首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From tibialis anterior to Tai Chi: biofeedback and beyond   总被引:1,自引:0,他引:1  
This keynote presentation highlights events that have contributed to scientific explorations of one research clinician. Steve Wolf traces his scientific roots to early studies in single motor unit control under the guidance of his primary mentor, John Basmajian, MD. This work led to subsequent studies on the role of EMG feedback in predicting successful outcomes in upper extremity use and in ambulatory capabilities among patients with chronic stroke. These findings are contrasted to further efforts to condition entire reflexes rather than individual muscles through use of operant-conditioning paradigms. The findings from applications of EMG biofeedback to stroke patients became the basis for minimal motor criteria in the treatment of the impaired upper extremities of patients with chronic stroke, using forced use or constraint-induced movement therapy. Last, investigations into center of pressure feedback using computerized balance machines resulted in a series of experiments that ultimately led to the finding that Tai Chi as an exercise form for older adults can have a substantially favorable effect in delaying the onset of fall events.  相似文献   

2.

Background

Several recently developed therapies targeting motor disabilities in stroke sufferers have shown to be more effective than standard neurorehabilitation approaches. In this context, several basic studies demonstrated that music training produces rapid neuroplastic changes in motor-related brain areas. Music-supported therapy has been recently developed as a new motor rehabilitation intervention.

Methods and Results

In order to explore the plasticity effects of music-supported therapy, this therapeutic intervention was applied to twenty chronic stroke patients. Before and after the music-supported therapy, transcranial magnetic stimulation was applied for the assessment of excitability changes in the motor cortex and a 3D movement analyzer was used for the assessment of motor performance parameters such as velocity, acceleration and smoothness in a set of diadochokinetic movement tasks. Our results suggest that the music-supported therapy produces changes in cortical plasticity leading the improvement of the subjects'' motor performance.

Conclusion

Our findings represent the first evidence of the neurophysiological changes induced by this therapy in chronic stroke patients, and their link with the amelioration of motor performance. Further studies are needed to confirm our observations.  相似文献   

3.
An inability to perform tasks involving reaching is a common problem for stroke patients. This paper provides an insight into mechanisms associated with recovery of upper limb function by examining how stroke participants’ upper limb muscle activation patterns differ from those of neurologically intact participants, and how they change in response to an intervention.In this study, five chronic stroke participants undertook nine tracking tasks in which trajectory (orientation and length), speed and resistance to movement were varied. During these tasks, EMG signals were recorded from triceps, biceps, anterior deltoid, upper, middle and lower trapezius and pectoralis major. Data collection was performed in sessions both before, and after, an intervention in which participants performed a similar range of tracking tasks with the addition of responsive electrical stimulation applied to their triceps muscle. The intervention consisted of eighteen one hour treatment sessions, with two participants attending an additional seven sessions. During all sessions, each participant’s arm was supported by a hinged arm-holder which constrained their hand to move in a two dimensional plane.Analysis of the pre intervention EMG data showed that timing and amplitude of peak EMG activity for all stroke participants differed from neurologically intact participants. Analysis of post intervention EMG data revealed that statistically significant changes in these quantities had occurred towards those of neurologically intact participants.  相似文献   

4.
Rosette strain gage, electromyography (EMG), and cineradiographic techniques were used to analyze loading patterns and jaw movements during mastication in Macaca fascicularis. The cineradiographic data indicate that macaques generally swallow frequently throughout a chewing sequence, and these swallows are intercalated into a chewing cycle towards the end of a power stroke. The bone strain and jaw movement data indicate that during vigorous mastication the transition between fast close and the power stroke is correlated with a sharp increase in masticatory force, and they also show that in most instances the jaws of macaques are maximally loaded prior to maximum intercuspation, i.e. during phase I (buccal phase) occlusal movements. Moreover, these data indicate that loads during phase II (lingual phase) occlusal movements are ordinarily relatively small. The bone strain data also suggest that the duration of unloading of the jaw during the power stroke of mastication is largely a function of the relaxation time of the jaw adductors. This interpretation is based on the finding that the duration from 100% peak strain to 50% peak strain during unloading closely approximates the half-relaxation time of whole adductor jaw muscles of macaques. The EMG data of the masseter and medial pterygoid muscles have important implications for understanding both the biomechanics of the power stroke and the external forces responsible for the "wishboning" effect that takes place along the mandibular symphysis and corpus during the power stroke of mastication. Although both medial pterygoid muscles reach maximum EMG activity during the power stroke, the activity of the working-side medial pterygoid peaks after the balancing-side medial pterygoid. Associated with the simultaneous increase of force of the working-side medial pterygoid and the decrease of force of the balancing-side medial pterygoid is the persistently high level of EMG activity of the balancing-side deep masseter (posterior portion). This pattern is of considerable significance because the direction of force of both the working-side medial pterygoid and the balancing-side deep masseter are well aligned to aid in driving the working-side lower molars across the upper molars in the medial direction during unilateral mastication.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.

