首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The regulation of the pyruvate dehydrogenase multienzyme complex was investigated during alpha-adrenergic stimulation with phenylephrine in the isolated perfused rat liver. The metabolic flux through the pyruvate dehydrogenase reaction was monitored by measuring the production of 14CO2 from infused [1-14C] pyruvate. In livers from fed animals perfused with a low concentration of pyruvate (0.05 mM), phenylephrine infusion significantly inhibited the rate of pyruvate decarboxylation without affecting the amount of pyruvate dehydrogenase in its active form. Also, phenylephrine caused no significant effect on tissue NADH/NAD+ and acetyl-CoA/CoASH ratios or on the kinetics of pyruvate decarboxylation in 14CO2 washout experiments. Phenylephrine inhibition of [1-14C]pyruvate decarboxylation was, however, closely associated with a decrease in the specific radioactivity of perfusate lactate, suggesting that the pyruvate decarboxylation response simply reflected dilution of the labeled pyruvate pool due to phenylephrine-stimulated glycogenolysis. This suggestion was confirmed in additional experiments which showed that the alpha-adrenergic-mediated inhibitory effect on pyruvate decarboxylation was reduced in livers perfused with a high concentration of pyruvate (1 mM) and was absent in livers from starved rats. Thus, alpha-adrenergic agonists do not exert short term regulatory effects on pyruvate dehydrogenase in the liver. Furthermore, the results suggest either that the rat liver pyruvate dehydrogenase complex is insensitive to changes in mitochondrial calcium or that changes in intramitochondrial calcium levels as a result of alpha-adrenergic stimulation are considerably less than suggested by others.  相似文献   

2.
Addition of phenylephrine to isolated perfused rat liver is followed by an increased 14CO2 production from [1-14C]glutamate, [1-14C]glutamine, [U-14C]proline and [3-14C]pyruvate, but by a decreased 14CO2 production from [1-14C]pyruvate. Simultaneously, there is a considerable decrease in tissue content of 2-oxoglutarate, glutamate and citrate. Stimulation of 14CO2 production from [1-14C]glutamate is also observed in the presence of amino-oxyacetate, suggesting a stimulation of glutamate dehydrogenase and 2-oxoglutarate dehydrogenase fluxes by phenylephrine. Inhibition of pyruvate dehydrogenase flux by phenylephrine is due to an increased 2-oxoglutarate dehydroxygenase flux. Phenylephrine stimulates glutaminase flux and inhibits glutamine synthetase flux to a similar extent, resulting in an increased hepatic glutamine uptake. Whereas the effects of NH4+ ions and phenylephrine on glutaminase flux were additive, activation of glutaminase by glucagon was considerably diminished in the presence of phenylephrine. The reported effects are largely overcome by prazosin, indicating the involvement of alpha-adrenergic receptors in the action of phenylephrine. It is concluded that stimulation of gluconeogenesis from various amino acids by phenylephrine is due to an increased flux through glutamate dehydrogenase and the citric acid cycle.  相似文献   

3.
The effect of Ca2+-mobilizing hormones, vasopressin, angiotensin II and the alpha-adrenergic agonist phenylephrine, on the metabolic flux through the tricarboxylic acid cycle was investigated in isolated perfused rat livers. All three Ca2+-mobilizing agonists stimulated 14CO2 production and gluconeogenesis in livers of 24-h-fasted rats perfused with [2-14C]pyruvate. Prazosin blocked the phenylephrine-elicited stimulation of 14CO2 and glucose production from [2-14C]pyruvate whereas the alpha 2-adrenergic agonist, BHT-933, did not affect the rates of 14CO2 and glucose production from [2-14C]pyruvate indicating that the phenylephrine-mediated response involved alpha 1-adrenergic receptors. Phenylephrine, vasopressin and angiotensin II stimulated 14CO2 production from [2-14C]acetate in livers derived from fed rats but not in livers of 24-h-fasted rats. In livers of 24-h-fasted rats, perfused with [2-14C]acetate, exogenously added pyruvate was required for an increase in the rate of 14CO2 production during phenylephrine infusion. This last observation suggests increased pyruvate carboxylation as one of the mechanisms involved in stimulation of tricarboxylic acid cycle activity by the Ca2+-mobilizing agonists, vasopressin, angiotensin II and phenylephrine.  相似文献   

