首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The c-Mos proto-oncogene product plays an essential role during meiotic divisions in vertebrate eggs. In Xenopus, it is required for progression of oocyte maturation and meiotic arrest of unfertilized eggs. Its degradation after fertilization is essential to early embryogenesis. In this study we investigated the mechanisms involved in c-Mos degradation. We present in vivo evidence for ubiquitin-dependent degradation of c-Mos in activated eggs. We found that c-Mos degradation is not directly dependent on the anaphase-promoting factor activator Fizzy/cdc20 but requires cyclin degradation. We demonstrate that cyclin B/cdc2 controls in vivo c-Mos phosphorylation and stabilization. Moreover, we show that cyclin B/cdc2 is capable of directly phosphorylating c-Mos in vitro, inducing a similar mobility shift to the one observed in vivo. Tryptic phosphopeptide analysis revealed a practically identical in vivo and in vitro phosphopeptide map and allowed identification of serine-3 as the largely preferential phosphorylation site as previously described (Freeman et al., 1992). Altogether, these results demonstrate that, in vivo, stability of c-Mos is directly regulated by cyclin B/cdc2 kinase activity.  相似文献   

2.
Segal A  Cucu D  Van Driessche W  Weber WM 《FEBS letters》2002,515(1-3):177-183
We used oocytes of the South African clawed toad Xenopus laevis to express the three subunits of the epithelial Na(+) channel from rat distal colon (rENaC). We combined conventional dual-microelectrode voltage-clamp with continuous capacitance (C(m)) measurements and noise analysis to evaluate the effects of cAMP and Ni(2+) on rENaC. Control oocytes or rENaC-expressing oocytes exhibited no spontaneous fluctuations in current. However, in rENaC-expressing oocytes amiloride induced a marked plateau-shaped rise of the power density spectra. Recordings using four different concentrations of amiloride revealed that the blocker-channel interactions were of the first order. A cocktail of the membrane permeant cAMP analogue chlorophenylthio-cAMP and IBMX (cAMP cocktail) increased amiloride-sensitive current (I(ami)) and conductance (G(ami)). Furthermore, C(m) was also increased following cAMP application, indicating an increase in plasma membrane surface area. Noise analysis showed that cAMP increased the number of active channels in the oocyte membrane while single-channel current decreased. From these data we conclude that cAMP triggered exocytotic delivery of preformed rENaCs to the plasma membrane. Ni(2+) (2.5 mM) inhibited about 60% of the rENaC current and conductance while C(m) remained unaffected. Noise analysis revealed that this inhibition could be attributed to a decrease in the apparent channel density, while single-channel current did not change significantly. These observations argue for direct effects of Ni(2+) on channel activity rather than induction of endocytotic removal of active channels from the plasma membrane.  相似文献   

3.
Ca2+-activatedCl currents (ICl,Ca) wereexamined using fluorescence confocal microscopy to monitorintracellular Ca2+ liberation evoked by flash photolysis ofcaged inositol 1,4,5-trisphosphate (InsP3) involtage-clamped Xenopus oocytes. Currents at +40 mV exhibited asteep dependence on InsP3 concentration([InsP3]), whereas currents at140 mV exhibited a higher threshold and more graded relationshipwith [InsP3]. Ca2+ levelsrequired to half-maximally activate ICl,Ca wereabout 50% larger at 140 mV than at +40 mV, and currents evokedby small Ca2+ elevations were reduced >25-fold. Thehalf-decay time of Ca2+ signals shortened at increasinglypositive potentials, whereas the decay of ICl,Calengthened. The steady-state current-voltage (I-V) relationshipfor ICl,Ca exhibited outward rectification withweak photolysis flashes but became more linear with stronger stimuli.Instantaneous I-V relationships were linear with both strongand weak stimuli. Current relaxations following voltage steps duringactivation of ICl,Ca decayed with half-times that shortened from about 100 ms at +10 mV to 20 ms at 160 mV. We conclude that InsP3-mediated Ca2+liberation activates a single population of Clchannels, which exhibit voltage-dependent Ca2+ activationand voltage-independent instantaneous conductance.

