首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 420 毫秒
1.
2.
Negative regulation of BMP/Smad signaling by Tob in osteoblasts   总被引:19,自引:0,他引:19  
  相似文献   

3.
Smads are intracellular signaling mediators for TGF-beta superfamily. Smad1 and Smad5 are activated by BMP receptors. Here, we have cloned mouse Smad8 and functionally characterized its ability to transduce signals from BMP receptors. Constitutively active BMP type I receptors, ALK-3 and ALK-6, as well as ALK-2, were phosphorylated Smad8 and induced Smad8 interaction with Smad4. Nuclear translocation of Smad8 was stimulated by constitutively active BMP type I receptors. In contrast, constitutively active TGF-beta type I receptor, ALK-5, did not exhibit any action on Smad8. Smad8 and Smad4 cooperatively induced the promoter of Xvent2, a homeobox gene that responds specifically to BMP signaling. Dominant-negative Smad8 was shown to inhibit the increase of alkaline phosphatase activity induced by BMP-2 on pluripotent mesenchymal C3H10T1/2 and myoblastic C2C12 cell lines. The presence of Smad8 mRNA in mouse calvaria cells and osteoblasts suggests a role of Smad8 in the osteoblast differentiation and maturation.  相似文献   

4.
Pancreatic stellate cells (PSCs) play a major role in promoting pancreatic fibrosis. Transforming growth factor-beta(1) (TGF-beta(1)) regulates PSC activation and proliferation in an autocrine manner. The intracellular signaling pathways of the regulation were examined in this study. Immunoprecipitation and immunocytochemistry revealed that Smad2, Smad3, and Smad4 were functionally expressed in PSCs. Adenovirus-mediated expression of Smad2, Smad3, or dominant-negative Smad2/3 did not alter TGF-beta(1) mRNA expression level or the amount of autocrine TGF-beta(1) peptide. However, expression of dominant-negative Smad2/3 inhibited PSC activation and enhanced their proliferation. Co-expression of Smad2 with dominant-negative Smad2/3 restored PSC activation inhibited by dominant-negative Smad2/3 expression without changing their proliferation. By contrast, co-expression of Smad3 with dominant-negative Smad2/3 attenuated PSC proliferation enhanced by dominant-negative Smad2/3 expression without altering their activation. Exogenous TGF-beta(1) increased TGFbeta(1) mRNA expression in PSCs. However, PD98059, a specific inhibitor of mitogen-activated protein kinase kinase (MEK1), inhibited ERK activation by TGF-beta(1), and consequently attenuated TGF-beta(1) enhancement of its own mRNA expression in PSCs. We propose that TGF-beta(1) differentially regulates PSC activation, proliferation, and TGF-beta(1) mRNA expression through Smad2-, Smad3-, and ERK-dependent pathways, respectively.  相似文献   

5.
Smads are intracellular signaling molecules of the transforming growth factor-beta (TGF-beta) superfamily that play an important role in the activation of hepatic stellate cells (HSCs) and hepatic fibrosis. Excepting the regulation of Smad7, receptor-regulated Smad gene expression is still unclear. We employed rat HSCs to investigate the expression and regulation of the Smad1 gene, which is a bone morphogenetic protein (BMP) receptor-regulated Smad. We found that the expression and phosphorylation of Smad1 are increased during the activation of HSCs. Moreover, TGF-beta significantly inhibits Smad1 gene expression in HSCs in a time- and dose-dependent manner. Furthermore, although both TGF-beta1 and BMP2 stimulate the activation of HSCs, they have different effects on HSC proliferation. In conclusion, Smad1 expression and phosphorylation are increased during the activation of HSCs and TGF-beta1 significantly inhibits the expression of the Smad1 gene.  相似文献   