Background

Abnormal upper arm-forearm muscle synergies after stroke are poorly understood. We investigated whether upper arm function primes paralyzed forearm muscles in chronic stroke patients after Brain-Machine Interface (BMI)-based rehabilitation. Shaping upper arm-forearm muscle synergies may support individualized motor rehabilitation strategies.

Methods

Thirty-two chronic stroke patients with no active finger extensions were randomly assigned to experimental or sham groups and underwent daily BMI training followed by physiotherapy during four weeks. BMI sessions included desynchronization of ipsilesional brain activity and a robotic orthosis to move the paretic limb (experimental group, n = 16). In the sham group (n = 16) orthosis movements were random. Motor function was evaluated with electromyography (EMG) of forearm extensors, and upper arm and hand Fugl-Meyer assessment (FMA) scores. Patients performed distinct upper arm (e.g., shoulder flexion) and hand movements (finger extensions). Forearm EMG activity significantly higher during upper arm movements as compared to finger extensions was considered facilitation of forearm EMG activity. Intraclass correlation coefficient (ICC) was used to test inter-session reliability of facilitation of forearm EMG activity.

Results

Facilitation of forearm EMG activity ICC ranges from 0.52 to 0.83, indicating fair to high reliability before intervention in both limbs. Facilitation of forearm muscles is higher in the paretic as compared to the healthy limb (p<0.001). Upper arm FMA scores predict facilitation of forearm muscles after intervention in both groups (significant correlations ranged from R = 0.752, p = 0.002 to R = 0.779, p = 0.001), but only in the experimental group upper arm FMA scores predict changes in facilitation of forearm muscles after intervention (R = 0.709, p = 0.002; R = 0.827, p<0.001).

Conclusions

Residual upper arm motor function primes recruitment of paralyzed forearm muscles in chronic stroke patients and predicts changes in their recruitment after BMI training. This study suggests that changes in upper arm-forearm synergies contribute to stroke motor recovery, and provides candidacy guidelines for similar BMI-based clinical practice.  相似文献   

6.
Studies of electromyographic (EMG) activity and lumbopelvic rhythm have led to a better understanding of neuromuscular alterations in chronic low back pain (cLBP) patients. Whether these changes reflect adaptations to chronic pain or are induced by acute pain is still unclear. This work aimed to assess the effects of experimental LBP on lumbar erector spinae (LES) EMG activity and lumbopelvic kinematics during a trunk flexion–extension task in healthy volunteers and LBP patients. The contribution of disability to these effects was also examined. Twelve healthy participants and 14 cLBP patients performed flexion–extension tasks in three conditions; control, innocuous heat and noxious heat, applied on the skin over L5 or T7. The results indicated that noxious heat at L5 evoked specific increases in LES activity during static full trunk flexion and extension, irrespective of participants’ group. Kinematic data suggested that LBP patients adopted a different movement strategy than controls when noxious heat was applied at the L5 level. Besides, high disability was associated with less kinematic changes when approaching and leaving full flexion. These results indicate that experimental pain can induce neuromechanical alterations in cLBP patients and healthy volunteers, and that higher disability in patients is associated with decreased movement pattern changes.  相似文献   

7.
Stroke patients exhibit abnormal pattern in leg cycling exercise. The aim of this study was to investigate the effects of visual feedback on the control of cycling motion in stroke patients from kinesiological, kinematic and kinetic aspects. The cycling performance derived from cycling electromyography (EMG), cycling cadence, and torque of forty stroke subjects was evaluated under conditions with and without visual feedback of cycling cadence. Kinesiological indices, shape symmetry index (SSI) and area symmetry index (ASI) were extracted from EMG linear envelopes to evaluate the symmetry of muscle firing patterns during cycling. Roughness index (RI) was calculated from cycling cadence to represent cycling smoothness from kinematic aspects. Averaged cycling power (Pav), the product of cadence and torque, was used to represent force output. The rectus femoris EMG showed significantly greater ASI with visual feedback, however, the difference in SSI between the two conditions was not significant. For the biceps femoris, there was a significant decrease in SSI with visual feedback, while the ASI was not affected significantly by the task conditions. The cycling smoothness was better and the average power generated was larger when visual feedback was provided. This study found that the addition of visual feedback improved both neuromuscular control and overall performance. Such improvement is likely to be the result of better control of the rectus femoris muscle activation and coordination of both legs.  相似文献   