4.
Glucose output from perfused livers of 48 h-starved rats was stimulated by phenylephrine (2 microM) when lactate, pyruvate, alanine, glycerol, sorbitol, dihydroxyacetone or fructose were used as gluconeogenic precursors. Phenylephrine-induced increases in glucose output were immediately preceded by a transient efflux of Ca2+ and a sustained increase in oxygen uptake. Phenylephrine decreased the perfusate [lactate]/[pyruvate] ratio when sorbitol or glycerol was present, but increased the ratio when alanine, dihydroxyacetone or fructose was present. Phenylephrine induced a rapid increase in the perfusate [beta-hydroxybutyrate]/[acetoacetate] ratio and increased total ketone-body output by 40-50% with all substrates. The oxidation of [1-14C]octanoate or 2-oxo[1-14C]glutarate to 14CO2 was increased by up to 200% by phenylephrine. All responses to phenylephrine infusion were diminished after depletion of the hepatic alpha-agonist-sensitive pool of Ca2+ and returned toward maximal responses after Ca2+ re-addition. Phenylephrine-induced increases in glucose output from lactate, sorbitol and glycerol were inhibited by the transaminase inhibitor amino-oxyacetate by 95%, 75% and 66% respectively. Data presented suggest that the mobilization of an intracellular pool of Ca2+ is involved in the activation of gluconeogenesis by alpha-adrenergic agonists in perfused rat liver. alpha-Adrenergic activation of gluconeogenesis is apparently accompanied by increases in fatty acid oxidation and tricarboxylic acid-cycle flux. An enhanced transfer of reducing equivalents from the cytoplasmic to the mitochondrial compartment may also be involved in the stimulation of glucose output from the relatively reduced substrates glycerol and sorbitol and may arise principally from an increased flux through the malate-aspartate shuttle.  相似文献   

5.
The effects of glucagon and the alpha-adrenergic agonist, phenylephrine, on the rate of 14CO2 production and gluconeogenesis from [1-14C]lactate and [1-14C]pyruvate were investigated in isolated perfused livers of 24-h-fasted rats. Both glucagon and phenylephrine stimulated the rate of 14CO2 production from [1-14C]lactate but not from [1-14C]pyruvate. Neither glucagon nor phenylephrine affected the activation state of the pyruvate dehydrogenase complex in perfused livers derived from 24-h-fasted rats. 3-Mercaptopicolinate, an inhibitor of the phosphoenolpyruvate carboxykinase reaction, inhibited the rates of 14CO2 production and glucose production from [1-14C]lactate by 50% and 100%, respectively. Furthermore, 3-mercaptopicolinate blocked the glucagon- and phenylephrine-stimulated 14CO2 production from [1-14C]lactate. Additionally, measurements of the specific radioactivity of glucose synthesized from [1-14C]lactate, [1-14C]pyruvate and [2-14C]pyruvate indicated that the 14C-labeled carboxyl groups of oxaloacetate synthesized from 1-14C-labeled precursors were completely randomized and pyruvate----oxaloacetate----pyruvate substrate cycle activity was minimal. The present study also demonstrates that glucagon and phenylephrine stimulation of the rate of 14CO2 production from [1-14C]lactate is a result of increased metabolic flux through the phosphoenolpyruvate carboxykinase reaction, and phenylephrine-stimulated gluconeogenesis from pyruvate is regulated at step(s) between phosphoenolpyruvate and glucose.  相似文献   

