首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hexameric HOPS (homotypic fusion and protein sorting) complex is a conserved tethering complex at the lysosome-like vacuole, where it mediates tethering and promotes all fusion events involving this organelle. The Vps39 subunit of this complex also engages in a membrane contact site between the vacuole and the mitochondria, called vCLAMP. Additionally, four subunits of HOPS are also part of the endosomal CORVET tethering complex. Here, we analyzed the partition of HOPS and CORVET subunits between the different complexes by tracing their localization and function. We find that Vps39 has a specific role in vCLAMP formation beyond tethering, and that vCLAMPs and HOPS compete for the same pool of Vps39. In agreement, we find that the CORVET subunit Vps3 can take the position of Vps39 in HOPS. This endogenous pool of a Vps3-hybrid complex is affected by Vps3 or Vps39 levels, suggesting that HOPS and CORVET assembly is dynamic. Our data shed light on how individual subunits of tethering complexes such as Vps39 can participate in other functions, while maintaining the remaining subcomplex available for its function in tethering and fusion.  相似文献   

2.
膜泡运输是不同细胞器间进行物质传递的基本方式,分为4个重要步骤:囊泡的出芽、转运、拴系和融合。在此过程中,有许多相关因子参与调控,如包被蛋白、Rab蛋白、拴系因子、SM蛋白和SNARE等。拴系因子在运输囊泡和靶位膜发生接触的最初阶段起重要调控作用,多数拴系因子形成大的多亚基复合体发挥功能。目前,关于拴系因子的功能已经有了一定的了解,在此,我们对酵母、哺乳动物以及植物细胞中的已知拴系因子的特点和功能进行了概述。  相似文献   

3.
The DSL1 complex is a conserved tethering complex at the endoplasmic reticulum that recognizes Golgi-derived COPI vesicles and hands them over to the fusion machinery. The DSL1 complex is the simplest tethering complex of the complexes associated with tethering containing helical rods (CATCHR) family. CATCHR tethering complexes play a role at compartments along the exocytic and endocytic pathways. In this review, different functions of the DSL1 complex are discussed, some open questions with the seemingly straightforward picture are pointed out and alternative functions of the DSL1 complex members are mentioned.  相似文献   

4.
Secretory vesicles dock at their target in preparation for fusion. Using single-vesicle total internal reflection fluorescence microscopy in chromaffin cells, we show that most approaching vesicles dock only transiently, but that some are captured by at least two different tethering modes, weak and strong. Both vesicle delivery and tethering depend on Munc18-1, a known docking factor. By decreasing the amount of cortical actin by Latrunculin A application, morphological docking can be restored artificially in docking-deficient munc18-1 null cells, but neither strong tethering nor fusion, demonstrating that morphological docking is not sufficient for secretion. Deletion of the t-SNARE and Munc18-1 binding partner syntaxin, but not the v-SNARE synaptobrevin/VAMP, also reduces strong tethering and fusion. We conclude that docking vesicles either undock immediately or are captured by minimal tethering machinery and converted in a munc18-1/syntaxin-dependent, strongly tethered, fusion-competent state.  相似文献   

5.
6.
In mammals, coat complex II (COPII)-coated transport vesicles deliver secretory cargo to vesicular tubular clusters (VTCs) that facilitate cargo sorting and transport to the Golgi. We documented in vitro tethering and SNARE-dependent homotypic fusion of endoplasmic reticulum-derived COPII transport vesicles to form larger cargo containers characteristic of VTCs ( Xu, D., and Hay, J. C. (2004) J. Cell Biol. 167, 997-1003). COPII vesicles thus appear to contain all necessary components for homotypic tethering and fusion, providing a pathway for de novo VTC biogenesis. Here we demonstrate that antibodies against the endoplasmic reticulum/Golgi SNARE Syntaxin 5 inhibit COPII vesicle homotypic tethering as well as fusion, implying an unanticipated role for SNAREs upstream of fusion. Inhibition of SNARE complex access and/or disassembly with dominant-negative alpha-soluble NSF attachment protein (SNAP) also inhibited tethering, implicating SNARE status as a critical determinant in COPII vesicle tethering. The tethering-defective vesicles generated in the presence of dominant-negative alpha-SNAP specifically lacked the Rab1 effectors p115 and GM130 but not other peripheral membrane proteins. Furthermore, Rab effectors, including p115, were shown to be required for homotypic COPII vesicle tethering. Thus, our results demonstrate a requirement for SNARE-dependent tether recruitment and function in COPII vesicle fusion. We anticipate that recruitment of tether molecules by an upstream SNARE signal ensures that tethering events are initiated only at focal sites containing appropriately poised fusion machinery.  相似文献   