6.
7.
Activated pancreatic stellate cells (PSCs) play major roles in promoting pancreatic fibrosis. We previously reported that angiotensin II (Ang II) enhances activated PSC proliferation through EGF receptor transactivation. In the present study, we elucidated a novel intracellular mechanism by which Ang II stimulates cellular proliferation. TGF-beta1 inhibits activated PSC proliferation via a Smad3 and Smad4-dependent pathway in an autocrine manner. We demonstrated that Ang II inhibited TGF-beta1-induced nuclear accumulation of Smad3 and Smad4. Furthermore, Ang II rapidly induced inhibitory Smad7 mRNA expression. Adenovirus-mediated Smad7 overexpression inhibited TGF-beta1-induced nuclear accumulation of Smad3 and Smad4, and potentiated activated PSC proliferation. PKC inhibitor Go6983 blocked the induction of Smad7 mRNA expression by Ang II. In addition, 12-O-tetradecanoyl-phorbol 13-acetate, a PKC activator, increased Smad7 mRNA expression. These results suggest that Ang II enhances activated PSC proliferation by blocking autocrine TGF-beta1-mediated growth inhibition by inducing Smad7 expression via a PKC-dependent pathway.  相似文献   

8.
9.
Bone morphogenetic protein 2 (BMP2), a member of the transforming growth factor-beta (TGF-beta) superfamily, regulates a variety of cell fates and functions. At present, the molecular mechanism by which BMP2 induces apoptosis has not been fully elucidated. Here we propose a BMP2 signaling pathway that mediates apoptosis in mouse hybridoma MH60 cells whose growth is interleukin-6 (IL-6)-dependent. BMP2 dose-dependently induces apoptosis in MH60 cells even in the presence of IL-6. BMP2 has no inhibitory effect on the IL-6-induced tyrosine phosphorylation of STAT3, and the bcl-2 gene expression which is known to be regulated by STAT3, suggesting that BMP2-induced apoptosis is not attributed to alteration of the IL-6-mediated bcl-2 pathway. We demonstrate that BMP2 induces activation of TGF-beta-activated kinase (TAK1) and subsequent phosphorylation of p38 stress-activated protein kinase. In addition, forced expression of kinase-negative TAK1 in MH60 cells blocks BMP2-induced apoptosis. These results indicate that BMP2-induced apoptosis is mediated through the TAK1-p38 pathway in MH60 cells. We also show that MH60-derived transfectants expressing Smad6 are resistant to the apoptotic signal of BMP2. Interestingly, this ectopic expression of Smad6 blocks BMP2-induced TAK1 activation and p38 phosphorylation. Moreover, Smad6 can directly bind to TAK1. These findings suggest that Smad6 is likely to function as a negative regulator of the TAK1 pathway in the BMP2 signaling, in addition to the previously reported Smad pathway.  相似文献   

10.
Bone remodeling is regulated by secreted factors in the bone microenvironment. However, data regarding osteoclast-derived factors that influence osteoblast differentiation are lacking. Here, we show that HtrA1 is produced as a secreted protein during osteoclastogenesis, and negatively regulates osteoblast differentiation. Exogenous addition of recombinant HtrA1 attenuates osteoblast differentiation and BMP2-induced Smad1/5/8, ERK1/2 and p38 phosphorylation in pre-osteoblasts. Our studies imply a unique mode of crosstalk in which HtrA1 is produced by both osteoclasts and osteoblasts and negatively regulates osteoblast differentiation, suggesting that HtrA1 may mediate the fine tuning of paracrine and autocrine regulations during bone remodeling processes.  相似文献   

11.
12.
13.
Vascular injury stimulates the cytokine-growth factor network in the vascular wall, including transforming growth factor-beta (TGF-beta). Reportedly, the intracellular signaling of TGF-beta is mediated by Smad proteins. We tested the effects of the ectopic expression of inhibitory Smads in cultured rat smooth muscle cells (SMC) to identify the role of TGF-beta/Smad signaling on the phenotypic modulation of SMC. The cells exposed to human recombinant TGF-beta1 (10 ng/ml) were stimulated Smad2 phosphorylation. Infection with the replication-deficient adenovirus vector expressing Smad7, but not bacterial beta-galactosidase or Smad6, was found to inhibit TGF-beta-induced Smad2 phosphorylation in a dose-dependent manner. TGF-beta suppressed the serum-induced proliferation of SMC from 36.3% to 51.0% (p<0.01), as measured by hand-counting, and this inhibition was attenuated by the ectopic expression of Smad7 (from 30.7% to 74.8% of the reduction of TGF-beta-response, p<0.05), but not Smad6. A BrdU incorporation assay also showed that TGF-beta-mediated growth inhibition was attenuated by exogenous Smad7 and that this inhibition can be reversed by an additional expression of exogenous Smad2. TGF-beta increased the expression of alpha-smooth muscle actin and myosin heavy chain by 1.3-fold and 1.6-fold in comparison to the control, respectively, and these increases were attenuated by exogenous Smad7, but not Smad6. Our data indicate that Smads mediate TGF-beta responses on SMC phenotypes. Smad7, but not Smad6, may specifically act as an inhibitor of TGF-beta responses.  相似文献   