6.
The metabolic flux through the alpha-ketoglutarate dehydrogenase reaction in perfused livers was monitored by measuring the rate of 14CO2 production from [1-14C]alpha-ketoglutarate. The rates of 14CO2 production and glucose production from [1-14C]alpha-ketoglutarate were increased with increasing perfusate alpha-ketoglutarate concentrations. Vasopressin, angiotensin II, and the alpha 1-adrenergic agonist phenylephrine stimulated transiently by 2.5-fold the metabolic flux through the alpha-ketoglutarate dehydrogenase reaction in the presence and absence of Ca2+ in the perfusion medium. High concentrations of glucagon (1 x 10(-8) M) and 8-p-chlorophenylthio-cAMP (100 microM) (data not shown) also stimulated transiently the metabolic flux through the alpha-ketoglutarate dehydrogenase reaction. However, lower glucagon concentrations (1 x 10(-9) M) stimulated the rate of 14CO2 production from [1-14C]alpha-ketoglutarate only under conditions optimized to fix the cellular oxidation-reduction state at an intermediate level, when glucagon (1 x 10(-9) M)-mediated elevation of cAMP content was greater than that observed under highly oxidizing and reducing conditions. These data indicate that agonists which increase cytosolic free Ca2+ levels stimulate the metabolic flux through the alpha-ketoglutarate dehydrogenase complex. Furthermore, the data presented here demonstrate for the first time that physiological glucagon concentrations stimulate the metabolic flux through the alpha-ketoglutarate dehydrogenase reaction only under conditions known to be optimal for glucagon-mediated Ca2+ mobilization in the isolated perfused rat liver.  相似文献   

7.
Norepinephrine and epinephrine, in the presence of the beta-adrenergic antagonist propranolol (10(-5) M), stimulated adipocyte pyruvate dehydrogenase at low concentrations but inhibited the enzyme at higher concentrations. The alpha-adrenergic agonist, phenylephrine, rapidly stimulated pyruvate dehydrogenase activity in a dose-dependent manner with maximal stimulation observed at 10(-6) M. The stimulation of pyruvate dehydrogenase by phenylephrine was mediated via alpha 1-receptors. Inhibition of pyruvate dehydrogenase by catecholamines was mediated via beta-adrenergic receptors, since the beta-agonist, isoproterenol, and dibutyryl cAMP produced similar effects. Like insulin, alpha-adrenergic agonists increased the active form of pyruvate dehydrogenase without changing the total enzyme activity and cellular ATP concentration. The effects induced by maximally effective concentrations of insulin and alpha-adrenergic agonists were nonadditive. The ability of phenylephrine and methoxamine to stimulate pyruvate dehydrogenase and phosphorylase and to inhibit glycogen synthase was not affected by the removal of extracellular Ca2+. Similarly, the stimulation of pyruvate dehydrogenase and glycogen synthase by insulin was also observed under the same conditions. However, when intracellular adipocyte Ca2+ was depleted by incubating cells in a Ca2+-free buffer containing 1 mM ethylene glycol bis(beta-amino-ethyl ether)-N,N,N' -tetraacetic acid, the actions of alpha-adrenergic agonists, but not insulin, on pyruvate dehydrogenase were completely abolished. Vasopressin and angiotensin II also stimulated pyruvate dehydrogenase in a dose-dependent manner with enhancement of glucose oxidation and lipogenesis. Our results demonstrate that the Ca2+ -dependent hormones stimulate pyruvate dehydrogenase and lipogenesis in isolated rat adipocytes, and the action is dependent upon intracellular, but not extracellular, Ca2+.  相似文献   

8.
Characterization of the alpha-adrenergic stimulation of hepatic respiration   总被引:1,自引:0,他引:1  
The alpha-adrenergic agonist phenylephrine induces a biphasic stimulation of respiration in perfused isolated rat liver. The first phase, of rapid onset and short duration, is paralleled by increased glycogenolysis, glycolysis, and NAD redox potential. The second phase lasts for as long as the alpha-agonist is present and is accompanied by increased gluconeogenic flux. Only the second phase of sustained increased respiration is clearly dependent on extracellular Ca2+. In contrast, normal respiratory responses were obtained under Ca2+-loading conditions or in the presence of the Ca2+ ionophore A23187, indicating that the alpha-adrenergic action on respiration is not simply mediated by its ability to increase the cytosolic Ca2+ concentration. No stimulation of gluconeogenesis is observed in the absence of a sustained increase of respiration. However, it is not energy support that leads to the stimulation of glucose production. The adrenergic response is influenced by the nutritional status of the animal and the availability of oxidizable fuels. In livers from starved animals, the alpha-adrenergic respiratory response is abolished when long chain fatty acid oxidation is prevented by the addition of tetradecylglycidate. In the presence of pyruvate the respiratory response is partially restored. It is concluded that increased beta-oxidation is not mandatory for the alpha-adrenergic stimulation of respiration; however, maximal respiratory responses are obtained only when fatty acid oxidation is allowed to proceed. The latter finding appears to be the result of a limited flux through the tricarboxylic acid cycle when long chain fatty acid oxidation is impeded, secondary to a limiting acetyl CoA supply.  相似文献   