  相似文献   

4.
During Xenopus oocyte maturation, the Mos protein kinase is synthesized and activates the MAP kinase cascade. In this report, we demonstrate that the synthesis and activation of Mos are two separable processes. We find that Hsp90 function is required for activation and phosphorylation of Mos and full activation of the MAP kinase cascade. Once Mos is activated, Hsp90 function is no longer required. We show that Mos interacts with both Hsp90 and Hsp70, and that there is an inverse relationship between association of Mos with these two chaperones. We propose that Mos protein kinase is activated by a novel mechanism involving sequential association with Hsp70 and Hsp90 as well as phosphorylation. We also present evidence for a two-phase activation of MAP kinase in Xenopus oocytes.  相似文献   

5.
The effects of the new cyclin-dependent kinase inhibitors, roscovitine and olomoucine, on oocytes and eggs of Xenopus laevis were investigated and compared with those of 6-dimethylamino purine (6-DMAP). The inhibitory properties of 6-DMAP, olomoucine and roscovitine towards p34cdc2-cyclin B isolated from Xenopus eggs revealed K-IC50 values of 300, 40 and 10 microM respectively. The three compounds inhibited progesterone-induced maturation with M-IC50 values of 200, 100 and 20 microM. These values were consistent with the K-IC50 values but the ratio M-IC50/K-IC50 was higher for roscovitine and olomoucine than for 6-DMAP. The disappearance of spindle and condensed chromosomes without pronucleus formation was observed when 1 mM 6-DMAP was applied for 4 h at germinal vesicle breakdown or at metaphase II, whereas no effect was observed using 1 mM olomoucine or 50 microM roscovitine. Changes in the electrophoretic mobility of p34cdc2 and erk2 were observed only in homogenates of matured oocytes or eggs exposed for 4 h to 1 mM 6-DMAP. When the drugs were microinjected into matured oocytes, olomoucine (100 microM) and roscovitine (50 microM) induced pronucleus formation more efficiently than did 6-DMAP (100 microM). Taken together, these results demonstrate that Xenopus oocytes possess a lower permeability to olomoucine and roscovitine and that these new compounds are suitable for in vivo studies after germinal vesicle breakdown provided they are microinjected.  相似文献   

6.
N Furuno  Y Ogawa  J Iwashita  N Nakajo    N Sagata 《The EMBO journal》1997,16(13):3860-3865
In vertebrates, M phase-promoting factor (MPF), a universal G2/M regulator in eukaryotic cells, drives meiotic maturation of oocytes, while cytostatic factor (CSF) arrests mature oocytes at metaphase II until fertilization. Cdk2 kinase, a G1/S regulator in higher eukaryotic cells, is activated during meiotic maturation of Xenopus oocytes and, like Mos (an essential component of CSF), is proposed to be involved in metaphase II arrest in mature oocytes. In addition, cdk2 kinase has been shown recently to be essential for MPF activation in Xenopus embryonic mitosis. Here we report injection of Xenopus oocytes with the cdk2 kinase inhibitor p21Cip in order to (re)evaluate the role of cdk2 kinase in oocyte meiosis. Immature oocytes injected with p21Cip can enter both meiosis I and meiosis II normally, as evidenced by the typical fluctuations in MPF activity. Moreover, mature oocytes injected with p21Cip are retained normally in metaphase II for a prolonged period, whereas those injected with neutralizing anti-Mos antibody are released readily from metaphase II arrest. These results argue strongly against a role for cdk2 kinase in MPF activation and its proposed role in metaphase II arrest, in Xenopus oocyte meiosis. We discuss the possibility that cdk2 kinase stored in oocytes may function, as a maternal protein, solely for early embryonic cell cycles.  相似文献   

7.
The molecular mode of action of arsenic, a therapeutic agent employed in the treatment of acute promyelocytic leukemia, has been elusive. Here we provide evidence that arsenic compounds may act on mitochondria to induce apoptosis. Arsenite induces apoptosis accompanied by a loss of the mitochondrial transmembrane potential (Delta Psim). Inhibition of caspases prevents the arsenite-induced nuclear DNA loss, but has no effect on the Delta Psim dissipation and cytolysis induced by arsenite. In contrast, Bcl-2 expression induced by gene transfer prevents all hallmarks of arsenite-induced cell death, including the Delta Psim collapse. PK11195, a ligand of the mitochondrial benzodiazepine receptor, neutralizes this Bcl-2 effect. Mitochondria are required in a cell-free system to mediate arsenite-induced nuclear apoptosis. Arsenite causes the release of an apoptosis-inducing factor (AIF) from the mitochondrial intermembrane space. This effect is prevented by the permeability transition (PT) pore inhibitor cyclosporin A, as well as by Bcl-2, which is known to function as an endogenous PT pore antagonist. Arsenite also opens the purified, reconstituted PT pore in vitro in a cyclosporin A- and Bcl-2-inhibitible fashion. Altogether these data suggest that arsenite can induce apoptosis via a direct effect on the mitochondrial PT pore.  相似文献   