14.
Proteasome inhibitor is a novel class of cancer therapeutics, of which the mechanism of action is not fully understood. It is reported that proteasome inhibitor enhances bone morphogenetic protein (BMP) signaling in osteoblasts to stimulate bone formation. BMP signaling is also an important tumor-suppressing pathway in gastric carcinogenesis. We therefore sought to determine the anti-mitogenic effect of proteasome inhibition in relation to BMP signaling in gastric cancer cells. Results showed that proteasome inhibitor MG-132 significantly suppressed the proliferation and the colony-forming ability of gastric cancer TMK1 cells. In this connection, MG-132 activated BMP signaling, manifested as an increase in Smad1/5/8 phosphorylation and up-regulation of p21Waf1/Cip1 mRNA and protein expression. Knockdown of BMP receptor II by RNA interference abolished Smad1/5/8 phosphorylation, p21Waf1/Cip1 induction, and the inhibition of cell proliferation induced by MG-132. Further analysis revealed that MG-132 up-regulated the expression of BMP1 and BMP4 and suppressed the expression of Smad6. Knockdown of Smad6 also mimicked the effect of MG-132 on BMP signaling. Collectively, these findings suggest that inhibition of proteasome suppresses gastric cancer cell proliferation via activation of BMP signaling. This discovery may open up a novel therapeutic avenue to proteasome inhibitors for the management of gastric cancer.  相似文献   

15.
Transforming growth factor-beta1 is essential to maintain T cell homeostasis, as illustrated by multiorgan inflammation in mice deficient in TGF-beta1 signaling. Despite the physiological importance, the mechanisms that TGF-beta1 uses to regulate T cell expansion remain poorly understood. TGF-beta1 signals through transmembrane receptor serine/threonine kinases to activate multiple intracellular effector molecules, including the cytosolic signaling transducers of the Smad protein family. We used Smad3(-/-) mice to investigate a role for Smad3 in IL-2 production and proliferation in T cells. Targeted disruption of Smad3 abrogated TGF-beta1-mediated inhibition of anti-CD3 plus anti-CD28-induced steady state IL-2 mRNA and IL-2 protein production. CFSE labeling demonstrated that TGF-beta1 inhibited entry of wild-type anti-CD3 plus anti-CD28-stimulated cells into cycle cell, and this inhibition was greatly attenuated in Smad3(-/-) T cells. In contrast, disruption of Smad3 did not affect TGF-beta1-mediated inhibition of IL-2-induced proliferation. These results demonstrate that TGF-beta1 signals through Smad3-dependent and -independent pathways to inhibit T cell proliferation. The inability of TGF-beta1 to inhibit TCR-induced proliferation of Smad3(-/-) T cells suggests that IL-2 is not the primary stimulus driving expansion of anti-CD3 plus anti-CD28-stimulated T cells. Thus, we establish that TGF-beta1 signals through multiple pathways to suppress T cell proliferation.  相似文献   