9.
The catabolism of glycine in the isolated perfused rat liver was investigated by measuring the production of 14CO2 from [1-14C]- and [2-14C]glycine. Production of 14CO2 from [1-14C]glycine was maximal as the perfusate glycine concentration approached 10 mM and exhibited a maximal activity of 125 nmol of 14CO2 X g-1 X min-1 and an apparent Km of approximately 2 mM. Production of 14CO2 from [2-14C]glycine was much lower, approaching a maximal activity of approximately 40 nmol of 14CO2 X g-1 X min-1 at a perfusate glycine concentration of 10 mM, with an apparent Km of approximately 2.5 mM. Washout kinetic experiments with [1-14C]glycine exhibited a single half-time of 14CO2 disappearance, indicating one metabolic pool from which the observed 14CO2 production is derived. These results indicate that the glycine cleavage system is the predominant catabolic fate of glycine in the perfused rat liver and that production of 14CO2 from [1-14C]glycine is an effective monitor of metabolic flux through this system. Metabolic flux through the glycine cleavage system in the perfused rat liver was inhibited by processes which lead to reduction of the mitochondrial NAD(H) redox couple. Infusion of beta-hydroxybutyrate or octanoate inhibited 14CO2 production from [1-14C]glycine by 33 and 50%, respectively. Alternatively, infusion of acetoacetate stimulated glycine decarboxylation slightly and completely reversed the inhibition of 14CO2 production by octanoate. Metabolic conditions which are known to cause a large consumption of mitochondrial NADPH (e.g. ureogenesis from ammonia) stimulated glycine decarboxylation by the perfused rat liver. Infusion of pyruvate and ammonium chloride stimulated production of 14CO2 from [1-14C]glycine more than 2-fold. Lactate plus ammonium chloride was equally as effective in stimulating glycine decarboxylation by the perfused rat liver, while alanine plus ammonium chloride was ineffective in stimulating 14CO2 production.  相似文献   

10.
1. The alpha-adrenergic activation of glycogenolysis was investigated in isolated rat livers perfused in a non-recirculating system. Net uptake and/or release of Ca2+, K+ and H+ by the liver (measured by ion-selective electrodes) were correlated with the glycogenolytic effects of phenylephrine. Uptake and retention of 45Ca by the mitochondria of perfused livers were studied to obtain information on the role played by exchangeable mitochondrial calcium in alpha-adrenergic activation of glycogenolysis. 2. Between 1 and 5 min after starting the addition of phenylephrine a net release of Ca2+ was observed, this was paralleled by an uptake of K+. Production rates of glucose and lactate from endogenous glycogen started to increase at the same time. During the following minutes K+ was released. 2 mM EGTA and a high concentration of Mg2+ strongly diminished the ionic and metabolic responses to phenylephrine, 0.2 mM EGTA was less effective. 3. High concentrations of K+ prevented the metabolic response to phenylephrine but had no effect on the release of Ca2+ into the extracellular medium. Tetracaine activated glycogenolysis and suppressed all the effects of the alpha-adrenergic agonist. 4. Experiments with 45Ca provided no evidence for an alpha-adrenergic release of Ca2+ from the exchangeable mitochondrial pool. Incorporation of 45Ca into the mitochondria of perfused livers was enhanced by phenylephrine. 5. We propose that the alpha-adrenergic release of Ca2+ from a pool located close to the surface of the cell is capable of triggering the glycogenolytic response.  相似文献   