8.
Successful treatment of torticollis with electromyographic (EMG) biofeedback has been reported in a number of single case and single group studies. The present investigation represents the first controlled outcome study. Twelve torticollis patients were randomly assigned to EMG biofeedback or relaxation training and graded neck exercises (RGP). The procedure involved three sessions of baseline assessment, 15 sessions of EMG BF or RGP, 6 sessions of EMG BF or RGP plus home-management, 6 sessions of home-management alone, and follow-up 3 months after the end of treatment. A variety of outcome measures were used including physiological (EMG from the two sternocleidomastoid muscles, skin conductance level), behavioral (angle of head deviation, range of movement of the head), and self-report (depression, functional disability, body concept), therapist and "significant other" reports and independent observer assessment of videos. In both groups, neck muscle activity was reduced from pre- to posttreatment. This reduction was greater in the EMG biofeedback group. There was evidence of feedback-specific neck muscle relaxation in the EMG biofeedback group. Therefore, the outcome was not due to nonspecific factors and could be attributed to feedback-specific effects. Changes in skin conductance level showed that neck muscle relaxation was not simply mediated by a general reduction of "arousal." Significant improvements of extent of head deviation, and range of movement of the head, as well as reductions of depression were present, which were not different in the two groups. At the end of treatment, no patient was asymptomatic. Any therapeutic benefit was generally maintained at follow-up. The results and the procedural simplicity of RGP make the issue of cost-efficacy of EMG biofeedback a pertinent one. Further controlled outcome studies of EMG biofeedback treatment of torticollis with larger samples are required.  相似文献   

9.
PurposeThis study tested the hypothesis that muscle and interaction torques can be altered independently in order to improve in specific kinematics performance observed following practice. We also tested the hypothesis that a simple set of rules of EMG-control and kinetic-control models could explain the EMG and kinetic changes due to practice of movements with reversal.ScopeKinematics of the upper arm with reversal, performed over three distances, was reconstructed using motion analysis. The muscle and interaction torques were calculated using inverse-dynamics. EMG activities of the major arm muscles were also recorded. The results demonstrate that improved performance is facilitated by an increase in muscle torque (and therefore acceleration) at the proximal joint (shoulder) and by an increase in the interaction torque at the distal joint (elbow). No changes were observed in the amount of muscle activity underlying these kinetic modifications, except for a decrease in the shoulder antagonist latency.ConclusionThe results confirm Bernstein’s idea that the central nervous system takes advantage of the passive-interactive properties of the moving system. Also the modulation of the EMG patterns should be explained taking in account the reactive forces and the dual functions (maintenance of posture and generation of movement) of the muscles.  相似文献   

10.
Six athetoid cerebral palsy patients participated in the following: speech and motor prebiofeedback training evaluation; frontal EMG biofeedback training, 6 wk; speech and motor postbiofeedback training evaluation, Frontal pretraining levels for the subjects averaged 28.9 µV p-p. Subjects' feedback consisted of an auditory signal(clicks) varying proportionately with frontal EMG activity. A visual meter display of the integrated EMG was also provided. Self-regulation of frontal EMG was evident for all subjects within session 1. Throughout all sessions, EMG levels of 2–4 µV were often attained. Trend analysis of EMG acquisition curves showed significant reduction in frontal tension across sessions for all but one subject. Frontal posttraining levels averaged 13.0 µV p-p. Parents or subjects, or both, reported subtle improvements in various speech and motor functions, a finding confirmed by objective postbiofeedback training evaluation. Only the 2 most severely impaired subjects, JA and DS, failed to improve significantly on the speech measures. All subjects improved significantly on those measures that tapped fine and gross motor skills. Collectively, these results indicate that EMG biofeedback training shows promise as an additional treatment modality in the habilitation of cerebral palsy patients.  相似文献   

