predicted residues (His-1083 and Ser-1165) in the proteinase catalytic triad. However, such substitutions have no observable effect on cleavages in the structural region or at the 2/3 site. Deletion analyses suggest that the structural and NS2 regions of the polyprotein are not required for the HCV NS3 proteinase activity. NS3 proteinase-dependent cleavage sites were localized by N-terminal sequence analysis of NS4A, NS4B, NS5A, and NS5B. Sequence comparison of the residues flanking these cleavage sites for all sequenced HCV strains reveals conserved residues which may play a role in determining HCV NS3 proteinase substrate specificity. These features include an acidic residue (Asp or Glu) at the P6 position, a Cys or Thr residue at the P1 position, and a Ser or Ala residue at the P1' position.  相似文献   

13.
Plasmids were constructed which contained a large portion of each of the four nonstructural genes of Sindbis virus fused to the N-terminal two-thirds of the trpE gene of Escherichia coli. The large quantity of fusion protein induced from cells containing these plasmids was subsequently used as an antigen to generate polyclonal antisera in rabbits. Each antiserum was specific for the corresponding nonstructural protein and allowed ready identification of each nonstructural protein and of precursors containing the sequences of two or more nonstructural proteins. These antisera were used to determine the stability of the mature nonstructural proteins and to examine the kinetics of processing of the nonstructural proteins from their respective precursors in vivo. Pulse-chase experiments showed that the precursor P123 is cleaved with a half-life of approximately 19 min to produce P12 and nsP3; P12 is then cleaved with a half-life of approximately 9 min to produce nsP1 and nsP2. Thus, although the rate of cleavage between nsP1 and nsP2 is faster than that between nsP2 and nsP3, the latter cleavage must occur first and is therefore the rate-limiting step. The rate at which P34 is chased suggests that the cleavage between nsP3 and nsP4 is the last to occur; however the regulation of nsP4 function in Sindbis virus-infected cells may be even more complex than was previously thought. The products nsP1 and nsP2 (and nsP4) are relatively stable; nsP3, however, is unstable, with a half-life of about 1 h, and appears to be modified to produce heterodisperse, higher-molecular-mass forms. In general, the processing schemes used by Sindbis virus and Semliki Forest virus appear very similar, the major difference being that most nsP3 in Sindbis virus results from termination at an opal condon, whereas in Semliki Forest virus cleavage of the P34 precursor is required.  相似文献   

14.
A second proteinase encoded by a plant potyvirus genome.   总被引:28,自引:2,他引:26       下载免费PDF全文
  相似文献   

15.
Recent insights into the early events in Sindbis virus RNA replication suggest a requirement for either the P123 or P23 polyprotein, as well as mature nsP4, the RNA-dependent RNA polymerase, for initiation of minus-strand RNA synthesis. Based on this observation, we have succeeded in reconstituting an in vitro system for template-dependent initiation of SIN RNA replication. Extracts were isolated from cells infected with vaccinia virus recombinants expressing various SIN proteins and assayed by the addition of exogenous template RNAs. Extracts from cells expressing P123C>S, a protease-defective P123 polyprotein, and nsP4 synthesized a genome-length minus-sense RNA product. Replicase activity was dependent upon addition of exogenous RNA and was specific for alphavirus plus-strand RNA templates. RNA synthesis was also obtained by coexpression of nsP1, P23C>S, and nsP4. However, extracts from cells expressing nsP4 and P123, a cleavage-competent P123 polyprotein, had much less replicase activity. In addition, a P123 polyprotein containing a mutation in the nsP2 protease which increased the efficiency of processing exhibited very little, if any, replicase activity. These results provide further evidence that processing of the polyprotein inactivates the minus-strand initiation complex. Finally, RNA synthesis was detected when soluble nsP4 was added to a membrane fraction containing P123C>S, thus providing a functional assay for purification of the nsP4 RNA polymerase.  相似文献   