11.
Rates of transamination and decarboxylation of [1-14C]leucine at a physiological concentration (0.1 mM) were measured in the perfused rat heart. In hearts from fasted rats, metabolic flux through the branched-chain 2-oxo acid dehydrogenase reaction was low initially, but increased gradually during the perfusion period. The increase in 14CO2 production was accompanied by an increase in the amount of active branched-chain 2-oxo acid dehydrogenase complex present in the tissue. In hearts from rats fed ad libitum, extractable branched-chain dehydrogenase activity was low initially, but increased rapidly during perfusion, and high rates of decarboxylation were attained within the first 10 min. Infusion of glucagon, adrenaline, isoprenaline, or adrenaline in the presence of phentolamine all produced rapid, transient, inhibition (40-50%) of the formation of 4-methyl-2-oxo[1-14C]pentanoate and 14CO2 within 1-2 min, but the specific radioactivity of 4-methyl-2-oxo[14C]pentanoate released into the perfusate remained constant. Glucagon and adrenaline infusion also resulted in transient decreases (16-24%) in the amount of active branched-chain 2-oxo acid dehydrogenase. In hearts from fasted animals, infusion for 10 min of adrenaline, phenylephrine, or adrenaline in the presence of propranolol, but not infusion of glucagon or isoprenaline, stimulated the rate of 14CO2 production 3-fold, and increased 2-fold the extractable branched-chain 2-oxo acid dehydrogenase activity. These results demonstrate that stimulation of glucagon or beta-adrenergic receptors in the perfused rat heart causes a transient inhibition of branched-chain amino acid metabolism, whereas alpha-adrenergic stimulation causes a slower, more sustained, enhancement of branched-chain amino acid metabolism. Both effects reflect interconversion of the branched-chain 2-oxo acid dehydrogenase complex between active and inactive forms. Also, these studies suggest that the concentration of branched-chain 2-oxo acid available for decarboxylation can be regulated by adrenaline and glucagon.  相似文献   

12.
The effect of alpha-adrenergic agonists on Ca2+ fluxes was examined in the perfused rat liver by using a combination of Ca2+-electrode and 45Ca2+-uptake techniques. We showed that net Ca2+ fluxes can be described by the activities of separate Ca2+-uptake and Ca2+-efflux components, and that alpha-adrenergic agonists modulate the activity of both components in a time-dependent manner. Under resting conditions, Ca2+-uptake and -efflux activities are balanced, resulting in Ca2+ cycling across the plasma membrane. The alpha-adrenergic agonists vasopressin and angiotensin, but not glucagon, stimulate the rate of both Ca2+ efflux and Ca2+ uptake. During the first 2-3 min of alpha-agonist administration the effect on the efflux component is the greater, the net effect being efflux of Ca2+ from the cell. After 3-4 min of phenylephrine treatment, net Ca2+ movements are essentially complete, however, the rate of Ca2+ cycling is significantly increased. After removal of the alpha-agonist a large stimulation of the rate of Ca2+ uptake leads to the net accumulation of Ca2+ by the cell. The potential role of these Ca2+ flux changes in the expression of alpha-adrenergic-agonist-mediated effects is discussed.  相似文献   

