首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have determined the nucleotide sequence of sea urchin (Lytechinus pictus) late stage H3 and H4 histone genes contained on the clone pLpH3H4 -21 and of the early stage H3 gene contained on the plasmid pLpA . Comparison of these differentially regulated histone genes with each other and with other L. pictus late and early stage histone H3 and H4 genes previously sequenced confirms that members of each histone gene family (early and late) are more homologous to each other than they are to members of other histone gene families. The spacer regions between two late H3-H4 gene pairs on the clones pLpH3H4 -19 and pLpH3H4 -21 have diverged to the point where they are no longer homologous. However, comparative analysis of the 5' flanking DNA has identified a sequence 5'C-T-C-A-T-G-T-A-T-T3' upstream of both late H4 genes and another, 5'A-G-A-T-T-C-A3', upstream of both H3 genes. Except for a short conserved sequence near the initiation codon, the transcribed 5' leaders of the late mRNAs differ in length and sequence in the two non-allelic late histone gene pairs. This divergence contrasts with the 95 to 96% conservation found between late histone gene coding sequences. The results suggest that there is intergenic exchange in the germline among members of the late histone gene family and that the unit of exchange is the individual gene rather than the heterotypic dimer which includes the common spacer DNA.  相似文献   

3.
We have analyzed the histone genes from the sea urchin Lytechinus pictus. Examination of native DNA from individuals reveals four major Eco RI restriction endonuclease histone gene DNA fragments which have been labeled A (6.0 kb), B (4.1 kb), C (3.1 kb) and D (1.2 kb). The fragments A, B and C have been cloned into E. coli plasmids (pLpA, pLpB and pLpC). These histone gene fragments display length and sequence heterogeneity in different individuals. The plasmid pLpA contains the coding regions for H1, H4, H2B and H3 histones, and we determined that the DNA fragment D is tandem to A in native DNA and that it contains the H2A gene. The plasmids pLpB and pLpC contain the histone genes H2A-H1-H4 and H2B-H3, respectively, and together contain the sequences for the five major histones. Restriction analysis of native L. pictus DNA reveals that B and C are tandem to each other but not intermingled with the A-D-type repeat units, and are thus in separate clusters with a repeat length of 7.2 kb. Since the two cluster types do not segregate, they are not alleles. Hybridization of histone mRNA to exonuclease III-digested linear DNA demonstrated an identical polarity of the histone genes in the A-D- and B-C-type repeat units. This result revealed that the L. pictus histone genes have a polarity which is the same as other sea urchin histone genes examined to date—that is, 3′ H1-H4-H2B-H3-H2A 5′. Restriction endonuclease cleavage patterns of the cloned segments indicate that considerable sequence heterogeneity exists between the two types of histone gene repeat units.  相似文献   

4.
The relative positions of the sea urchin histone genes and the spacer regions on the chimeric plasmids pSp2 and pSp17 have been mapped by hybridizing total histone messenger RNA to single strands of the plasmid DNAs. The lengths and spacing between the several RNA:DNA duplex regions on the single strands of DNA were measured by the gene 32-ethidium bromide electron microscope mapping method. We find that the genes are interdigitated with spacer sequences of different lengths; that there are three coding sequences on pSp2, all on the same strand, with the relative order H1, H4, and B4; and that there are two coding sequences on pSp17, both on the same strand, corresponding to the messages denoted B1 and B2–B3, where B4, B1, and B2–3 are electrophoretically resolved components of histone mRNA, all of size intermediate between the larger H1 and the smaller H4 message.  相似文献   

5.
6.
7.
Simplified DNA sequence acquisition has provided many new data sets that are useful for phylogenetic reconstruction, including single- and multiple-copy nuclear and organellar genes. Although transcribed regions receive much attention, nontranscribed regions have recently been added to the repertoire of sequences suitable for phylogenetic studies, especially for closely related taxa. We evaluated the efficacy of a small portion of the histone repeat for phylogenetic reconstruction among Drosophila species. Histone repeats in invertebrates offer distinct advantages similar to those of widely used ribosomal repeats. First, the units are tandemly repeated and undergo concerted evolution. Second, histone repeats include both highly conserved coding and variable intergenic regions. This composition facilitates application of "universal" primers spanning potentially informative sites. We examined a small region of the histone repeat, including the intergenic spacer segments of coding regions from the divergently transcribed H2A and H2B histone genes. The spacer (about 230 bp) exists as a mosaic with highly conserved functional motifs interspersed with rapidly diverging regions; the former aid in alignment of the spacer. There are no ambiguities in alignment of coding regions. Coding and noncoding regions were analyzed together and separately for phylogenetic information. Parsimony, distance, and maximum-likelihood methods successfully retrieve the corroborated phylogeny for the taxa examined. This study demonstrates the resolving power of a small histone region which may now be added to the growing collection of phylogenetically useful DNA sequences.  相似文献   

8.
The DNA sequence of two chicken histone H2B genes has been determined. Both genes code for the same H2B subtype. Except for conserved "promoter" elements, the sequences 5' to the protein coding regions are completely divergent, indicating that the genes are distantly related and are not evolving in concert. This presents an ideal situation for sequence comparisons. We have discovered a 13 bp, H2B specific homology block, 5' CTCATTTGCATAC 3' located close to the "TATA box". This motif is conserved in all H2B gene leader regions so far sequenced. One of the H2B genes is closely linked, in a divergent arrangement, to an H2A gene, and sequence data suggests that the linked genes share promoter elements.  相似文献   

