首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We observed the phenomenon of midday depression in the rate of tree root respiration. Diurnal changes in the root respiration rate of Quercus crispula and Chamaecyparis obtusa were measured under intact conditions using a closed chamber method and a soil respiration measurement system (LI-6400 with a root respiration chamber) in a forest in the foothills of Mt. Fuji. After the measurement of intact root respiration in the field, the root was excised and taken to the laboratory, and the temperature dependence on the respiration rate of the detached root was measured using an open-flow gas exchange system with an infrared gas analyzer (LI-6252). The measurement was conducted in September 2003, August and November 2005, and June 2006. Whereas the root respiration rate of both species under intact conditions increased with increasing soil and root temperatures from dawn to early morning, the respiration rate decreased around midday from 10:00 to 15:00 despite an increment of soil and root temperatures. There was no clear relationship between the intact root respiration rate and root temperature in either species, although the detached root respiration rate of both increased exponentially with the temperature. The amount of the CO2 efflux estimated using the temperature dependence of detached root respiration tended to underestimate the actual measurement value (intact respiration rate) by 20–50% in both species. These results indicate that evaluating midday depression in root respiration would be important for a more accurate estimation of the carbon cycle or net ecosystem production in forests.  相似文献   

2.
The course of water uptake and respiration rate rise in cotyledonsof Phaseolus vulgaris is divided into three phases. In the first phase lasting 10–16 hrs. respiration rateis controlled by water content; desiccation and reimbibitioninfluence cotyledon water content and respiration rate alikeand the changes are reversible; low temperature prevents watercontent rising above 50 per cent. and also limits respirationrate; both processes have Q10 near unity. The second phase lasting 3–8 hrs. is characterized bya pause in both water uptake and respiration rate rise. In the third phase respiration rate continues to rise untilthe fifth day, after which it falls steadily until eventuallythe cotyledons absciss. The period of rising respiration isone of metabolic activity, the rise having a high Q10 and beingprevented by low temperature. Desiccation at this stage is irreversible.  相似文献   

3.
Villar R  Held AA  Merino J 《Plant physiology》1995,107(2):421-427
Dark respiration in light as well as in dark was estimated for attached leaves of an evergreen (Heteromeles arbutifolia Ait.) and a deciduous (Lepechinia fragans Greene) shrub species using an open gas-exchange system. Dark respiration in light was estimated by the Laisk method. Respiration rates in the dark were always higher than in the light, indicating that light inhibited respiration in both species. The rates of respiration in the dark were higher in the leaves of the deciduous species than in the evergreen species. However, there were no significant differences in respiration rates in light between the species. Thus, the degree of inhibition of respiration by light was greater in the deciduous species (62%) than in the evergreen species (51%). Respiration in both the light and darkness decreased with increasing leaf age. However, because respiration in the light decreased faster with leaf age than respiration in darkness, the degree of inhibition of respiration by light increased with leaf age (from 36% in the youngest leaves to 81% in the mature leaves). This suggests that the rate of dark respiration in the light is related to the rate of biosynthetic processes. Dark respiration in the light decreased with increasing light intensity. Respiration both in the light and in the dark was dependent on leaf temperature. We concluded that respiration in light and respiration in darkness are tightly coupled, with variation in respiration in darkness accounting for more than 60% of the variation in respiration in light. Care must be taken when the relation between respiration in light and respiration in darkness is studied, because the relation varies with species, leaf age, and light intensity.  相似文献   

4.
The effects of aluminum (Al) exposure on intact root respiration of an Al-sensitive (Scout-66) and an Al-tolerant (Atlas-66) cultivar of Triticum aestivum were investigated. Exposure to a wide range of Al concentrations (0–900 μmol) for 4 days stimulated respiration along the energy-conserving cytochrome pathway in both cultivars and increased the ratio of maintenance respiration to growth respiration. The maximum rate of Scout-66 root respiration occurred after exposure to 100–200 μmol Al. Atlas-66 root respiration peaked after exposure to 300–400 μmol Al. Similarly, calculations of theoretical adenosine 5'-triphosphate (ATP) production indicated that maximum daily rate of ATP production also increased upon exposure to Al in both cultivars, with peak ATP production occurring during peak respiration. Maximum root respiration rates in both cultivars were related to the Al concentration that inhibited root growth. Temporal exposure to 200 μmol Al quickly stopped root growth and stimulated cytochrome pathway respiration in Scout-66 after 4 days. Atlas-66 root growth and respiration were unaffected by 200 μmol Al. These results suggest that Al exposure imposes a demand for additional metabolic energy. A model describing Al effects on root respiration is presented  相似文献   