13.
1. Addition of 1-chloro-2,4-dinitrobenzene to isolated perfused rat liver results in the rapid formation of its glutathione-S-conjugate [S-(2,4-dinitrophenyl)glutathione], which is released into both, bile and effluent perfusate. Anisotonic perfusion did not affect total S-conjugate formation, but release of the S-conjugate into the perfusate was increased (decreased) following hypertonic (hypotonic) exposure at the expense of excretion into bile. Stimulation of S-conjugate release into the perfusate following hypertonic exposure paralleled the time course of volume-regulatory net K+ uptake. 2. Basal steady-state release of oxidized glutathione (GSSG) into bile was 1.30 +/- 0.12 nmol.g-1.min-1 (n = 18) during normotonic (305 mOsmol/l) perfusion and was 3.8 +/- 0.3 nmol.g-1.min-1 in the presence of t-butylhydroperoxide (50 mumol/l). Hypotonic exposure (225 mOsmol/1) lowered both, basal and t-butylhydroperoxide (50 mumol/l)-stimulated GSSG release into bile by 35% and 20%, respectively, whereas hypertonic exposure (385 mOsmol/l) increased. Anisotonic exposure was without effect on t-butylhydroperoxide removal by the liver. GSSG release into bile also decreased by 33% upon liver-cell swelling due to addition of glutamine plus glycine (2 mmol/l, each). 3. Hypotonic exposure led to a persistent stimulation 14CO2 production from [1-14C]glucose by about 80%, whereas 14CO2 production from [6-14C]glucose increased by only 10%. Conversely, hypertonic exposure inhibited 14CO2 production from [1-14C]glucose by about 40%, whereas 14CO2 production from [6-14C]glucose was unaffected. The effect of anisotonicity on 14CO2 production from [1-14C]glucose was also observed in presence of t-butylhydroperoxide (50 mumol/l), which increased 14CO2 production from [1-14C]glucose by about 40%. 4. t-Butylhydroperoxide (50 mumol/l) was without significant effect on volume-regulatory K+ fluxes following exposure to hypotonic (225 mOsmol/l) or hypertonic (385 mOsmol/l) perfusate. Lactate dehydrogenase release from perfused rat liver under the influence of t-butylhydroperoxide was increased by hypertonic exposure compared to hypotonic perfusions. 5. The data suggest that hypotonic cell swelling stimulates flux through the pentose-phosphate pathway and diminishes loss of GSSG under conditions of mild oxidative stress. Hypotonically swollen cells are less prone to hydroperoxide-induced lactate dehydrogenase release than hypertonically shrunken cells. Hypertonic cell shrinkage stimulates the excretion of glutathione-S-conjugates into the sinusoidal circulation at the expense of biliary secretion.  相似文献   

14.
Regulation of hepatic energy metabolism by epidermal growth factor   总被引:2,自引:0,他引:2  
Employing the non-recirculating perfused rat liver preparation, we have investigated the regulation of hepatic gluconeogenesis, and metabolic fluxes through the tricarboxylic acid cycle and 2-oxoglutarate dehydrogenase reaction by epidermal growth factor (EGF) which mimics the actions of both insulin and Ca(2+)-mobilizing hormones (e.g. vasopressin). As monitored by the rate of 14CO2 production from [2-14C]pyruvate (0.5 mM), EGF (10 nM) transiently stimulated the activity of the tricarboxylic acid cycle. EGF also transiently stimulated hepatic gluconeogenesis from pyruvate. The transient stimulation of tricarboxylic acid cycle activity and gluconeogenesis were accompanied by an increase in perfusate Ca2+ content indicating that EGF also altered hepatic Ca2+ fluxes. EGF-elicited stimulation of gluconeogenesis was, at least in part, the result of a transient (50%) inhibition of pyruvate kinase activity. Likewise, EGF-mediated stimulation of tricarboxylic acid cycle activity can, in part, be attributed to EGF-elicited stimulation of metabolic flux through the mitochondrial, Ca(2+)-sensitive, 2-oxoglutarate dehydrogenase reaction. The regulation of hepatic metabolism by EGF appears to be the manifestation of alteration in cellular Ca2+ content since in experiments performed under conditions known to abolish the ability of EGF to alter cytosolic free-Ca2+ concentrations, i.e. in livers of pertussis-toxin-treated rats, EGF did not alter either perfusate Ca2+ content or any of the metabolic parameters monitored. Additionally, experiments involving pulsatile infusion of either EGF or phenylephrine into livers demonstrated that, unlike the alpha 1-adrenergic receptor, homologous desensitization of the EGF receptor occurs. Such a homologous desensitization of the EGF receptor can explain the transient nature of EGF-elicited stimulation of various metabolic processes. Since protein kinase C activation by EGF can lead to receptor desensitization, experiments were performed with phorbol esters which either activate or do not alter protein kinase C activity. While the inactive phorbol ester 4 alpha-phorbol 12,13-didecanoate did not modulate the hepatic actions of EGF, activation of protein kinase C by 4 beta-phorbol 12-myristate 13-acetate (70 nM) abolished the ability of EGF to stimulate gluconeogenesis, tricarboxylic acid cycle activity and metabolic flux through the 2-oxoglutarate dehydrogenase complex.  相似文献   