7.
8.
GCC185 is a long coiled-coil protein localized to the trans-Golgi network (TGN) that functions in maintaining Golgi structure and tethering mannose 6-phosphate receptor (MPR)-containing transport vesicles en route to the Golgi. We report the identification of two distinct domains of GCC185 needed either for Golgi structure maintenance or transport vesicle tethering, demonstrating the independence of these two functions. The domain needed for vesicle tethering binds to the clathrin adaptor AP-1, and cells depleted of GCC185 accumulate MPRs in transport vesicles that are AP-1 decorated. This study supports a previously proposed role of AP-1 in retrograde transport of MPRs from late endosomes to the Golgi and indicates that docking may involve the interaction of vesicle-associated AP-1 protein with the TGN-associated tethering protein GCC185.  相似文献   

9.
Trichoplein/mitostatin (TpMs) is a keratin-binding protein that partly colocalizes with mitochondria and is often downregulated in epithelial cancers, but its function remains unclear. In this study, we report that TpMs regulates the tethering between mitochondria and endoplasmic reticulum (ER) in a Mitofusin 2 (Mfn2)-dependent manner. Subcellular fractionation and immunostaining show that TpMs is present at the interface between mitochondria and ER. The expression of TpMs leads to mitochondrial fragmentation and loosens tethering with ER, whereas its silencing has opposite effects. Functionally, the reduced tethering by TpMs inhibits apoptosis by Ca(2+)-dependent stimuli that require ER-mitochondria juxtaposition. Biochemical and genetic evidence support a model in which TpMs requires Mfn2 to modulate mitochondrial shape and tethering. Thus, TpMs is a new regulator of mitochondria-ER juxtaposition.  相似文献   

10.
Tone regulation in coronary microvessels has largely been studied in isolated vessels in the absence of myocardial tethering. Here, the potential effect of radial tethering and interstitial space connective tissue (ISCT) between coronary microvessels and the surrounding myocardium was studied. We hypothesized that rigid tethering between microvessels and the myocardium would constrain the active contraction of arterioles and is not compatible with the observed tone regulation. The ISCT between coronary microvessels and myocardium in five swine was found to increase exponentially from 0.22 ± 0.02 μm in capillaries (modified Strahler order 0) of the endocardium to 34.9 ± 7.1 μm in epicardial vessels (order 10). Microvessels with both soft tethering and ISCT gap were capable of significant changes in vessel resistance (up to an ~1,600% increase), consistent with experimental measurements of high coronary flow reserve. Additionally, the mechanical energy required for myogenic contraction was estimated. The results indicate that rigid tethering requires up to four times more mechanical energy than soft tethering in the absence of a gap. Hence, the experimental measurements and model predictions suggest that effectiveness and efficiency in tone regulation can be achieved only if the vessel is both softly tethered to and separated from the myocardium in accordance with the experimental findings of ISCT gap. These results have fundamental implications on future simulations of coronary circulation.  相似文献   

11.
Intracellular transport vesicles identify their destination by a poorly understood process termed tethering. Recent work shows that in addition to its role in membrane-cargo selection, the COPII vesicle coat recruits TRAPPI, a cytosolic protein complex required for vesicle tethering.  相似文献   