5.
青冈种群的能量损耗   总被引:3,自引:1,他引:2  
1引言青冈(Cyclobalanopsisglauca)种群的能量损耗,是能量代谢中除能量积累外的另一部分。能量损耗过程是通过植物三大生理代谢活动中的呼吸和蒸腾两个作用而实现的。本文是继“青冈种群的能量积累”一文[1]的续篇,以便对青冈种群的能量代谢...  相似文献   

6.
东北地区落叶松人工林的根系呼吸   总被引:18,自引:0,他引:18  
落叶松根系呼吸速率在6~9月期间逐渐升高,8月达到高峰,之后明显下降.幼林根系呼吸速率和根系呼吸占土壤总呼吸的比例均高于成熟林.根系呼吸速率与根生物量呈线性相关,与土温呈指数相关,与土壤含水量无明显相关关系,但温度较高时,土壤湿度的增加能促进根系呼吸.成熟林和幼林根系呼吸的Q10值分别为5.56和4.17.  相似文献   

7.
In past studies, it was hypothesized that reductions in chloroplast isoprene emissions at high atmospheric CO(2) concentrations were caused by competition between cytosolic and mitochondrial processes for the same substrate, possibly phosphoenolpyruvate (PEP). We conducted field and laboratory experiments using leaves of white poplar (Populus alba L.) to identify whether an inverse relationship occurs between the dark respiration rate (a mitochondrial process) and the isoprene emission rate. Field experiments that were carried out in a free-air CO(2)-enriched (FACE) facility showed no clear effect of elevated CO(2) on either isoprene emission rate or respiration rate by leaves. In young, not yet fully expanded leaves, low isoprene emission and high dark respiration rates were measured in both ambient and elevated CO(2). In these leaves, isoprene emission was inversely correlated with dark respiration. It is possible to interpret from these results that, in young leaves, high rates of growth respiration compete with isoprene biosynthesis for the same substrate. However, it is also possible that the negative correlation reflects the contrasting reductions in growth respiration and increases in expression of the enzyme isoprene synthase at this final stage of leaf maturation. In contrast to our observations on young leaves, respiration rate and isoprene emission rate were positively correlated in older, fully expanded leaves (8 and 11 from apex). A positive correlation was also found between respiration rate and isoprene emission rate when these parameters were modulated using different ozone exposure, growth light intensity, growth temperature and exposure to different leaf temperatures in laboratory experiments. These data show that competition for substrate between isoprene biosynthesis and leaf respiration does not determine the rate of isoprene emission in most circumstances that affect both processes. A negative correlation was observed across all experiments between isoprene emission rate and the activity of phosphoenolpyruvate carboxylase (PEPc), a cytosolic enzyme that competes with isoprene biosynthesis for substrate. The cytosolic metabolite, PEP, occurs at a metabolic branch point from which substrate flows into three processes: (1) the production of pyruvate for mitochondrial respiration, (2) the production of oxaloacetate (OAA) by PEPc for anabolic support of mitochondrial respiration and (3) transport into the chloroplast to support chloroplastic demands for pyruvate, including isoprenoid biosynthesis. The results of our observations suggest that only the second process competes for substrate with isoprenoid synthesis, while the partitioning of PEP between mitochondrial respiration and chloroplast isoprenoid biosynthesis is controlled in a way that retains balance in substrate demand.  相似文献   

