首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nature's best-known example of colorful, changeable, and diverse skin patterning is found in cephalopods. Color and pattern changes in squid skin are mediated by the action of thousands of pigmented chromatophore organs in combination with subjacent light-reflecting iridophore cells. Chromatophores (brown, red, yellow pigment) are innervated directly by the brain and can quickly expand and retract over underlying iridophore cells (red, orange, yellow, green, blue iridescence). Here, we present the first spectral account of the colors that are produced by the interaction between chromatophores and iridophores in squid (Loligo pealeii). Using a spectrometer, we have acquired highly focused reflectance measurements of chromatophores, iridophores, and the quality and quantity of light reflected when both interact. Results indicate that the light reflected from iridophores can be filtered by the chromatophores, enhancing their appearance. We have also measured polarization aspects of iridophores and chromatophores and show that, whereas structurally reflecting iridophores polarize light at certain angles, pigmentary chromatophores do not. We have further measured the reflectance change that iridophores undergo during physiological activity, from "off" to various degrees of "on", revealing specifically the way that colors shift from the longer end (infra-red and red) to the shorter (blue) end of the spectrum. By demonstrating that three color classes of pigments, combined with a single type of reflective cell, produce colors that envelop the whole of the visible spectrum, this study provides an insight into the optical mechanisms employed by the elaborate skin of cephalopods to give the extreme diversity that enables their dynamic camouflage and signaling.  相似文献   

2.
The chromatophores of cephalopods differ fundamentally from those of other animals: they are neuromuscular organs rather than cells and are not controlled hormonally. They constitute a unique motor system that operates upon the environment without applying any force to it. Each chromatophore organ comprises an elastic sacculus containing pigment, to which is attached a set of obliquely striated radial muscles, each with its nerves and glia. When excited the muscles contract, expanding the chromatophore; when they relax, energy stored in the elastic sacculus retracts it. The physiology and pharmacology of the chromatophore nerves and muscles of loliginid squids are discussed in detail. Attention is drawn to the multiple innervation of dorsal mantle chromatophores, of crucial importance in pattern generation. The size and density of the chromatophores varies according to habit and lifestyle. Differently coloured chromatophores are distributed precisely with respect to each other, and to reflecting structures beneath them. Some of the rules for establishing this exact arrangement have been elucidated by ontogenetic studies. The chromatophores are not innervated uniformly: specific nerve fibres innervate groups of chromatophores within the fixed, morphological array, producing 'physiological units' expressed as visible 'chromatomotor fields'. The chromatophores are controlled by a set of lobes in the brain organized hierarchically. At the highest level, the optic lobes, acting largely on visual information, select specific motor programmes (i.e. body patterns); at the lowest level, motoneurons in the chromatophore lobes execute the programmes, their activity or inactivity producing the patterning seen in the skin. In Octopus vulgaris there are over half a million neurons in the chromatophore lobes, and receptors for all the classical neurotransmitters are present, different transmitters being used to activate (or inhibit) the different colour classes of chromatophore motoneurons. A detailed understanding of the way in which the brain controls body patterning still eludes us: the entire system apparently operates without feedback, visual or proprioceptive. The gross appearance of a cephalopod is termed its body pattern. This comprises a number of components, made up of several units, which in turn contains many elements: the chromatophores themselves and also reflecting cells and skin muscles. Neural control of the chromatophores enables a cephalopod to change its appearance almost instantaneously, a key feature in some escape behaviours and during agonistic signalling. Equally important, it also enables them to generate the discrete patterns so essential for camouflage or for signalling. The primary function of the chromatophores is camouflage. They are used to match the brightness of the background and to produce components that help the animal achieve general resemblance to the substrate or break up the body's outline. Because the chromatophores are neurally controlled an individual can, at any moment, select and exhibit one particular body pattern out of many. Such rapid neural polymorphism ('polyphenism') may hinder search-image formation by predators. Another function of the chromatophores is communication. Intraspecific signalling is well documented in several inshore species, and interspecific signalling, using ancient, highly conserved patterns, is also widespread. Neurally controlled chromatophores lend themselves supremely well to communication, allowing rapid, finely graded and bilateral signalling.  相似文献   