12.
The EGF receptor is a classical receptor-tyrosine kinase. In the absence of ligand, the receptor adopts a closed conformation in which the dimerization arm of subdomain II interacts with the tethering arm in subdomain IV. Following the binding of EGF, the receptor opens to form a symmetric, back-to-back dimer. Although it is clear that the dimerization arm of subdomain II is central to the formation of receptor dimers, the role of the tethering arm of subdomain IV (residues 561-585) in this configuration is not known. Here we use (125)I-EGF binding studies to assess the functional role of the tethering arm in the EGF receptor dimer. Mutation of the three major residues that contribute to tethering (D563A,H566A,K585A-EGF receptor) did not significantly alter either the ligand binding properties or the signaling properties of the EGF receptor. By contrast, breaking the Cys(558)-Cys(567) disulfide bond through double alanine replacements or deleting the loop entirely led to a decrease in the negative cooperativity in EGF binding and was associated with small changes in downstream signaling. Deletion of the Cys(571)-Cys(593) disulfide bond abrogated cooperativity, resulting in a high affinity receptor and increased sensitivity of downstream signaling pathways to EGF. Releasing the Cys(571)-Cys(593) disulfide bond resulted in extreme negative cooperativity, ligand-independent kinase activity, and impaired downstream signaling. These data demonstrate that the tethering arm plays an important role in supporting cooperativity in ligand binding. Because cooperativity implies subunit-subunit interactions, these results also suggest that the tethering arm contributes to intersubunit interactions within the EGF receptor dimer.  相似文献   

13.
Recent studies have renewed interest in the effects of perivascular tethering on vascular mechanics, particularly growth and remodeling. We quantified effects of axial and circumferential tethering on rabbit pial arterioles from the ventral occipital lobe of the brain. The homeostatic axial pre-stretch, which is influenced by perivascular tethering, was measured in situ to be 1.24±0.04. Using a cannulated microvessel preparation, wall mechanics were then quantified in vitro for isolated arterioles at low (1.10) or normal (1.24) values of axial stretch and for tethered arterioles having perivascular support. Axial stretch did not significantly affect changes in circumferential stretch or stress upon pressurization, but circumferential tethering caused arteriolar geometry to change from a circular cross-section at normal pressure to an elliptical one at pressures above and below normal. Calculations suggested that the observed levels of ellipticity could cause a modest decrease in volumetric blood flow, but also a pronounced variation in shear stress around the circumference of the arteriole. An elliptical cross-section could thus increase vascular resistance or promote luminal remodeling at pressures different from normal. This characterization of effects of perivascular tethering on pial arterioles should prove useful in future studies of roles of perturbed cerebral blood flow on the propensity of the cerebral microcirculation to remodel.  相似文献   

14.
The hypothesis was tested that upper limits to height growth in trees are the result of the increasing bending moment of trees as they grow in height. The increasing bending moment of tall trees demands increased radial growth at the expense of height growth to maintain mechanical stability. In this study, the bending moment of large lodgepole pine (Pinus contorta Dougl. Ex Loud. var. latifolia Engelm.) was reduced by tethering trees at 10 m height to counter the wind load. Average bending moment of tethered trees was reduced to 38% of control trees. Six years of tethering resulted in a 40% increase in height growth relative to the period before tethering. By contrast, control trees showed decreased height growth in the period after tethering treatment. Average radial growth along the bole, relative to height growth, was reduced in tethered trees. This strongly suggests that mechanical constraints play a crucial role in limiting the height growth of tall trees. Analysis of bending moment and basal area increment at both 10 m and 1.3 m showed that the amount of wood added to the stem was closely related to the bending moment produced at these heights, in both control and tethered trees. The tethering treatment also resulted in an increase in the proportion of latewood at the tethering height, relative to 1.3 m height. For untethered control trees, the ratio of bending stresses at 10 m versus 1.3 m height was close to 1 in both 1998 and 2003, suggesting a uniform stress distribution along the outer surface of the bole.  相似文献   

15.
The end of the life of a transport vesicle requires a complex series of tethering, docking, and fusion events. Tethering complexes play a crucial role in the recognition of membrane entities and bringing them into close opposition, thereby coordinating and controlling cellular trafficking events. Here we provide a comprehensive RNA interference analysis of the CORVET and HOPS tethering complexes in metazoans. Knockdown of CORVET components promoted RAB-7 recruitment to subapical membranes, whereas in HOPS knockdowns, RAB-5 was found also on membrane structures close to the cell center, indicating the RAB conversion might be impaired in the absence of these tethering complexes. Unlike in yeast, metazoans have two VPS33 homologues, which are Sec1/Munc18 (SM)-family proteins involved in the regulation of membrane fusion. We assume that in wild type, each tethering complex contains a specific SM protein but that they may be able to substitute for each other in case of absence of the other. Of importance, knockdown of both SM proteins allowed bypass of the endosome maturation block in sand-1 mutants. We propose a model in which the SM proteins in tethering complexes are required for coordinated flux of material through the endosomal system.  相似文献   

