首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
R Y Chuang  L F Chuang 《Biochemistry》1979,18(10):2069-2073
In vitro RNA synthesis by isolated RNA polymerase II of chicken myeloblastosis cells was shown to be highly sensitive to adriamycin inhibition. The template activity of the single-stranded DNA, purified by chromatography of denatured calf thymus DNA through hydroxylapatite columns, was found to be equally as sensitive to the inhibition as denatured calf thymus DNA. However, contrary to denatured DNA, the single-stranded DNA thus purified showed no significant binding to adriamycin as analyzed by cosedimentation of the drug and DNA through a sucrose gradient. This indicated that inhibition of RNA synthesis on a single-stranded DNA template might involve a mechanism other than DNA intercalation. Kinetic studies of the inhibition showed that the inhibition of RNA synthesis by adriamycin could not be reversed by increasing the concentrations of RNA polymerase and four nucleoside triphosphates, but it could be reversed by increasing DNA concentrations. Analysis of the size of RNA synthesized indicated that the ultimate size of the product RNA was not altered by adriamycin, suggesting that the drug may inhibit RNA synthesis by reducing RNA chain initiation.  相似文献   

4.
Coliphage N4 virion-encapsidated, DNA-dependent RNA polymerase (vRNAP) is inactive on double-stranded N4 DNA; however, denatured promoter-containing templates are accurately transcribed. We report that all determinants of vRNAP promoter recognition exist in the template strand, indicating that this enzyme is a site-specific, single-stranded DNA-binding protein. We show that conserved sequences and the integrity of inverted repeats present at the promoters are essential for activity, suggesting the necessity for specific secondary structure. Evidence for such a structure is presented. We propose a model for in vivo utilization of vRNAP promoters in which template negative supercoiling yields single-strandedness at the promoter to reveal the determinants of vRNAP binding. This structure is stabilized by the binding of E. coli single-stranded DNA-binding protein to yield an "activated promoter."  相似文献   

5.
6.
7.
8.
9.
10.
Unique single-stranded regions of simian virus 40 DNA, phage M13 virion DNA, and several homopolymers were used as templates for the synthesis of (p)ppRNA-DNA chains by CV-1 cell DNA primase-DNA polymerase alpha. Intact RNA primers, specifically labeled with an RNA capping enzyme, were typically 6 to 8 ribonucleotides long, although their lengths ranged from 1 to 9 bases. The fraction of intact RNA primers 1 to 4 ribonucleotides long was 14 to 73%, depending on the template used. RNA primer length varied among primers initiated at the same nucleotide, as well as with primers initiated at different sites. Thus, the size of an RNA primer depended on template sequence. Initiation sites were identified by mapping 5' ends of nascent RNA-DNA chains on the template sequence, identifying the 5'-terminal ribonucleotide, and partially sequencing one RNA primer. A total of 56 initiation events were identified on simian virus 40 DNA, an average of 1 every 16 bases. Some sites were preferred over others. A consensus sequence for initiation sites consisted of either 3'-dCTTT or 3'-dCCC centered within 7 to 25 pyrimidine-rich residues; the 5' ends of RNA primers were complementary to the dT or dC. High ATP/GTP ratios promoted initiation of RNA primer synthesis at 3'-dCTTT sites, whereas low ATP/GTP ratios promoted initiation at 3'-dCCC sites. Similarly, polydeoxythymidylic acid and polydeoxycytidylic acid were the only effective homopolymer templates. Thus, both template sequence and ribonucleoside triphosphate concentrations determine which initiation sites are used by DNA primase-DNA polymerase alpha. Remarkably, initiation sites selected in vitro were strikingly different from initiation sites selected during simian virus 40 DNA replication in vivo.  相似文献   

