首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Tonic electrical activity of different groups of afferent fibers of the intact vagus nerve arising in stretch receptors of the lungs was investigated in acute experiments on cats. The method of coincidence of recorded action potentials was used: Recordings were taken from two points of the nerve, the flow of impulses was delayed by the time taken for their conduction along the nerve between the channels in the one that received it first, and impulses from both channels were then led to a coincidence unit. Fibers with a range of conduction velocities from 8 to 65 m/sec were shown to participate in the transmission of tonic activity from stretch receptors of the lungs to the CNS. Two groups of most active afferent fibers with conduction velocities within the range 35–46 m/sec (mean 41±2.5 m/sec) and 26–34 m/sec (mean 29.4±1.4 m/sec) were distinguished.  相似文献   

4.
Alterations induced by the cholinesterase inhibitor armin (5.10(-7) g/ml) in the ultrastructure of motor nerve endings of the rat phrenic diaphragmal preparations at rest or electric stimulation of the nerve were studied. It was shown that armin at rest induced ultrastructural lesions in the endings similar to those in the control preparations during nerve stimulation. Electric stimulation did not produce additional changes in the ultrastructure of the neuromuscular junction under armin action. It is suggested that the disorder of the nerve ending function may be of importance in the mechanism of the blocking action of armin on the neuromuscular transmission.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
The purpose of this study was to investigate whether age-related changes in motor unit (MU) contractile properties are reflected in parameters of motor unit action potentials (MUAPs). MUs of the medial gastrocnemius muscle were functionally isolated in anaesthetized Wistar rats. A control group of young animals (5–10 mo) was compared to two groups of old rats (24–25 mo and 28–30 mo). The basic contractile properties of MUs as well as the amplitude, total duration, peak-to-peak time, and number of turns within MUAPs were measured. Effects of aging were mainly observed for fast fatigable MUs (a prolongation of MUAPs and increased number of turns). The MUAP amplitude did not change significantly with aging in either MU type, but it correlated to the twitch or tetanic forces, which tended to increase with age, especially for slow MUs. We concluded that the prolongation of MUAPs and the greater incidence of signal turns was probably a result of a decrease in muscle fiber conduction velocity and/or an increase in their dispersion, and enlargement of MU territories – presumably caused by axonal sprouting of surviving motoneurons. The latter might also be responsible for the observed age-related tendency for a increase in MUAP amplitudes in slow MUs.  相似文献   

14.
The coordinated movement of many organisms relies on efficient nerve–muscle communication at the neuromuscular junction (NMJ), a peripheral synapse composed of a presynaptic motor axon terminal, a postsynaptic muscle specialization, and non-myelinating terminal Schwann cells. NMJ dysfunctions are caused by traumatic spinal cord or peripheral nerve injuries as well as by severe motor pathologies. Compared to the central nervous system, the peripheral nervous system displays remarkable regenerating abilities; however, this capacity is limited by the denervation time frame and depends on the establishment of permissive regenerative niches. At the injury site, detailed information is available regarding the cells, molecules, and mechanisms involved in nerve regeneration and repair. However, a regenerative niche at the final functional step of peripheral motor innervation, i.e. at the mature neuromuscular synapse, has not been deciphered. In this review, we integrate classic and recent evidence describing the cells and molecules that could orchestrate a dynamic ecosystem to accomplish successful NMJ regeneration. We propose that such a regenerative niche must ensure at least two fundamental steps for successful NMJ regeneration: the proper arrival of incoming regenerating axons to denervated postsynaptic muscle domains, and the resilience of those postsynaptic domains, in morphological and functional terms. We here describe and combine the main cellular and molecular responses involved in each of these steps as potential targets to help successful NMJ regeneration.  相似文献   

15.
The NMJ (neuromuscular junction) serves as the ultimate output of the motor neurons. The NMJ is composed of a presynaptic nerve terminal, a postsynaptic muscle and perisynaptic glial cells. Emerging evidence has also demonstrated an existence of perisynaptic fibroblast-like cells at the NMJ. In this review, we discuss the importance of Schwann cells, the glial component of the NMJ, in the formation and function of the NMJ. During development, Schwann cells are closely associated with presynaptic nerve terminals and are required for the maintenance of the developing NMJ. After the establishment of the NMJ, Schwann cells actively modulate synaptic activity. Schwann cells also play critical roles in regeneration of the NMJ after nerve injury. Thus, Schwann cells are indispensable for formation and function of the NMJ. Further examination of the interplay among Schwann cells, the nerve and the muscle will provide insights into a better understanding of mechanisms underlying neuromuscular synapse formation and function.  相似文献   

16.
17.
The effects induced by training on the H-reflex of soleus and lateral gastrocnemius muscles have been studied on 19 adult male volunteers; out of these, 10 were non-trained subjects and the remaining 9 were top level athletes engaged in sports requiring very rapid and intense contractions (sprinters and volley-ball players). It has been observed that the latency of the M response is significantly higher in the athletes than in the non-trained subjects. Instead, no significant differences were observed between these two groups, concerning the latency of H response. The increase of M response latency is likely due to a decrease of nerve conduction velocity in the terminal part of motor fibers. The possibility that this conduction speed decrease could be dependent on sprouting and/or terminal branching growth of the motor nerve ending is discussed.  相似文献   

18.
19.
In this paper, the acute changes in the compound motor action potential (CMAP) during mechanical stretch were studied in hamster sciatic nerve and compared to the changes that occur during compression.In response to stretch, the nerve physically broke when a mean force of 331 gm (3.3 N) was applied while the CMAP disappeared at an average stretch force of 73 gm (0.73 N). There were 5 primary measures of the CMAP used to describe the changes during the experiment: the normalized peak to peak amplitude, the normalized area under the curve (AUC), the normalized duration, the normalized velocity and the normalized velocity corrected for the additional path length the impulses travel when the nerve is stretched. Each of these measures was shown to contain information not available in the others.During stretch, the earliest change is a reduction in conduction velocity followed at higher stretch forces by declines in the amplitude of the CMAP. This is associated with the appearance of spontaneous EMG activity. With stretch forces < 40 gm (0.40 N), there is evidence of increased excitability since the corrected velocities increase above baseline values. In addition, there is a remarkable increase in the peak to peak amplitude of the CMAP after recovery from stretch < 40 gm, often to 20% above baseline.Multiple means of predicting when a change in the CMAP suggests a significant stretch are discussed and it is clear that a multifactorial approach using both velocity and amplitude parameters is important. In the case of pure compression, it is only the amplitude of the CMAP that is critical in predicting which changes in the CMAP are associated with significant compression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号