3.
The colours of the European tree frog, Hvlu urhorea , depend on three types of chromatophores: in dermo-epidermal direction melanophores, iridophores, and xanthophores. The ability ofthis species to assume a wide range ofcolours implies that very extensive changes in the chromatophores take place, which in turn require control by several regulating factors. The responses of the different chromatophore types to hormones with known melanophore-affecting abilities (α-MSH, β-MSH, ACTH, melatonin) were tested in an in vitro system (freshly explanted skin) using reflectance microspectrophotometry, light microscopy and time-lapse cinemicrography.
α-MSH, β-MSH and ACTH all induce a rapid dispersion of melanosomes during the 10 min after addition. The degree of pigment dispersion induced by ACTH is slightly less than after stimulation with α-MSH or β-MSH.
The iridophores react to MSH or ACTH treatment with a contraction of the entire cell (causing a reduction in reflecting area), and a change in orientation of the platelets, causing a decrease in selective reflectance. The iridophores appear to be especially sensitive to ACTH. A very striking feature of the iridophores when studied with time-lapse cinematography is their strong pulsations (approx. once per minute).
The xanthophores react to MSH and ACTH with a contraction. These cells appear to be sensitive to β-MSH in particular.
Melatonin strongly counteracts the effects of α-MSH, β-MSH and ACTH on all chromatophores.
These studies confirm the dynamic nature not only of the melanophores, but also of the iridophores and xanthophores, as pointed out by Schmidt (1920) and Nielsen (1978a). Furthermore the differences in the time course of the stimulation of the different types of chromatophores by various hormones may provide an experimental basis for the explanation of colour changes in Hyfa arboreu.  相似文献   

4.
Direct reception of light by chromatophores of lower vertebrates   总被引:3,自引:0,他引:3  
Rapid color changes of lower vertebrates are caused by the motile activities of pigment cells (chromatophores) present in the skin tissue. Chromatophore motility is generally regulated by neural and/or by endocrine systems. However, in some cases, light also induces pigment aggregation or dispersion directly, which suggests the existence of visual pigments in chromatophores. In fact, some opsins, including melanopsin, have been identified. This article reviews light-sensitive chromatophores of lower vertebrates. Photoreceptive molecules (visual pigments) and signal transduction of light via a GTP-binding protein (G protein) are also discussed.  相似文献   

5.
Physiological color change is important for background matching, thermoregulation as well as signaling and is in vertebrates mediated by synchronous intracellular transport of pigmented organelles in chromatophores. We describe functions of and animal situations where color change occurs. A summary of endogenous and external factors that regulate this color change in fish and amphibians is provided, with special emphasis on extracellular stimuli. We describe not only color change in skin, but also highlight studies on color change that occurs using chromatophores in other areas such as iris and on the inside of the body. In addition, we discuss the growing field that applies melanophores and skin color in toxicology and as biosensors, and point out research areas with future potential.  相似文献   

6.
Suzuki M  Kimura T  Ogawa H  Hotta K  Oka K 《PloS one》2011,6(4):e18244
Squid can rapidly change the chromatic patterns on their body. The patterns are created by the expansion and retraction of chromatophores. The chromatophore consists of a central pigment-containing cell surrounded by radial muscles that are controlled by motor neurons located in the central nervous system (CNS). In this study we used semi-intact squid (Sepioteuthis lessoniana) displaying centrally controlled natural patterns to analyze spatial and temporal activities of chromatophores located on the dorsal mantle skin. We found that chromatophores oscillated with miniature expansions/retractions at various frequencies, even when the chromatic patterns appear macroscopically stable. The frequencies of this miniature oscillation differed between "feature" and "background" areas of chromatic patterns. Higher frequencies occurred in feature areas, whereas lower frequencies were detected in background areas. We also observed synchronization of the oscillation during chromatic pattern expression. The expansion size of chromatophores oscillating at high frequency correlated with the number of synchronized chromatophores but not the oscillation frequency. Miniature oscillations were not observed in denervated chromatophores. These results suggest that miniature oscillations of chromatophores are driven by motor neuronal activities in the CNS and that frequency and synchrony of this oscillation determine the chromatic pattern and the expansion size, respectively.  相似文献   