11.
Stroke is the third most common cause of death and a main cause of acquired adult disability in developed countries. Only very limited therapeutical options are available for a small proportion of stroke patients in the acute phase. Current research is intensively searching for novel therapeutic strategies and is increasingly focusing on the sub-acute and chronic phase after stroke because more patients might be eligible for therapeutic interventions in a prolonged time window. These delayed mechanisms include important pathophysiological pathways such as post-stroke inflammation, angiogenesis, neuronal plasticity and regeneration. In order to analyze these mechanisms and to subsequently evaluate novel drug targets, experimental stroke models with clinical relevance, low mortality and high reproducibility are sought after. Moreover, mice are the smallest mammals in which a focal stroke lesion can be induced and for which a broad spectrum of transgenic models are available. Therefore, we describe here the mouse model of transcranial, permanent coagulation of the middle cerebral artery via electrocoagulation distal of the lenticulostriatal arteries, the so-called “coagulation model”. The resulting infarct in this model is located mainly in the cortex; the relative infarct volume in relation to brain size corresponds to the majority of human strokes. Moreover, the model fulfills the above-mentioned criteria of reproducibility and low mortality. In this video we demonstrate the surgical methods of stroke induction in the “coagulation model” and report histological and functional analysis tools.  相似文献   

12.
13.
This paper examines the application of EMG feedback for upper-extremity dysfunction secondary to neurologic injury. A rationale for the use of EMG feedback to enhance rotational components of upper-limb movement, train recruitment of the prime movers, and promote inhibition of motor responses that interfere with efficient and effortless movement is presented. Specific strategies that can be used to reinforce functional movement patterns are elaborated. A case study illustrating the application of the feedback strategies is provided. Despite sensory, perceptual, and cognitive impairments, a 53-year-old left hemiplegic obtained significant clinical upper-limb functional gains when given EMG feedback in conjunction with occupational therapy.  相似文献   

14.
15.
Current clinical interpretation of dynamic electromyography (EMG) data is usually based on qualitative assessments of muscle timing. Cross-correlation may provide a method for objectively comparing the timing and shape of EMG signals. This study used cross-correlation to compare EMG signals from different walking trials, different test sessions, and different individuals in able-bodied adults. Cross-correlation results (R-values) for different walking trials within a single test session were high, averaging > or = 0.90 for all muscles tested (R = 1.0 indicates exact agreement). Cross-correlation values were also high among trials from different test sessions conducted by the same and different examiners (average R > or = 0.78 for all muscles). R-values were much more variable when comparing different subjects (average 0.40-0.81, range 0.00-0.91). R-values were lower for the medial hamstrings and rectus femoris compared with the other muscles tested. These results suggest that cross-correlation may be useful for evaluating changes in an individual patient's muscle activation patterns, such as before and after surgery, but not for comparing EMG patterns among different individuals, such as between patients and normative data. This is especially true for biarticular muscles such as the hamstrings and rectus femoris, which may have variable activation patterns and/or increased sensitivity to electrode placement. Cross-correlation may also be useful for identifying appropriate muscles for transfer, identifying "outlier" trials within a test session, and selecting representative EMG curves for a given patient. The advantages of cross-correlation are that it considers shape of the EMG signal in addition to timing and that the assessments it provides are objective, rather than subjective.  相似文献   

16.
A clinical protocol is reviewed, which utilizes supportive intervention, education, and surface EMG biofeedback to facilitate movement and to maximize effective stretching with chronic musculoskeletal pain patients. Support for this clinical protocol is provided with an overview of the physiological basis of stretching, surface EMG patterns associated with stretching, and the effects of pain and emotional factors on stretching and movement inhibition.  相似文献   

17.
Current electromyography (EMG)-driven musculoskeletal models are used to estimate joint moments measured from an individual?s extremities during dynamic movement with varying levels of accuracy. The main benefit is the underlying musculoskeletal dynamics is simulated as a function of realistic, subject-specific, neural-excitation patterns provided by the EMG data. The main disadvantage is surface EMG cannot provide information on deeply located muscles. Furthermore, EMG data may be affected by cross-talk, recording and post-processing artifacts that could adversely influence the EMG?s information content. This limits the EMG-driven model?s ability to calculate the multi-muscle dynamics and the resulting joint moments about multiple degrees of freedom. We present a hybrid neuromusculoskeletal model that combines calibration, subject-specificity, EMG-driven and static optimization methods together. In this, the joint moment tracking errors are minimized by balancing the information content extracted from the experimental EMG data and from that generated by a static optimization method. Using movement data from five healthy male subjects during walking and running we explored the hybrid model?s best configuration to minimally adjust recorded EMGs and predict missing EMGs while attaining the best tracking of joint moments. Minimally adjusted and predicted excitations substantially improved the experimental joint moment tracking accuracy than current EMG-driven models. The ability of the hybrid model to predict missing muscle EMGs was also examined. The proposed hybrid model enables muscle-driven simulations of human movement while enforcing physiological constraints on muscle excitation patterns. This might have important implications for studying pathological movement for which EMG recordings are limited.  相似文献   