8.
Calcium (Ca) ionophores trigger cortical granule exocytosis in progesterone-matured Xenopus oocytes (eggs), but not in immature oocytes. Prior work suggested that this secretory transition involved a Ca-dependent isoform of protein kinase C (PKC). To address this possibility, we treated eggs with several different inhibitors of Ca-dependent PKCs. Although these agents (eg., staurosporine, Ro31-8220) completely blocked cortical granule exocytosis that is triggered in eggs by phorbol esters, they had no impact on ionomycin-evoked secretion of cortical granule lectin. These data suggest that Ca-dependent PKCs do not mediate secretory triggering in eggs. Instead, further investigation revealed that protein synthesis (but not RNA synthesis) was required for eggs to secrete in response to ionomycin. Moreover, we observed that when oocytes were matured by injection of maturation promoting factor (MPF), they failed to secrete in response to ionomycin. Collectively, these results suggest that the progesterone-dependent maturation pathway induces these cells either to synthesize de novo, a protein that mediates Ca-dependent secretory triggering, or that intrinsic Ca-sensing machinery is modified in a protein-synthesis-dependent fashion. Initial efforts to distinguish between these possibilities (using Ca overlay, pharmacological and immunoblot strategies) revealed that such Ca-binding proteins as calmodulin, synaptotagmin1, CAPS, rabphilin-3A and calcineurin were unlikely to transduce the secretory effects of ionomycin in eggs. Thus, the cortical reaction in these cells may rely on a novel mechanism for initiating Ca-dependent exocytosis.  相似文献   

9.
J Marchant  N Callamaras    I Parker 《The EMBO journal》1999,18(19):5285-5299
Inositol (1,4,5)-trisphosphate (IP(3)) evokes Ca(2+) liberation in Xenopus oocytes as elementary events (Ca(2+) puffs) that become coupled to propagate Ca(2+) waves with increasing [IP(3)]. To investigate this transition between local and global Ca(2+) signaling, we developed an optical method for evoking rapid subcellular Ca(2+) elevations, while independently photoreleasing IP(3) and simultaneously recording confocal Ca(2+) images. Focal Ca(2+) elevations triggered waves within 100 ms of photoreleasing IP(3), compared with latencies of seconds following photorelease of IP(3) alone. Wave velocity varied with [IP(3)] but was independent of time after photorelease of IP(3), indicating that delayed wave initiation did not involve slow binding of IP(3) to its receptors. The amount of Ca(2+) required to trigger a wave was approximately 10-fold greater than the average size of puffs, and puffs showed no progressive increase in magnitude before waves initiated. Instead, Ca(2+) puffs contributed to a slow rise in basal free [Ca(2+)], which further increased puff frequency and sensitized IP(3) receptors so that individual events then triggered waves. Because the wave threshold is much greater than the size of the elementary puff, cells can employ both local and global signaling mechanisms, and the summation of stochastic behavior of elementary events allows generation of reproducible periodic waves.  相似文献   

10.
Peng F  Zhang YQ  Zeng Y  Zhou YL 《生理学报》2012,64(1):75-81
To investigate the modulation of Mg(2+) on rat P2X4 receptors and its underlying mechanism, we transcribed cDNA coding for wild-type and mutant P2X4 receptors to cRNA in vitro, injected the cRNA to oocytes of Xenopus laevis using the microinjection technique and revealed the effect of Mg(2+) on ATP-activated currents (I(ATP)) mediated by P2X4 receptors using the two-electrode whole-cell voltage clamp technique. The effects of extracellular Mg(2+) on I(ATP) were as follows: (1) In oocytes expressing P2X4 receptors, Mg(2+) with concentration ranging from 0.5-10 mmol/L inhibited the amplitude of I(ATP) in a concentration-dependent and reversible manner, with a 50% inhibitory concentration value (IC(50)) of (1.24 ± 0.07) mmol/L for current activated by 100 μmol/L ATP. (2) Mg(2+) (1 mmol/L) shifted the dose-response curve for I(ATP) right-downward without changing the EC(50), but reduced the maximal current (E(max)) by (42.0 ± 2.1)%. (3) After being preincubated with Mg(2+) for 80 s, the inhibitory effect of the Mg(2+) on I(ATP) reached the maximum. (4) The inhibition of Mg(2+) on I(ATP) was independent of membrane potential from -120 mV to +60 mV. (5) Compared with the current activated by 100 μmol/L ATP in the wild-type P2X4 receptors, mutant P2X4 D280Q responded to the application of 100 μmol/L ATP with a smaller current. The peak current was only (4.12 ± 0.15)% of that seen in wild-type receptors. Mutant P2X4 D280E responded to ATP stimulation with a current similar to that observed in cells expressing wild-type receptors. (6) When Asp280 was removed from P2X4, the current amplitude of I(ATP) was increased almost one-fold, and Mg(2+) with concentration ranging from 0.5-10 mmol/L did not affect the I(ATP) significantly. The results suggest that Mg(2+) inhibits I(ATP) mediated by P2X4 receptors non-competitively, reversibly, concentration-dependently, time-dependently and voltage-independently. The inhibitory effect of Mg(2+) might be realized by acting on the site Asp280 of the P2X4 receptors.  相似文献   