16.
Recombinant vaccinia viruses were used to study the processing of hepatitis C virus (HCV) nonstructural polyprotein precursor. HCV-specific proteins and cleavage products were identified by size and by immunoprecipitation with region-specific antisera. A polyprotein beginning with 20 amino acids derived from the carboxy terminus of NS2 and ending with the NS5B stop codon (amino acids 1007 to 3011) was cleaved at the NS3/4A, NS4A/4B, NS4B/5A, and NS5A/5B sites, whereas a polyprotein in which the putative active site serine residue was replaced by an alanine remained unprocessed, demonstrating that the NS3-encoded serine-type proteinase is essential for cleavage at these sites. Processing of the NS3'-5B polyprotein was complex and occurred rapidly. Discrete polypeptide species corresponding to various processing intermediates were detected. With the exception of NS4AB-5A/NS5A, no clear precursor-product relationships were detected. Using double infection of cells with vaccinia virus recombinants expressing either a proteolytically inactive NS3'-5B polyprotein or an active NS3 proteinase, we found that cleavage at the NS4A/4B, NS4B/5A, and NS5A/5B sites could be mediated in trans. Absence of trans cleavage at the NS3/4A junction together with the finding that processing at this site was insensitive to dilution of the enzyme suggested that cleavage at this site is an intramolecular reaction. The trans-cleavage assay was also used to show that (i) the first 211 amino acids of NS3 were sufficient for processing at all trans sites and (ii) small deletions from the amino terminus of NS3 selectively affected cleavage at the NS4B/5A site, whereas more extensive deletions also decreased processing efficiencies at the other sites. Using a series of amino-terminally truncated substrate polyproteins in the trans-cleavage assay, we found that NS4A is essential for cleavage at the NS4B/5A site and that processing at this site could be restored by NS4A provided in cis (i.e., together with the substrate) or in trans (i.e., together with the proteinase). These results suggest that in addition to the NS3 proteinase, NS4A sequences play an important role in HCV polyprotein processing.  相似文献   

17.
Processing of the hepatitis C virus polyprotein is mediated by host cell signalases and at least two virally encoded proteinases. Of these, the serine-type proteinase encompassing the amino-terminal one-third of NS3 is responsible for cleavage at the four sites carboxy terminal of NS3. The activity of this proteinase is modulated by NS4A, a 54-amino-acid polyprotein cleavage product essential for processing at the NS3/4A, NS4A/4B, and NS4B/5A sites and enhancing cleavage efficiency between NS5A and NS5B. Using the vaccinia virus-T7 hybrid system to express hepatitis C virus polypeptides in BHK-21 cells, we studied the role of NS4A in proteinase activation. We found that the NS3 proteinase and NS4A form a stable complex when expressed as a single polyprotein or as separate molecules. Results from deletion mapping show that the minimal NS4A domain required for proteinase activation is located in the center of NS4A between amino acids 1675 and 1686 of the polyprotein. Amino acid substitutions within this domain destabilizing the NS3-NS4A complex also impair trans cleavage at the NS4A-dependent sites. Similarly, deletion of amino-terminal NS3 sequences impairs complex formation as well as cleavage at the NS4B/5A site but not at the NS4A-independent NS5A/5B site. These results suggest that a stable NS3-NS4A interaction is important for cleavage at the NS4A-dependent sites and that amino-terminal NS3 sequences and the central NS4A domain are directly involved in complex formation.  相似文献   

18.
19.
G Donaghy  R Jupp 《Journal of virology》1995,69(2):1265-1270
The BVRF2 gene of Epstein-Barr virus (EBV) shows homology to the UL26 and UL80 genes of herpes simplex virus type 1 (HSV-1) and cytomegalovirus (CMV), respectively. These genes are believed to provide a scaffold protein for the assembly of capsids leading to the formation of infectious viral particles. We have cloned the BVRF2 gene from the B95.8 strain of EBV and shown that the BVRF2 gene product is a polyprotein capable of autoproteolytic cleavage. Two Ala-Ser-containing recognition sequences were identified in the BVRF2 polyprotein at amino acid positions 568/569 and 570/571 where this cleavage was expected to occur. Here, we show that EBV proteinase is capable of cleaving at the first Ala-Ser bond but not the second. Comparison of the processing of the EBV and human CMV assembly domains in vitro by either EBV or human CMV proteinase revealed that, while both proteinases could cleave their native assembly domain, only EBV proteinase was able to cleave the assembly domain of the other virus.  相似文献   

20.
Semliki Forest virus (SFV) is a member of the Alphavirus genus, which produces its replicase proteins in the form of a nonstructural (ns) polyprotein precursor P1234. The maturation of the replicase occurs in a temporally controlled manner by protease activity of nsP2. The template preference and enzymatic capabilities of the alphaviral replication complex have a very important connection with its composition, which is irreversibly altered by proteolysis. The final cleavage of the 2/3 site in the ns polyprotein apparently leads to significant rearrangements within the replication complex and thus denotes the "point of no return" for viral replication progression. Numerous studies have devised rules for when and how ns protease acts, but how the alphaviral 2/3 site is recognized remained largely unexplained. In contrast to the other two cleavage sites within the ns polyprotein, the 2/3 site evidently lacks primary sequence elements in the vicinity of the scissile bond sufficient for specific protease recognition. In this study, we sought to investigate the molecular details of the regulation of the 2/3 site processing in the SFV ns polyprotein. We present evidence that correct macromolecular assembly, presumably strengthened by exosite interactions rather than the functionality of the individual nsP2 protease, is the driving force for specific substrate targeting. We conclude that structural elements within the macrodomain of nsP3 are used for precise positioning of a substrate recognition sequence at the catalytic center of the protease and that this process is coordinated by the exact N-terminal end of nsP2, thus representing a unique regulation mechanism used by alphaviruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号