7.
Summary Hyperolius viridiflavus nitidulus inhabits parts of the seasonally very hot and dry West African savanna. During the long lasting dry season, the small frog is sitting unhidden on mostly dry plants and has to deal with high solar radiation load (SRL), evaporative water loss (EWL) and small energy reserves. It seems to be very badly equipped to survive such harsh climatic conditions (unfavorable surface to volume ratio, very limited capacity to store energy and water). Therefore, it must have developed extraordinary efficient mechanisms to solve the mentioned problems. Some of these mechanisms are to be looked for within the skin of the animal (e.g. protection against fast desiccation, deleterious effects of UV radiation and overheating). The morphology of the wet season skin is, in most aspects, that of a normal anuran skin. It differs in the organization of the processes of the melanophores and in the arrangement of the chromatophores in the stratum spongiosum, forming no Dermal Chromatophore Unit. During the adaptation to dry season conditions the number of iridophores in dorsal and ventral skin is increased 4–6 times compared to wet season skin. This increase is accompanied by a very conspicuous change of the wet season color pattern. Now, at air temperatures below 35° C the color becomes brownish white or grey and changes to a brilliant white at air temperatures near and over 40° C. Thus, in dry season state the frog retains its ability for rapid color change. In wet season state the platelets of the iridophores are irregularly distributed. In dry season state many platelets become arranged almost parallel to the surface. These purine crystals probably act as quarter-wave-length interference reflectors, reducing SRL by reflecting a considerable amount of the radiated energy input.EWL is as low as that of much larger xeric reptilians. The impermeability of the skin seems to be the result of several mechanisms (ground substance, iridophores, lipids, mucus) supplementing each other.The light red skin at the pelvic region and inner sides of the limbs is specialized for rapid uptake of water allowing the frog to replenish the unavoidable EWL by using single drops of dew or rain, available for only very short periods.  相似文献   

8.
The camouflaging abilities of cuttlefish (Sepia officinalis) are remarkable and well known. It is commonly believed that cuttlefish-although color blind-actively match various colors of their immediate surroundings, yet no quantitative data support this notion. We assembled several natural substrates chosen to evoke the three basic types of camouflaged body patterns that cuttlefish express (uniform/stipple, mottle, and disruptive) and measured the spectral reflectance of the camouflaged pattern and the respective background using a fiber optic spectrometer. We demonstrate that the reflectance spectra of cuttlefish skin patterns correlate closely with the spectra of these natural substrates. Since pigmented chromatophores play a key role in cephalopod color change, we also measured the spectral reflectance of individual cuttlefish chromatophores under the microscope, and confirm the results from a previous publication reporting three distinct colors of chromatophores (yellow, orange, and dark brown) on the animals' dorsal side. Taken together, our results show that the color variations in substrate and animal skin can be very similar and that this may facilitate color match on natural substrates in the absence of color vision.  相似文献   

9.
Chromatium vinosum, strain D, exhibits two extreme modifications of near infra-red absorption spectra when growing heterotrophically at temperatures either above or below 36.5° C. Chromatophores isolated from cells grown either at 33° C (33° C chromatophores) or 39° C (39° C chromatophores) were analyzed for structural and functional parameters. For this the following chromatophore subunits were solubilized and characterized; (i) a fraction absorbing maximally at 800 nm with shoulders at 820 and 850 nm when derived from 33° C chromatophores or absorbing at 800 nm and 850 nm when derived from 39° C chromatophores; (ii) reaction center-light harvesting bacteriochlorophyll complexes with identical spectra and ratios of reaction center to light harvesting bacteriochlorophyll (1:45); (iii) complexes containing cytochromes, (IV) reaction center bacteriochlorophyll complexes. Irrespective of their origins the fractions exhibited qualitatively identical protein patterns as analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis.Protein patterns of 33° C and 39° C chromatophores revealed an identical ratio of proteins of reaction centers to proteins of cytochrome preparations. But the ratio of proteins of reaction centers to proteins of light harvesting moieties was 1.9 times higher in 39° C chromatophores than in 33° C chromatophores. Correspondingly, the ratio of reaction center per total bacteriochlorophyll was 1.7 times higher in 39° C chromatophores (1:110) then in 33° C chromatophores (1:190). Activities of photophosphorylation were 0.73 and 0.56 moles of ATP per moles of total bacteriochlorophyll per min for 33° C and 39° C chromatophores, respectively. Activities of sulfide oxidation in the light by whole cells were 2.37 and 1.96 moles of sulfide per mole of total bacteriochlorophyll per min for 33° C and 39° C cells. Accordingly, on a reaction center basis activities are significantly lower after growth of the organisms at 39° C than at 33° C. The data indicate that spectral changes in Chromatium vinosum represent changes in the ratio of reaction center to light harvesting bacteriochlorophyll accompanied by a variation of the absorption spectra of the latter bacteriochlorophyll moiety. Concomitantly, activities coupled to the photochemical apparatus were subjected to variations.Abbreviations Bchl Bacteriochlorophyll - LDAO lauryl dimethylamine oxide - SDS sodium dodecyl sulfate  相似文献   