11.
Cytoplasmic free calcium levels during progesterone-induced meiotic maturation in Xenopus laevis oocytes were measured using the photoprotein aequorin. The resting level of [Ca2+]i was 92.6 +/- 30 nM. No significant changes were observed after progesterone addition, although a large pulse of [Ca2+]i was observed upon activation of matured oocytes. These findings are discussed in terms of the role of calcium in maturation and it is concluded that calcium is not the second messenger for progesterone. This conclusion is further supported by the finding that 100 microM TMB-8, a blocker of intracellular calcium release, had no effect on progesterone-induced maturation.  相似文献   

12.
Xenopus oocytes arrested in prophase I resume meiotic division in response to progesterone and arrest at metaphase II. Entry into meiosis I depends on the activation of Cdc2 kinase [M-phase promoting factor (MPF)]. To better understand the role of Cdc2, MPF activity was specifically inhibited by injection of the CDK inhibitor, Cip1. When Cip1 is injected at germinal vesicle breakdown (GVBD) time, Cdc25 and Plx1 are both dephosphorylated and Cdc2 is rephosphorylated on tyrosine. The autoamplification loop characterizing MPF is therefore not only required for MPF generation before GVBD, but also for its stability during the GVBD period. The ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C), responsible for cyclin degradation, is also under the control of Cdc2; therefore, Cdc2 activity itself induces its own inactivation through cyclin degradation, allowing the exit from the first meiotic division. In contrast, cyclin accumulation, responsible for Cdc2 activity increase allowing entry into metaphase II, is independent of Cdc2. The c-Mos/mitogen-activated protein kinase (MAPK) pathway remains active when Cdc2 activity is inhibited at GVBD time. This pathway could be responsible for the sustained cyclin neosynthesis. In contrast, during the metaphase II block, the c-Mos/MAPK pathway depends on Cdc2. Therefore, the metaphase II block depends on a dynamic interplay between MPF and CSF, the c-Mos/MAPK pathway stabilizing cyclin B, whereas in turn, MPF prevents c-Mos degradation.  相似文献   

13.
During the maturation of Xenopus oocytes, Cdc6 expression is necessary to establish replication competence to support early embryonic DNA replication. However, Cdc6 is expressed before the completion of MI at a time when its function as a replication factor is not required, suggesting additional roles for Cdc6 in meiosis. Confocal immunofluorescence microscopy revealed that Cdc6 protein was distributed around the spindle precursor at the time of germinal vesicle breakdown (GVBD) and localized to the margin of the nascent spindle early in prometaphase. Cdc6 subsequently localized to spindle poles in late prometaphase, where it remained until metaphase arrest. Microinjection of antisense oligonucleotides specific for Cdc6 mRNA disrupted spindle assembly, resulting in defects, including delayed spindle assembly, misoriented and unattached anaphase spindles, monasters, multiple spindles, microtubule aggregates associated with condensed chromosomes, or the absence of recognizable spindle-like structures, depending on the level of residual Cdc6 expression. Furthermore, Cdc6 co-localized with γ-tubulin in centrosomes during interphase in all somatic cells analyzed and associated with spindle poles in mitotic COS cells. Our data suggest a role for Cdc6 in spindle formation in addition to its role as a DNA replication factor.Key words: Cdc6, spindle assembly, Xenopus, oocytes, pre-RC proteins  相似文献   