16.
Transforming growth factor (TGF)-beta, bone morphogenetic protein (BMP), and interleukin-1beta activate TGF-beta-activated kinase 1 (TAK1), which lies upstream of the p38 MAPK, JNK, and NF-kappaB pathways. Our knowledge remains incomplete of TAK1 target genes, requirement for cooperative signaling, and capacity for shared or segregated ligand-dependent responses. We show that adenoviral overexpression of TAK1a in articular chondrocytes stimulated type II collagen protein synthesis 3-6-fold and mimicked the response to TGF-beta1 and BMP2. Both factors activated endogenous TAK1 and its activating protein, TAB1, and the collagen response was inhibited by dominant-negative TAK1a. Isoform-specific antibodies to TGF-beta blocked the response to endogenous and exogenous TGF-beta but not the response to TAK1a. Expression of Smad3 did not stimulate type II collagen synthesis or enhance that caused by TGF-beta1 or TAK1a, in contrast to its effects on its endogenous targets, CTGF and plasminogen-activated inhibitor-1. TAK1a, overexpressed alone and immunoprecipitated, phosphorylated MKK6 and stimulated the plasminogen-activated inhibitor-1 promoter following transient transfection; both effects were enhanced by TAB1 coexpression, but type II collagen synthesis was not. Stimulation by TAK1a or TGF-beta did not require increased Col2a1 mRNA, and TAK1 actually reduced Col2a1 mRNA in parallel with the cartilage markers, SRY-type HMG box 9 (Sox9) and aggrecan. Thus, TAK1 increased target gene expression (Col2a1) by translational or posttranslational mechanisms as a Smad3-independent response shared by TGF-beta1 and BMP2.  相似文献   

17.
Transforming growth factor-beta1 (TGF-beta1) and BMP-7 (bone morphogenetic protein-7; OP-1) play central, antagonistic roles in kidney fibrosis, a setting in which the expression of endoglin (CD105), an accessory TGF-beta type III receptor, is increased. So far, endoglin is known as a negative regulator of TGF-beta/ALK-5 signaling. Here we analyzed the effect of BMP-7 on TGF-beta1 signaling and the role of endoglin for both pathways in endoglin-deficient L(6)E(9) cells. In this myoblastic cell line, TGF-beta1 and BMPs are opposing cytokines, interfering with myogenic differentiation. Both induce specific target genes of which Id1 (for BMPs) and collagen I (for TGF-beta1) are two examples. TGF-beta1 activated two distinct type I receptors, ALK-5 and ALK-1, in these cells. Although the ALK-5/Smad3 signaling pathway mediated collagen I expression, ALK-1/Smad1/Smad5 signaling mediated a transient Id1 up-regulation. In contrast, BMP-7 exclusively activated Smad1/Smad5 resulting in a more prolonged Id1 expression. Although BMP-7 had no impact on collagen I abundance, it antagonized TGF-beta1-induced collagen I expression and (CAGA)(12)-MLP-Luc activity, effects that are mediated by the ALK-5/Smad3 pathway. Finally, we found that the transient overexpression of endoglin, previously shown to inhibit TGF-beta1-induced ALK-5/Smad3 signaling, enhanced the BMP-7/Smad1/Smad5 pathway.  相似文献   

18.
19.
Interleukin (IL)-6 is a proinflammatory cytokine assumed to participate in pancreatic fibrosis by activating pancreatic stellate cells (PSCs). Autocrine TGF-beta1 is to central in PSC functional regulation. In this study, we examined IL-6 secretion from culture-activated rat PSCs and its regulatory mechanism. Activated PSCs express and secrete IL-6. When anti-TGF-beta1 neutralizing antibody was added in the culture medium, IL-6 secretion from activated PSCs was inhibited, whereas exogenous TGF-beta1 added in the culture medium enhanced IL-6 expression and secretion by PSCs in a dose dependent manner. Infection of PSCs with an adenovirus expressing dominant-negative Smad2/3 attenuated basal and TGF-beta1-stimulated IL-6 expression and secretion of PSCs. We also demonstrated the reciprocal effect of PSCs-secreted IL-6 on autocrine TGF-beta1. Anti-IL-6 neutralizing antibody inhibited TGF-beta1 secretion from PSCs. Preincubation of cells with 10 nM PD98059, an extracellular signal-regulated kinase (ERK)-dependent pathway inhibitor, attenuated IL-6-enhanced TGF-beta1 expression and secretion of PSCs. In addition, IL-6 activated ERK in PSCs. These data indicate the existence of autocrine loop between IL-6 and TGF-beta1 through ERK- and Smad2/3-dependent pathways in activated PSCs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号