8.
Mitochondria isolated from shoots of 2 days, light- and dark-grown winter wheat (Triticum aestivum L. cv. Rideau) seedlings oxidize alpha-ketoglutarate and l-malate with good respiratory control and ADP: O ratios. The efficiency of oxidative phosphorylation, and respiratory control are both reduced significantly when succinate or NADH is employed as substrate. Respiratory control values and ADP: O ratios show a general decline in mitochondria from seedlings of increasing age, whether grown in light or dark. In light-grown seedlings, the decrease in respiratory control with aging is due principally to a decrease in the rate of state 3 respiration, while in dark-grown material, the decrease appears to be due mainly to an increased rate of state 4 respiration. In both light- and dark-grown seedlings, oxygen consumption during state 3 respiration is severely inhibited by oligomycin. During state 4 respiration, 2,4-dinitrophenol stimulates oxygen uptake to a level approximately two-thirds the normal ADP-stimulated rate.  相似文献   

9.
不同年龄兴安落叶松树干呼吸及其与环境因子关系的研究   总被引:8,自引:0,他引:8  
采用动态红外气体分析法研究了两个不同年龄兴安落叶松(Larix gmelinii Rupr.)人工林内落叶松树干呼吸速率的季节变化,并分析了树干呼吸速率与环境因子的关系.两个年龄落叶松树干呼吸速率均是从春季到夏季逐渐升高,高峰值出现在7月(成熟林)和8月份(幼林),之后明显下降.幼林落叶松的树干呼吸速率(变化范围是1.99~6.15 μmol*m-2*s-1)显著高于成熟林(变化范围是1.52~3.38 μmol*m-2*s-1)(P<0.05).树干温度对树干呼吸影响较大,树干呼吸速率与树干温度呈指数相关关系;成熟林和幼林树干呼吸的Q10值分别为1.96和3.44.当空气相对湿度较低时,树干呼吸速率与其关系无明显规律,但当空气相对湿度很高时,能大大促进树干的呼吸作用.  相似文献   

10.
Changes in nitrogen content and in respiration rate have beeninvestigated in cell suspension cultures of Acer pseudoplatanus.Nitrogen content and rate of oxygen uptake rise sharply earlyin the period of culture, during which there is no significantincrease in dry weight and only a small increase in cell number.During the subsequent period of rapid cell division there isa decline in both respiration rate and nitrogen content permg dry weight or per cell. Pronounced rises in respiration rateand cell nitrogen therefore occur prior to the period of rapidcell division. The strong correlation between nitrogen contentand oxygen consumption suggests that the respiration rate ismuch more closely related to changes in protein content thanto changes in cell number, dry weight, or packed-cell volume.  相似文献   

11.
Ethylene treatment of carrot roots elicits a developmental program encompassing an increase in respiration rate and changes in gene expression. Both phenomena are potentiated when ethylene is administered in O2. Our previous studies showed that both respiration and a number of ethylene specific mRNAs increase together in response to ethylene through some 21 hours, whereas thereafter respiration continues to rise, while the level of induced mRNAs drops. Herein we ask whether an experimentally effected drop in the respiration rate within the first 21 hours caused by the withdrawal of ethylene, or substitution of air for O2 in the continued presence of ethylene, is linked to a drop in the level of ethylene-induced mRNA. Quantitative estimation of two ethylene evoked mRNAs by dot blot hybridization with appropriate cDNA clones has shown that under the specified treatment the induced mRNA levels remain constant while the respiration rate drops, suggesting that gene expression, as reflected in induced mRNA levels, and respiration rate are separately regulated facets of the ethylene response.  相似文献   

12.
寒温带岛状林沼泽土壤呼吸速率和季节变化   总被引:1,自引:0,他引:1  
刘霞  胡海清  李为海  孙程坤  黄超  赵希宽  孙龙 《生态学报》2014,34(24):7356-7364
2011年生长季内利用静态箱-气相色谱法,研究了寒温带典型湿地白桦(Betula platyphylla)岛状林沼泽、兴安落叶松(Larix gmelinii)岛状林沼泽土壤呼吸速率的季节动态及其主要环境因子,利用壕沟隔断法对土壤呼吸各组分间的差异进行研究。结果表明:生长季白桦和兴安落叶松岛状林沼泽土壤呼吸速率具有明显的季节性规律,土壤呼吸总速率分别为368.60和312.46 mg m-2h-1,异养呼吸速率分别为300.57和215.70 mg m-2h-1,占土壤呼吸总速率的81.5%和69.0%;自养呼吸速率为68.03和96.76 mg m-2h-1,占土壤呼吸总速率的18.5%和31.0%。不同处理条件下的土壤呼吸在季节变化上表现基本一致,高峰期都发生在夏季;土壤呼吸与温度呈极显著相关性,但与土壤湿度的相关性较差。生长季白桦和兴安落叶松岛状林沼泽土壤呼吸总量分别为12.64和10.61 t/hm2。  相似文献   