9.
10.
11.
DNA sequences of cloned histone coding sequences and spacers of sea urchin species that diverged long ago in evolution were compared. The highly repeated H4 and H3 genes active during early embryogenesis had evolved (in their silent sites) at a rate (0.5-0.6% base changes/Myr) similar to single-copy protein-coding genes and nearly as fast as spacer DNA (0.7% base changes/Myr) and unique DNA. Thus, evolution in the major histone genes conforms to a universal evolutionary clock based on the rate of base sequence change. By contrast, the H4 and H3 coding sequences and a non-transcribed spacer of the DNA clone h19 of Psammechinus miliaris show an exceptionally low rate of sequence evolution only 1/100 to 1/200 that predicted from the clock hypothesis. According to the classical model of gene inheritance, the h19 DNA sequences in the Psammechinus genome require unusual conservation mechanisms by selection at the level of the gene and spacer sequences. An alternative explanation could be recent horizontal gene transfer of a histone gene cluster from the very distantly related Strongylocentrotus dröbachiensis to the P. miliaris genome.  相似文献   

12.
We have determined the nucleotide sequence of core histone genes and flanking regions from two of approximately 11 different genomic histone clusters of the nematode Caenorhabditis elegans. Four histone genes from one cluster (H3, H4, H2B, H2A) and two histone genes from another (H4 and H2A) were analyzed. The predicted amino acid sequences of the two H4 and H2A proteins from the two clusters are identical, whereas the nucleotide sequences of the genes have diverged 9% (H2A) and 12% (H4). Flanking sequences, which are mostly not similar, were compared to identify putative regulatory elements. A conserved sequence of 34 base-pairs is present 19 to 42 nucleotides 3' of the termination codon of all the genes. Within the conserved sequence is a 16-base dyad sequence homologous to the one typically found at the 3' end of histone genes from higher eukaryotes. The C. elegans core histone genes are organized as divergently transcribed pairs of H3-H4 and H2A-H2B and contain 5' conserved sequence elements in the shared spacer regions. One of the sequence elements, 5' CTCCNCCTNCCCACCNCANA 3', is located immediately upstream from the canonical TATA homology of each gene. Another sequence element, 5' CTGCGGGGACACATNT 3', is present in the spacer of each heterotypic pair. These two 5' conserved sequences are not present in the promoter region of histone genes from other organisms, where 5' conserved sequences are usually different for each histone class. They are also not found in non-histone genes of C. elegans. These putative regulatory sequences of C. elegans core histone genes are similar to the regulatory elements of both higher and lower eukaryotes. The coding regions of the genes and the 3' regulatory sequences are similar to those of higher eukaryotes, whereas the presence of common 5' sequence elements upstream from genes of different histone classes is similar to histone promoter elements in yeast.  相似文献   

13.
14.
15.
16.
17.
Genomic organization and nucleotide sequences of two corn histone H4 genes   总被引:6,自引:0,他引:6  
The sea urchin histone H4 gene has been used as a probe to clone two corn histone H4 genes from a lambda gtWES X lambda B corn genomic library. The nucleotide (nt) sequences of both genes showed that the encoded amino acid sequences were identical to that of the H4 of pea and one variant of wheat. The nt sequences of the coding regions showed 92% homology. 5'- and 3'-flanking regions do not show extensive nt sequence analogies. Southern blotting of the EcoRI digested genomic DNA suggests the existence of multiple H4 genes dispersed throughout the genome.  相似文献   

18.
19.
A cloned histone gene cluster of the highly reiterated type from the sea urchin Psammechinus miliaris was analyzed by DNA sequencing. More than half of the 6 kb repeat was sequenced, including coding regions of all five histones, some prelude and trailing sequences lying adjacent to the structural genes, and segments of the AT-rich spacer DNA. The gene cluster does not code for gonad-specific histone variants but may instead be active in early sea urchin development, as indicated by comparison to reference histones. The encoded histones seem not to be derived from longer precursor proteins, nor is there any evidence for insert sequences within the coding regions. Sequence similarities exist among the putative ribosome-binding sites adjacent to the initiator codons of individual genes. The AT-rich spacer segments between the genes differ from each other, are made up from relatively simple nucleotide arrangements, but are not repetitious, and apparently do not code for additional large proteins.  相似文献   

20.
The genes coding for the H3 and H4 histones of Saccharomyces cerevisiae have been isolated by recombinant DNA cloning. The genes were detected in a bacteriophage lambda library of the yeast genome by hybridization with plasmids containing the cloned Psammechinus miliaris sea urchin histone genes (pCH7) and the cloned Drosophila histone genes (cDM500). Two non-allelic sets of the H3 and H4 genes have been isolated. Each set consists of one H3 gene and one H4 gene arranged as a divergently transcribed pair separated by an intergene spacer DNA. The histone genes were located on the cloned yeast fragments by S1 nuclease mapping, as was a gene (SMT1) of unknown function that does not code for a histone but is closely linked to one of the histone sets. Sequence homology between the two non-allelic sets is confined to the coding regions of the respective genes while the flanking DNA and intergene spacer DNA are extensively divergent. Cellular RNA homologous to the histone genes, including transcribed non-coding sequences unique to each of the four genes, was detected by S1 mapping, thus demonstrating that all four genes are transcribed in vegetative cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号