15.
To identify the role of Ca2+ mobilization from intracellular pool(s) in the action of alpha-adrenergic agonist, the effects of dantrolene on phenylephrine-induced glycogenolysis were investigated in perfused rat liver. Dantrolene (5 X 10(-5) M) inhibited both glycogenolysis and 45Ca efflux induced by 5 X 10(-7) M phenylephrine. The inhibition by dantrolene was observed in the presence and absence of perfusate calcium. In contrast, dantrolene did not inhibit glycogenolysis induced by glucagon. To confirm the specificity of dantrolene action on calcium release in liver, experiments were also carried out using isolated hepatocytes. Dantrolene did not affect phenylephrine-induced production of inositol 1,4,5-trisphosphate. The compound did inhibit a rise in cytoplasmic Ca2+ concentration induced by phenylephrine both in the presence and absence of extracellular Ca2+. Thus, these results suggest that calcium release from an intracellular pool is essential for the initiation of alpha-adrenergic stimulation of glycogenolysis in the perfused rat liver.  相似文献   

16.
In isolated rat hepatocytes phenylephrine promotes a rapid increase in the amount of pyruvate dehydrogenase present in its active form (PDHa). This action is mediated by alpha 1-adrenergic receptors and is not observed in Ca2+-depleted hepatocytes. It is mimicked by the Ca2+ ionophore A23187. No changes in metabolites known to affect PDH activity are measured 3 min after addition of phenylephrine. Glucagon also increases PDHa, its action is additive to that of phenylephrine. The action of phenylephrine on PDHa could be explained by an increase in mitochondrial free Ca2+.  相似文献   

17.
A Ca2+-sensitive electrode was used to study net Ca2+-flux changes induced by the administration of phenylephrine, vasopressin and angiotensin to the perfused rat liver. The studies reveal that, although the Ca2+ responses induced by vasopressin and angiotensin are similar, they are quite different from the Ca2+ fluxes induced by phenylephrine. The administration of phenylephrine is accompanied by a stimulation of a net amount of Ca2+ efflux (140 nmol/g of liver). A re-uptake of a similar amount of Ca2+ occurs only after the hormone is removed. In contrast, the administration of vasopressin or angiotensin to livers perfused with 1.3 mM-Ca2+ induces the release of a relatively small amount of Ca2+ (approx. 40 nmol/g of liver) during the first 60 s. This is followed by a much larger amount of Ca2+ uptake (70-140 nmol/g of liver) after 1-2.5 min of hormone administration, and a slow efflux or loss of a similar amount of Ca2+ over a period of 6-8 min. At lower concentrations of perfusate Ca2+ (less than 600 microM) these hormones induce only a net efflux of the ion. These results suggest that at physiological concentrations of extracellular Ca2+ the mechanism by which alpha-adrenergic agonists mobilize cellular Ca2+ is different from that involving vasopressin and angiotensin. It seems that the hormones may have quite diverse effects on Ca2+ transport across the plasma membrane and perhaps organellar membranes in liver.  相似文献   

18.
The effect of Ca2+ on the rate of pyruvate carboxylation was studied in liver mitochondria from control and glucagon-treated rats, prepared under conditions that maintain low Ca2+ levels (1-3 nmol/mg of protein). When the matrix-free [Ca2+] was low (less than 100 nM), the rate of pyruvate carboxylation was not significantly different in mitochondria from control and glucagon-treated rats. Accumulation of 5-8 nmol of Ca2+/mg, which increased the matrix [Ca2+] to 2-5 microM in both preparations, significantly enhanced pyruvate carboxylase flux by 20-30% in the mitochondria from glucagon-treated rats, but had little effect in control preparations. Higher levels of Ca2+ (up to 75 nmol/mg) inhibited pyruvate carboxylation in both preparations, but the difference between the mitochondria from control and glucagon-treated animals was maintained. The enhancement of pyruvate dehydrogenase flux by mitochondrial Ca2+ uptake was also significantly greater in mitochondria from glucagon-treated rats. These differential effects of Ca2+ uptake on enzyme fluxes did not correlate with changes in the mitochondrial ATP/ADP ratio, the pyrophosphate level, or the matrix volume. Arsenite completely prevented 14CO2 incorporation when pyruvate was the only substrate, but caused only partial inhibition when succinate and acetyl carnitine were present as alternative sources of energy and acetyl-CoA. Under these conditions, mitochondria from glucagon-treated rats were less sensitive to arsenite than the control preparations, even at low Ca2+ levels. We conclude that the Ca(2+)-dependent enhancement of pyruvate carboxylation in mitochondria from glucagon-treated rats is a secondary consequence of pyruvate dehydrogenase activation; glucagon treatment is suggested to affect the conditions in the mitochondria that change the sensitivity of the pyruvate dehydrogenase complex to dephosphorylation by the Ca(2+)-sensitive pyruvate dehydrogenase phosphatase.  相似文献   