13.
The rates of respiration and of photosynthesis of tobacco leaves infected with potato virus X were not affected until the leaves showed symptoms; the respiration rate was then increased by more than 30% and the photosynthesis rate decreased by 20%. When local lesions appeared on the leaves of Nicotiana glutinosa infected with tobacco mosaic virus, but not before, the respiration rate was increased by an amount, up to 30%, that varied with the number of lesions. The photosynthesis rate was decreased by 20%, but there was no effect on photosynthesis or respiration until symptoms appeared. These results differ from those previously reported for tobacco leaves infected with tobacco mosaic virus, in which both respiration and photosynthesis were affected within 1 hr. of inoculation. The validity of extrapolating arguments based on the results obtained with other combinations to this commonly used combination and vice-versa is questioned.  相似文献   

14.
Heart and respiration rates were measured in eight 6-week-old, White Rock chicks at different ambient temperatures: 24--26 degrees C (neutral), 6.5--8.5 degrees C (low) and 3,95--43.5 degrees C (high). The animals were exposed to these temperatures for 10 min. In both groups the low ambient temperature did not influence the respiration rate, whereas the high temperature caused a significant increase of the respiration rates both in the conscious and anaesthetized birds. In both groups no significant changes in the heart rate at different temperatures were found. Statistically significant differences in the heart and respiration rates between the conscious and anaesthetized chickens were noted only at the low environmental temperature.  相似文献   

15.
Laboratory studies of respiration in the sow bug, Porcellio scaber, reveal that respiration rates are related to genetic variation at the lactate dehydrogenase (Ldh) locus. In population samples taken from Burlington, North Carolina and Pacific Grove, California, respiration rates differed among Ldh genotypes, but not among genotypes at the other enzyme polymorphisms. In both population samples, the respiration rate of the common Ldh homozygote exceeded the respiration rate of the heterozygote by more than 50 per cent. The differences in respiration rates are consistent with previously reported viability differentials at the Ldh polymorphism.  相似文献   

16.
氮添加对沙质草地微生物呼吸与根系呼吸的影响   总被引:1,自引:1,他引:0  
土壤呼吸可以细化为根系呼吸和微生物呼吸,二者对氮添加的响应有所不同.本文以科尔沁沙质草地为研究对象,探讨氮添加对土壤CO2排放的影响,并细化为微生物呼吸和根系呼吸的响应特征.结果表明: 在观测期(5—10月),土壤呼吸、微生物呼吸月动态均呈先升高后降低的趋势;微生物呼吸是土壤呼吸的主要贡献者,占82.6%;观测期内根系呼吸贡献率随月份而变化,根系呼吸贡献率两个峰值分别出现在5月(占49.4%)和8月(占41.9%),6个月的平均贡献率为17.4%;在10 ℃条件下,根系呼吸较微生物呼吸对氮添加的响应更为敏感,微生物呼吸速率在氮添加后降低了3.9%,而根系呼吸降低了17.7%;氮添加提高了土壤呼吸、微生物呼吸温度敏感性Q10值,也提高了二者对土壤水分变化的敏感程度.  相似文献   

17.
桃芽自然休眠与两条主要电子传递途径变化的关系   总被引:5,自引:0,他引:5  
花芽和叶芽总呼吸速率最低点均与自然休眠进程有关,第一个与自然休眠的起始时间相对应,最后一个则与自然休眠解除期相对应;细胞色素途径抑制剂氰化钾(KCN)对休眠芽的呼吸起部分抑制作用;抗氰呼吸抑制剂水杨基氧肟酸(salicylhydroxamic acid,SHAM)对总呼吸速率的效应随休眠进程而变化,休眠前期起促进作用,随休眠进程其促进作用逐渐减弱,从可调控休眠期(对外源措施敏感期)起转入抑制效应;KCN+SHAM混合剂对总呼吸速率的效应与SHAM单独使用的效果相似,但其时总呼吸速率促进作用的起始点和结束点均较SHAM单独使用旱7d左右。  相似文献   