14.
During the maturation of Xenopus oocytes, Cdc6 expression is necessary to establish replication competence to support early embryonic DNA replication. However, Cdc6 is expressed before the completion of MI, at a time when its function as a replication factor is not required, suggesting additional roles for Cdc6 in meiosis. Confocal immunofluorescence microscopy revealed that Cdc6 protein was distributed around the spindle precursor at the time of germinal vesicle breakdown (GVBD), and localized to the margin of the nascent spindle early in prometaphase. Cdc6 subsequently localized to spindle poles in late prometaphase, where it remained until metaphase arrest. Microinjection of antisense oligonucleotides specific for Cdc6 mRNA disrupted spindle assembly, resulting in defects including delayed spindle assembly, misoriented and unattached anaphase spindles, monasters, multiple spindles, microtubule aggregates associated with condensed chromosomes, or the absence of recognizable spindle-like structures, depending on the level of residual Cdc6 expression. Furthermore, Cdc6 co-localized with γ-tubulin in centrosomes during interphase in all somatic cells analyzed, and associated with spindle poles in mitotic COS cells. Our data suggest a role for Cdc6 in spindle formation in addition to its role as a DNA replication factor.  相似文献   

15.
Xenopus laevis eggs pricked or microinjected with water or saline in medium containing a limited quantity of free Ca (1.0 to 2.0 microM) remain unactivated for at least 6 hr, even after transfer to oocyte medium containing Ca at higher concentrations (0.5-1.0 mM). These injected eggs, when later pricked in oocyte medium or exposed to A23187 or urethane are fully capable of activation. This confirms the observations of Wangh ('89). However, eggs injected in this Ca-limited medium (CaLM) with 6-DMAP as well as those simply exposed to this drug undergo changes characteristic of activation, including cortical contraction, cortical granule breakdown, a loss of MPF and CSF activities, and pronuclear formation. The time required for 6-DMAP to induce egg activation is inversely correlated to its concentration. Interestingly, eggs that have been injected with EGTA, and thus are unable to respond to activation stimuli such as pricking and A23187 or urethane treatment, can also be activated by exposure to 6-DMAP. In contrast, eggs exposed to or injected with a 6-DMAP analogue (6-aminopurine or puromycin) or a protein synthesis inhibitor (cycloheximide or emetine or puromycin) are not activated. As well, eggs injected in CaLM with 6-DMAP simultaneously with a phosphatase inhibitor (NaF or ammonium molybdate) fail to become activated. Although 6-DMAP-activated eggs remain at the pronucleus stage so long as 6-DMAP is present, they resume cell cycle activities after the drug is withdrawn. They form cleavage furrows, disassemble pronuclear envelopes, and recondense chromosomes. Also, MPF activity reappears and cycles at least twice, peaking each time shortly before cleavage furrow formation. These results suggest that activation of Xenopus eggs arrested at metaphase II by inhibition of protein phosphorylation does not require intracellular Ca release and that maintenance of the egg at metaphase II depends upon continuous protein phosphorylation.  相似文献   

16.
The mechanism by which growing neurites sense and respond to small applied electrical fields is not known, but there is some evidence that the entry of Ca(2+) from the external medium, with the subsequent formation of intracellular Ca(2+) gradients, is important in this process. We have employed two approaches to test this idea. Xenopus spinal neurites were exposed to electrical fields in a culture medium in which Ca(2+) was chelated to very low levels compared to the normal extracellular concentration of 2 mM. In other experiments, loading the neurites with the calcium buffer, 1, 2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), disrupted the putative internal Ca(2+) gradients, and the effects on the electrical response were determined. Fields of 100 mV/mm were applied for 12 h, and no difference was detected in the cathodal turning response between the treated neurites and the untreated controls. Using the Differential Growth Index (DGI), an asymmetry index, to quantitate the turning response, we recorded DGIs of -0.64, -0.65, and -0.62 for control cells, cells in Ca(2+)-free medium, and cells preloaded with BAPTA, respectively. Furthermore, we detected an increase in neurite length for those neurons cultured in Ca(2+)-free medium; they were 1.5-1.7 times as long as neurites from neurons cultured in normal Ca(2+) medium. Likewise, we found that BAPTA-loaded neurites were longer than control neurites. Our data indicate that neuronal galvanotropism is independent of the entry of external Ca(2+) or of internal Ca(2+) gradients. Both cell-permeant agonistic and antagonistic analogs of cyclic 3',5'-adenosine monophosphate (cAMP) increased the response to applied electrical fields.  相似文献   