18.
Successful treatment of torticollis with electromyographic (EMG) biofeedback has been reported in a number of single case and single group studies. The present investigation represents the first controlled outcome study. Twelve torticollis patients were randomly assigned to EMG biofeedback or relaxation training and graded neck exercises (RGP). The procedure involved three sessions of baseline assessment, 15 sessions of EMG BF or RGP, 6 sessions of EMG BF or RGP plus home-management, 6 sessions of home-management alone, and follow-up 3 months after the end of treatment. A variety of outcome measures were used including physiological (EMG from the two sternocleidomastoid muscles, skin conductance level), behavioral (angle of head deviation, range of movement of the head), and self-report (depression, functional disability, body concept), therapist and significant other reports and independent observer assessment of videos. In both groups, neck muscle activity was reduced from pre- to posttreatment. This reduction was greater in the EMG biofeedback group. There was evidence of feedback-specific neck muscle relaxation in the EMG biofeedback group. Therefore, the outcome was not due to nonspecific factors and could be attributed to feedback-specific effects. Changes in skin conductance level showed that neck muscle relaxation was not simply mediated by a general reduction of arousal. Significant improvements of extent of head deviation, and range of movement of the head, as well as reductions of depression were present, which were not different in the two groups. At the end of treatment, no patient was asymptomatic. Any therapeutic benefit was generally maintained at follow-up. The results and the procedural simplicity of RGP make the issue of cost-efficacy of EMG biofeedback a pertinent one. Further controlled outcome studies of EMG biofeedback treatment of torticollis with larger samples are required.This work was funded by grants from the Medical Research Council and the Dystonia Society.  相似文献   

19.
Takiyama K  Okada M 《PloS one》2012,7(5):e37594
Stroke patients recover more effectively when they are rehabilitated with bimanual movement rather than with unimanual movement; however, it remains unclear why bimanual movement is more effective for stroke recovery. Using a computational model of stroke recovery, this study suggests that bimanual movement facilitates the reorganization of a damaged motor cortex because this movement induces rotations in the preferred directions (PDs) of motor cortex neurons. Although the tuning curves of these neurons differ during unimanual and bimanual movement, changes in PD, but not changes in modulation depth, facilitate such reorganization. In addition, this reorganization was facilitated only when encoding PDs are rotated, but decoding PDs are not rotated. Bimanual movement facilitates reorganization because this movement changes neural activities through inter-hemispheric inhibition without changing cortical-spinal-muscle connections. Furthermore, stronger inter-hemispheric inhibition between motor cortices results in more effective reorganization. Thus, this study suggests that bimanual movement is effective for stroke rehabilitation because this movement rotates the encoding PDs of motor cortex neurons.  相似文献   

20.
The advent of simple and affordable tools for molecular identification of novel insect invaders and assessment of population diversity has changed the face of invasion biology in recent years. The widespread application of these tools has brought with it an emerging understanding that patterns in biogeography, introduction history and subsequent movement and spread of many invasive alien insects are far more complex than previously thought. We reviewed the literature and found that for a number of invasive insects, there is strong and growing evidence that multiple introductions, complex global movement, and population admixture in the invaded range are commonplace. Additionally, historical paradigms related to species and strain identities and origins of common invaders are in many cases being challenged. This has major consequences for our understanding of basic biology and ecology of invasive insects and impacts quarantine, management and biocontrol programs. In addition, we found that founder effects rarely limit fitness in invasive insects and may benefit populations (by purging harmful alleles or increasing additive genetic variance). Also, while phenotypic plasticity appears important post-establishment, genetic diversity in invasive insects is often higher than expected and increases over time via multiple introductions. Further, connectivity among disjunct regions of global invasive ranges is generally far higher than expected and is often asymmetric, with some populations contributing disproportionately to global spread. We argue that the role of connectivity in driving the ecology and evolution of introduced species with multiple invasive ranges has been historically underestimated and that such species are often best understood in a global context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号