10.
This paper reviews evidence for the presence of pteridines in iridophores, leucophores, and xanthophores in a wide variety of vertebrate chromatophores, and argues that the chemical and functional distinction between pterinosomes and reflecting platelets is not as clear-cut as previously believed. Observations indicate that: (1) Pteridines may, either alone or in conjunction with purines, form pigment granules that reflect light, (2) these pigment granules are highly variable ranging from fibrous pterinosomes to typical reflecting platelets and may be colored, reflect white light, or be iridescent, and (3) many “leucophores” probably contain typical pterinosomes and presumed associated colorless pteridines and are therefore more closely related to erythrophores and xanthophores than to iridophores with which they are usually classified. We propose that the classification of pigment cells should be modified to reflect these facts.  相似文献   

11.
Specimens of Octopus vulgaris (Cuvier) immersed in cold sea-water (4°C) exhibit a flashing display of brown chromatophores that we call "brown spots". The spots, which flashed approximately once every three seconds, are distributed over the dorsal skin of the head, mantle and arms and correspond mainly with the distribution of the white spots and white streaks previously described, and appear to act as a screen for the patches composing the white spots. Flashing brown spots could be evoked in animals with the supraoesophageal brain removed but not in animals with local denervation of the skin.
The precise site of action of the cold is unknown but it is proposed that the nerves supplying the brown spot units are normally tonically inhibited and that the cooling process removes this inhibition and allows the spots to flash. They are particularly useful for the in vivo study of the control of chromatophores because they can be reliably activated and isolated from responses of other chromatophores.  相似文献   

12.
It is now well established that ultraviolet radiation (UVR) may have detrimental, even lethal effects on zooplankters. Unlike copepods and other holoplankters, which may avoid UVR by undergoing diel vertical migration, larvae of many decapod crustaceans and fishes recruit to adult populations by remaining in near-surface waters during the daytime. Consequently, they are exposed to biologically damaging UVR. A possible adaptation in these larvae is chromatophores, which may absorb UVR by expanding in high light environments. The supposition is that expanded chromatophores more effectively absorb UVR, but there is some fitness cost to having expanded chromatophores in low light environments. Since the ratio of visible light to UVR in the water column changes as result of season, latitude, dissolved organic carbon, and a host of other factors, the benefits of chromatophores would be maximized if they responded specifically to UVR. The purpose of this study was to determine whether the chromatophores of crab postlarvae (megalopae) could expand in response to UVR. Megalopae of two species of crabs (Cancer oregonensis, Telmessus cheiragonus) were collected from large surface-swarms during mid-day as they recruited onshore in early May 1998 at Friday Harbor, Washington, USA. Dark-adapted megalopae (held in the dark for 8 h before experiments) were exposed to UVR (UVBR+UVAR, 280-400 nm), UVAR (320-400 nm), and light (400-1700 nm) in the laboratory. Chromatophores expanded after only minutes of exposure to UVR, UVAR, and light for both species. Two alternative hypotheses may explain why both harmful and comparatively benign wavelengths stimulated chromatophores to rapidly expand. First, larvae may not distinguish among different wavelengths, which, if true, would increase the vulnerability of these larvae to intensifying UVBR due to ozone depletion. Second, chromatophores have functions other than blocking UVR, such as crypsis and thermoregulation, and must respond to light for these other functions to operate.  相似文献   