18.
The rate of respiration of isolated mitochondria was set at different values by addition of either oligomycin or an ADP-regenerating system (glucose and different amounts of hexokinase). We measured the relationship between respiration rate and membrane potential as respiration was titrated by the addition of malonate under each condition. We used the flux control summation and connectivity theorems and the branching theorem of metabolic control theory to calculate the control over respiration rate exerted by the respiratory chain (and associated reactions), phosphorylating system (and associated reactions) and proton leak at each respiration rate. The analysis also yielded the flux control coefficients of these three reactions over phosphorylation rate and proton leak rate and their concentration control coefficients over protonmotive force. We found that respiration rate was controlled largely by the proton leak under non-phosphorylating conditions, by the phosphorylating system at intermediate rates and by both the phosphorylating system and the respiratory chain in state 3. The rate of phosphorylation was controlled largely by the phosphorylating system itself in state 4 and at intermediate rates, while state 3 control was shared between the phosphorylating system and the respiratory chain; the proton leak had insignificant control. In all states the phosphorylating system had large negative control over the proton leak; the chain and the proton leak both had large positive control coefficients. The protonmotive force was controlled by the chain and by the phosphorylating system; the proton leak had little control.  相似文献   

19.
The objectives of this study were to determine the acclimation of loblolly pine (Pinus taeda L.) foliar respiration to different night-time low temperatures, daytime high temperatures, and daily mean temperatures, and then to use the responses of temperature acclimation to various temperature regimes to predict acclimation under fluctuating temperatures. Experiments were conducted on two-year-old seedlings in growth chambers using different combinations of day and night-time temperatures. The first experiment exposed trees to 22/22, 29/22, 22/15, and 29/15 degrees C day/night (d/n). When measured at a common temperature (15, 22 or 29 degrees C), respiration rates were lower for trees exposed to higher treatment temperatures and acclimation was influenced by both day and night-time temperature. However, the extent of acclimation did not relate to mean temperature, i.e. respiration rates measured at a common temperature ranked as follows for seedlings exposed to different temperature regimes, 22/15>22/22>29/15 congruent with29/22 degrees C d/n. Rather, acclimation of foliar respiration was linearly related to mean daily respiration rate, where mean daily respiration rate is the average of the respiration rates measured at the day and night-time treatment temperatures. The discrepancy between mean daily respiration rate and mean daily temperature occurred because respiration increased exponentially with increasing temperature. In a second experiment, the same seedlings were exposed to 22/22, 15/15, 25.5/18.5, and 25.5/15 degrees C d/n to test the relationship between mean daily respiration rate and acclimation. As in the first experiment, acclimation was linearly related to mean daily respiration rate. The concept of effective acclimation temperature, which is the temperature at which the mean daily respiration rate occurs, was derived from these results as a means to predict the extent that foliar respiration acclimates to treatment temperature.  相似文献   

20.
Sapwood respiration often declines towards the sapwood/heartwood boundary, but it is not known if parenchyma metabolic activity declines with cell age. We measured sapwood respiration in five temperate species (sapwood age range of 5-64 years) and expressed respiration on a live cell basis by quantifying living parenchyma. We found no effect of parenchyma age on respiration in two conifers (Pinus strobus, Tsuga canadensis), both of which had significant amounts of dead parenchyma in the sapwood. In angiosperms (Acer rubrum, Fraxinus americana, Quercus rubra), both bulk tissue and live cell respiration were reduced by about one-half in the oldest relative to the youngest sapwood, and all sapwood parenchyma remained alive. Conifers and angiosperms had similar bulk tissue respiration despite a smaller proportion of parenchyma in conifers (5% versus 15-25% in angiosperms), such that conifer parenchyma respired at rates about three times those of angiosperms. The fact that 5-year-old parenchyma cells respired at the same rate as 25-year-old cells in conifers suggests that there is no inherent or intrinsic decline in respiration as a result of cellular ageing. In contrast, it is not known whether differences observed in cellular respiration rates of angiosperms are a function of age per se, or whether active regulation of metabolic rate or positional effects (e.g. proximity to resources and/or hormones) could be the cause of reduced respiration in older sapwood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号