19.
The regulatory consequences of acetate infusion on the pyruvate and the branched chain α-keto acid dehydrogenase reactions in the isolated, perfused rat liver were investigated. Metabolic flux through these two decarboxylation reactions was monitored by measuring the rate of 14CO2 production from infused 1-14C-labeled substrates. When acetate was presented to the liver as the sole substrate the rate of ketogenesis which resulted was maximal at concentrations of acetate in excess of 10 mm. The increase in hepatic ketogenesis during acetate infusion was not accompanied by an alteration of the mitochondrial oxidation-reduction state as measured by the ratio of β-hydroxybutyrate/ acetoacetate in the effluent perfusate. While acetate infusion did not affect the rate of α-keto[1-14C]isocaproate decarboxylation, the rate of α-keto[1-14C]isovalerate decarboxylation was stimulated appreciably upon acetate addition. No change was observed in the amount of extractable branched chain α-keto acid dehydrogenase during acetate infusion. The rate of [1-14C]pyruvate decarboxylation was stimulated in the presence of acetate at low (<1 mm) but not at high (>1 mm) perfusate pyruvate concentrations. The stimulation of the metabolic flux through the pyruvate dehydrogenase reaction upon acetate infusion was accompanied by an increase in the activation state of the pyruvate dehydrogenase complex from 25.7 to 35.6% in the active form. In a liver perfused in the presence of the pyruvate dehydrogenase kinase inhibitor, dichloroacetate, at a low concentration of pyruvate (0.05 mm) the infusion of acetate did not affect the rate of pyruvate decarboxylation. As the rate of mitochondrial acetoacetate efflux is increased during acetate infusion the stimulation of pyruvate and α-ketoisovalerate decarboxylation is attributed to an accelerated rate of exchange of mitochondrial acetoacetate for cytosolic pyruvate or α-ketoisovalerate on the monocarboxylate transporter.  相似文献   

20.
Glucagon stimulates flux through the glycine cleavage system (GCS) in isolated rat hepatocytes (Jois, M., Hall, B., Fewer, K., and Brosnan, J. T. (1989) J. Biol. Chem. 264, 3347-3351. In the present study, flux through GCS was measured in isolated rat liver perfused with 100 nM glucagon, 1 microM epinephrine, 1 microM norepinephrine, 10 microM phenylephrine, or 100 nM vasopressin. These hormones increased flux through GCS in perfused rat liver by 100-200% above the basal rate. The possibility that the stimulation of flux by adrenergic agonists and vasopressin is mediated by increases in cytoplasmic Ca2+ which in turn could regulate mitochondrial glycine catabolism was examined by measuring flux through GCS in isolated mitochondria in the presence of 0.04-2.88 microM free Ca2+. Flux through GCS in isolated mitochondria was exquisitely sensitive to free Ca2+ in the medium; half-maximal stimulation occurred at about 0.4 microM free Ca2+ and maximal stimulation (7-fold) was reached when the free Ca2+ in the medium was 1 microM. The Vmax (nanomoles/mg protein/min) and Km (millimolar) values for the flux through GCS in intact mitochondria were 0.67 +/- 0.16 and 20.66 +/- 4.82 in the presence of 1 mM [ethylenebis(oxyethylenenitrilo)]tetraacetic acid and 3.28 +/- 0.76 and 10.98 +/- 1.91 in presence of 0.5 microM free Ca2+, respectively. The results show that the flux through GCS is sensitive to concentrations of calcium which would be achieved in the cytoplasm of hepatocytes stimulated by calcium-mobilizing hormones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号