17.
Serotonin receptors induced by exogenous messenger RNA in Xenopus oocytes   总被引:15,自引:0,他引:15  
When poly(A)+-mRNA, extracted from rat brain, was injected into Xenopus laevis oocytes, it induced the appearance of serotonin receptors in the oocyte membrane. Application of serotonin to injected oocytes elicited, after a long delay, oscillations in membrane current. The equilibrium potential of this current corresponded with the chloride equilibrium potential. It appears that rat brain mRNA encodes the translation of serotonin receptors into the oocyte membrane. The combination of serotonin with these receptors leads to the opening of membrane channels.  相似文献   

18.
Ca(2+)-dependent proteolysis in muscle wasting   总被引:6,自引:0,他引:6  
Skeletal muscle wasting is a prominent feature of cachexia, a complex systemic syndrome that frequently complicates chronic diseases such as inflammatory and autoimmune disorders, cancer and AIDS. Muscle wasting may also develop as a manifestation of primary or neurogenic muscular disorders. It is now generally accepted that muscle depletion mainly arises from increased protein catabolism. The ubiquitin-proteasome system is believed to be the major proteolytic machinery in charge of such protein breakdown, yet there is evidence suggesting that Ca(2+)-dependent system, lysosomes and, in some conditions at least, even caspases are involved as well. The role of Ca(2+)-dependent proteolysis in skeletal muscle wasting is reviewed in the present paper. This system relies on the activity of calpains, a family of Ca(2+)-dependent cysteine proteases, whose regulation is complex and not completely elucidated. Modulations of Ca(2+)-dependent proteolysis have been associated with muscle protein depletion in various pathological contexts and particularly with muscle dystrophies. Calpains can only perform a limited proteolysis of their substrates, however they may play a critical role in initiating the breakdown of myofibrillar protein, by releasing molecules that become suitable for further degradation by proteasomes. Some evidence would also support a role for lysosomes and caspases in muscle wasting. Thus it cannot be excluded that different intracellular proteolytic systems may coordinately concur in shifting muscle protein turnover towards excess catabolism. Many different signals have been proposed as potentially involved in triggering the enhanced protein breakdown that underlies muscle wasting. How they are transduced to initiate the hypercatabolic response and to activate the proteolytic pathways remains largely unknown, however.  相似文献   

19.
It is known that the 40s ribosomal protein S6 undergoes a dramatic increase in its level of phosphorylation during Xenopus oocyte meiotic maturation in response to progesterone stimulation. During prophase arrest, the majority of S6 has 0 moles phosphate per mole protein; this increases to 4-5 moles phosphate per mole protein by the time of germinal vesicle breakdown (GVBD). Our in vitro and in vivo studies indicate that the accumulation of phosphate on S6 is the net result of a 4-5-fold increase in S6 kinase activity and a 30-50% decrease in the rate of dephosphorylation and/or turnover of phosphate groups on S6 in maturing oocytes. In addition, the level of phosphorylation of S6 on 80s monosomes injected into non-hormone-stimulated oocytes was unexpectedly high. This indicates that the S6 kinase/phosphatase ratio in prophase arrested oocytes is higher than anticipated from previous studies. This observation implies that the majority of the oocyte ribosomes may be sequestered from any S6 kinase during meiotic prophase. Furthermore, these observations suggest that a portion of the increased accumulation of phosphate on S6 may be the result of increased accessibility of the ribosomes to S6 kinase during oocyte meiotic maturation.  相似文献   

20.
Ba(2+)-currents (IBa) through voltage-dependent Ca(2+)-channels were studied in Xenopus oocytes injected with RNA from several excitable tissues, using the two-electrode voltage-clamp technique. Previous studies have shown that the expression of cardiac Ca(2+)-channels can be suppressed by an hybrid-arrest procedure that includes co-injection of the tissue-derived RNA with an 'antisense' oligonucleotide complementary to a part of RNA coding for the Ca(2+)-channel alpha 1 subunit. In this study, this method was used to investigate the role of the alpha 2/delta subunit. Co-injection of RNA extracted from either rabbit heart, rat brain or rat skeletal muscle (SkM) with 'antisense' oligonucleotides complementary to the alpha 2/delta subunit RNA did not substantially affect the expression of IBa in the oocytes. Using the Northern blot hybridization method, it was shown that native oocytes contain large amounts of alpha 2/delta subunit RNA of Ca(2+)-channel. It is proposed that te oligonucleotide treatment fails to eliminate the alpha 2/delta RNA because of the vast excess of endogenous alpha 2/delta RNA. These results impose a limit on the use of the hybrid-arrest method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号