16.
17.
Golgins are extended coiled-coil proteins believed to participate in membrane-tethering events at the Golgi apparatus. However, the importance of golgin-mediated tethering remains poorly defined, and alternative functions for golgins have been proposed. Moreover, although golgins bind to Rab GTPases, the functional significance of Rab binding has yet to be determined. In this study, we show that depletion of the golgin GMAP-210 causes a loss of Golgi cisternae and accumulation of numerous vesicles. GMAP-210 function in vivo is dependent upon its ability to tether membranes, which is mediated exclusively by the amino-terminal ALPS motif. Binding to Rab2 is also important for GMAP-210 function, although it is dispensable for tethering per se. GMAP-210 length is also functionally important in vivo. Together our results indicate a key role for GMAP-210–mediated membrane tethering in maintaining Golgi structure and support a role for Rab2 binding in linking tethering with downstream docking and fusion events at the Golgi apparatus.  相似文献   

18.
SspB is a dimeric adaptor protein that increases the rate at which ssrA-tagged substrates are degraded by tethering them to the ClpXP protease. Each SspB subunit consists of a folded domain that forms the dimer interface and a flexible C-terminal tail. Ternary delivery complexes are stabilized by three sets of tethering interactions. The C-terminal XB peptide of each SspB subunit binds ClpX, the body of SspB binds one part of the ssrA-tag sequence, and ClpX binds another part of the tag. To test the functional importance of these tethering interactions, we engineered monomeric SspB variants and dimeric variants with different length linkers between the SspB body and the XB peptide and employed substrates with degradation tags that bind ClpX weakly and/or contain extensions between the binding sites for SspB and ClpX. We find that monomeric SspB variants can enhance ClpXP degradation of a subset of substrates, that doubling the number of tethering interactions stimulates degradation via changes in Km and Vmax, and that major alterations in the length of the 48-residue SspB linker cause only small changes in the efficiency of substrate delivery. These results indicate that the properties of the degradation tag and the number of SspB.ClpX tethering interactions are the major factors that determine the extent to which the substrate and ClpX are engaged in ternary delivery complexes.  相似文献   

19.
Many Rab GTPase effectors are membrane-tethering factors, that is, they physically link two apposed membranes before intracellular membrane fusion. In this study, we investigate the distinct binding factors needed on apposed membranes for Rab effector–dependent tethering. We show that the homotypic fusion and protein-sorting/class C vacuole protein-sorting (HOPS/class C Vps) complex can tether low-curvature membranes, that is, liposomes with a diameter of ∼100 nm, only when the yeast vacuolar Rab GTPase Ypt7p is present in both tethered membranes. When HOPS is phosphorylated by the vacuolar casein kinase I, Yck3p, tethering only takes place when GTP-bound Ypt7p is present in both tethered membranes. When HOPS is not phosphorylated, however, its tethering activity shows little specificity for the nucleotide-binding state of Ypt7p. These results suggest a model for HOPS-mediated tethering in which HOPS tethers membranes by binding to Ypt7p in each of the two tethered membranes. Moreover, because vacuole-associated HOPS is presumably phosphorylated by Yck3p, our results suggest that nucleotide exchange of Ypt7p on multivesicular bodies (MVBs)/late endosomes must take place before HOPS can mediate tethering at vacuoles.  相似文献   

20.
Membrane transport: Take your fusion partners   总被引:3,自引:0,他引:3  
Recent studies of how vesicles are targeted to fuse with specific membranes inside cells highlight a role for extended coiled-coil proteins in tethering partner membranes prior to formation of the 'SNARE complex' that mediates the fusion reaction. The tethering protein is recruited to membranes by a Rab family GTPase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号