13.
Solar radiation is a crucial factor governing biological processes in polar habitats. Containing harmful ultraviolet radiation (UVR), it can pose a threat for organisms inhabiting surface waters of polar oceans. The present study investigated the physiological color change in the obligate sympagic amphipod Apherusa glacialis mediated by red-brown chromatophores, which cover the body and internal organs of the species. Short-term experimental exposure to photosynthetic active radiation (PAR) led to pigment dispersal in the chromatophores, resulting in darkening of the animal. Irradiation in the PAR range (400–700 nm) was identified as the main trigger with high light intensities evoking marked responses within 15 min. After exposure to high PAR, darkness led to a slow aggregation of pigments in the cell center after 24 h. Experiments revealed no statistically significant change in coloration of the animal when exposed to different background colors nor UV radiation. Our results point to a dose- and time-dependent photoprotective role of chromatophores in the amphipod, presuming a shielding effect from harmful radiation in a dispersed state. The reversible nature of the physiological color change enables the species to adapt dynamically to prevailing light conditions and thereby minimize the cost of increased conspicuousness toward visually hunting predators.  相似文献   

14.
Microscopic observation of the skin of Plestiodon lizards, which have body stripes and blue tail coloration, identified epidermal melanophores and three types of dermal chromatophores: xanthophores, iridophores, and melanophores. There was a vertical combination of these pigment cells, with xanthophores in the uppermost layer, iridophores in the intermediate layer, and melanophores in the basal layer, which varied according to the skin coloration. Skin with yellowish-white or brown coloration had an identical vertical order of xanthophores, iridophores, and melanophores, but yellowish-white skin had a thicker layer of iridophores and a thinner layer of melanophores than did brown skin. The thickness of the iridophore layer was proportional to the number of reflecting platelets within each iridophore. Skin showing green coloration also had three layers of dermal chromatophores, but the vertical order of xanthophores and iridophores was frequently reversed. Skin showing blue color had iridophores above the melanophores. In addition, the thickness of reflecting platelets in the blue tail was less than in yellowish-white or brown areas of the body. Skin with black coloration had only melanophores.  相似文献   

15.
Autofluorescent chromatophores were detected in 17 out of 71 zooxanthellate coral species studied. Chromatophores are localized either in the oral gastrodermic (endoderm) or oral epidermis (ectoderm). The pigment granules within the chromatophores (0.5–1.0 m in diameter) show a brilliant light-blue/turquoise autofluorescence (emission between 430 and 500 nm) after excitation with light of 365–410 nm. All species where the autofluorescent gastrodermal chromatophores form a compact layer, embedding the zooxanthellae, belong to the family Agariciidae. In contrast, some species of the Faviidae (2), Pectiniidae (1) and Mussidae (1) were found to have distinct, autofluorescent chromatophores in the oral epidermis. Autofluorescent pigments of the host may enhance photosynthesis of the symbionts as in Leptoseris fragilis. Short wavelength irradiance, less suitable for photosynthesis, is transformed by host pigments into longer wavelengths which are photosynthetically more effective. Thus, host species possessing autofluorescent chromatophores might have selective advantage over non-fluorescent species, and have the potential to survive in light-limited habitats. Furthermore, the daily period of photosynthesis is extended, thus increasing the energy supply and enhancing the deposition of skeletal carbonate. The absence or presence of chromatophores may have value in taxonomy and could putatively be of plalaeontological and palaeoecological interest.  相似文献   

16.
C J Stoll 《Malacologia》1979,18(1-2):459-463
Extraocular photosensitivity in Aplysia fasciata was studied in the skin and in the central nervous system (CNS). Local illumination causes contractions of the muscles of the body wall, which are obviously mediated by the peripheral nervous system (PNS). Afferent sensory activity is supposedly mainly dependent on stretch reception. Light-induced peripheral reflexes habituate after repetitive stimulation in preparations in which the CNS is present. In preparations without CNS light-induced contractions are remarkably stronger and do not habituate after repititive stimulation. Central responses to peripheral stimulation could be evoked by both "light on" and "light off" stimulation, indicating that 2 types of photosensitive elements are present in the periphery. Observations on isolated CNS-preparations revealed that in the central ganglia photoreceptive elements are also present. Here, too, elements responding to the onset as well as elements responding to the offset of light have been detected.  相似文献   

17.
In the tadpole of the tree frog Hyla arborea, the color of the dorsal skin was dark brown. Dermal melanophores, xanthophores, and iridophores were scattered randomly under the subepidermal collagen layer (SCL). After metamorphosis, the dorsal color of the animal changed to green and the animal acquired the ability of dramatic color change, demonstrating that the dermal chromatophore unit (DCU) was formed at metamorphosis. Fibroblasts invaded the SCL and divided it into two parts: the stratum spongiosum (SS) and the stratum compactum (SC). The activity of collagenase increased at metamorphosis. The fibroblasts appeared to dissolve the collagen matrix as they invaded the SCL. Then, three types of chromatophores migrated through the SCL and the DCU was formed in the SS. The mechanism how the three types of chromatophores were organized into a DCU is uncertain, but different migration rates of the three chromatophore types may be a factor that determines the position of the chromatophores in the DCU. Almost an equal number of each chromatophore type is necessary to form the DCUs. However, the number of dermal melanophores in the tadpoles was less than the number of xanthophores and iridophores. It was suggested that epidermal melanophores migrated to the dermis at metamorphosis and developed into dermal melanophores. This change may account for smaller number of dermal melanophores available to form the DCUs.  相似文献   

18.
The state of contraction of crustacean chromatophores is knownto be dependent on a variety of hormones secreted by variousparts of the nervous system. For the fiddler crab the stateof the chromatophores varies with the time of day and is littleaffected by changes in light intensity or background. An additionalfactor influencing chromatophores is a lunar-tidal rhythm. Theeffects of naturally-changing photoperiods and of a constantartificial photoperiod on the condition of the chromatophoresof Uca pugnax are described. The lunar-tidal rhythm is seento affect the chromatophores at hours transitional between theday and night phase for at least 2 months after the animalsare removed from tidal conditions. The time of entrance intothe night phase of the diurnal rhythm varies widely as a functionof phase of the moon when the animals are exposed to long photoperiods.Short photoperiods restrict the range of this variation butappear to have little effect on the minimum duration of theday phase in any 15-day period. Consideration of both diurnaland tidal rhythms may permit selection of times of maximum differencesin chromatophores which might also reflect maximum differencesin neurosecretory activity.  相似文献   

19.
Frogs of the Pleurodema thaul species have a pair of prominent elevated cutaneous glands dorsolaterally, just posterior to the sacrum, which are named lumbar glands. We have studied histologically these glands and found that their chromatophores are disposed mainly immediately under the epidermis structuring a dermal chromatophore unit. Similar to the other anuran macroglands, the lumbar glands are constituted basically by granular alveoli filled with secretion. The presence of these granular alveoli and the typical distribution of the dermal chromatophores to suggest a defensive role for the lumbar glands. In most of the amphibians granular alveoli contain secretions with toxicity for several vertebrates. On the other hand, chromatophores in this frog species, probably play an aposematic function, since their disposition on the skin permits that the lumbar glands might be taken for eyes, probably giving to an eventual predator the impression that it may be an animal of higher dimensions.  相似文献   

20.
Morphology and photophosphorylation of chromatophores from t Rhodospirillum rubrum have been investigated by dynamic light scattering (DLS) and in situ 31P-NMR measurement. Two components, designated as light and heavy fractions, with different average sizes and size distributions were detected by the DLS and can be separated by sucrose density gradient centrifugation. The light fraction has an average size of about 140 nm in diameter with a narrow distribution and shows a high activity of photophosphorylation. About 70 of ADP were found to be converted to ATP purely by the photophosphorylative reaction. In contrast, the heavy fraction has a broad size distribution centered around 350 nm and a low activity of photophosphorylation. Only about 50 of ADP was converted into ATP and AMP with a ratio of 7:3, indicating that most membrane-bound adenylate kinase are attached on the particles of the heavy fraction. Effect of physical disruption on the structural integrity of chromatophores has been examined by using sonication with various oscillating strengths. The result shows that the morphology of chromatophores for both light and heavy fractions is relatively stable to the disruption, while the photophosphorylative activity of the light fraction is very sensitive to the disrupting strength, suggesting that the internal structure of the purified chromatophores could be partially damaged by the disruption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号