11.
12.
S G LaBonne  L B Dumas 《Biochemistry》1983,22(13):3214-3219
We sought a protein from yeast that would bind more strongly to single-stranded DNA than to duplex DNA and would stimulate the activity of the major yeast DNA polymerase, but not polymerases from other organisms. We isolated a protein that binds about 200 times more strongly to single-stranded DNA than duplex DNA and stimulates yeast DNA polymerase I activity 4-5-fold. It inhibits synthesis catalyzed by calf thymus DNA polymerase alpha and has little effect on T4 DNA polymerase. This yeast protein, SSB-1, has a molecular weight of approximately 40 000. At apparent saturation there is one protein molecule bound per 40 nucleotides. Protein binding causes the single-stranded DNA molecule to assume a relatively extended conformation. It binds to single-stranded RNA as strongly as to DNA. SSB-1 increases the initial rate of polymerization catalyzed by yeast DNA polymerase I apparently by increasing the processivity of the enzyme. We estimate there are 7500-30 000 molecules of SSB-1 per yeast cell, enough to bind at least 400-1600 nucleotides per replication fork. Thus it is present in sufficient abundance to participate in DNA replication in vivo in the manner suggested by these in vitro experiments.  相似文献   

13.
Synthesis of (p)ppRNA-DNA chains by purified HeLa cell DNA primase-DNA polymerase alpha (pol alpha-primase) was compared with those synthesized by a multiprotein form of DNA polymerase alpha (pol alpha 2) using unique single-stranded DNA templates containing the origin of replication for simian virus 40 (SV40) DNA. The nucleotide locations of 33 initiation sites were identified by mapping G*pppN-RNA-DNA chains and identifying their 5'-terminal ribonucleotide. Pol alpha 2 strongly preferred initiation sites that began with ATP rather than GTP, thus frequently preferring different initiation sites than pol alpha-primase, depending on the template examined. The initiation sites selected in vitro, however, did not correspond to the sites used during SV40 DNA replication in vivo. Pol alpha 2 had the greatest effect on RNA primer size, typically synthesizing primers 1-5 nucleotides long, while pol alpha-primase synthesized primers 6-8 nucleotides long. These differences were observed even at individual initiation sites. Thus, the multiprotein form of DNA primase-DNA polymerase alpha affects selection of initiation sites, the frequency at which the sites are chosen, and length of RNA primers.  相似文献   

14.
15.
16.
Matlock DL  Heyduk T 《Biochemistry》2000,39(40):12274-12283
It has been recently suggested that E. coli RNA polymerase can specifically recognize a fork junction DNA structure, suggesting a possible role for such interaction in promoter DNA melting [Guo, Y., and Gralla, J. D. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 11655-11660]. We have determined here quantitatively, using a site-specific binding assay, the effects of base substitutions within the conserved -10 hexamer in the context of a short fork junction DNA on binding to RNA polymerase. Adenine at position -11 and thymine at position -7 were found to be critical for sequence-specific recognition of the DNA. The identities of bases at positions -9 and -8 were found to be not important for the binding whereas replacement of bases at positions -12 and -10 had a mild negative effect on the binding affinity. It was found that for the binding of fork DNA to RNA polymerase, specific sequence recognition was more important than specific recognition of fork junction DNA structure. The pattern of relative importance of bases in the -10 region for binding RNA polymerase was generally consistent with the sequence conservation pattern observed in nature where positions -11 and -7 are the most conserved. Binding experiments with a series of adenine analogues at position -11 revealed that the N1 nitrogen of adenine was a critical determinant for the preference of the adenine at this position, suggesting a mechanism for the nucleation of promoter DNA melting initiation in which RNA polymerase destabilizes duplex DNA by directly competing with the thymine of the A-T base pair for hydrogen bonding to the N1 position of the -11 nontemplate strand adenine.  相似文献   

17.
18.
We have purified and characterized a single-stranded DNA binding protein (N4 SSB) induced after coliphage N4 infection. It has a monomeric molecular weight of 31,000 and contains 10 tyrosine and 1-2 tryptophan amino acid residues. Its fluorescence spectrum is dominated by the tyrosine residues, and their fluorescence is quenched when the protein binds single-stranded DNA. Fluorescence quenching was used as an assay to quantitate binding of the protein to single-stranded nucleotides. The N4 single-stranded DNA binding protein binds cooperatively to single-stranded nucleic acids and binds single-stranded DNA more tightly than RNA. The binding involves displacement of cations from the DNA and anions from the protein. The apparent binding affinity is very salt-dependent, decreasing as much as 1,000-fold for a 10-fold increase in NaCl concentration. The degree of cooperativity (omega) is relatively independent of salt concentration. At 37 degrees C in 0.22 M NaCl, the protein has an intrinsic binding constant for M13 viral DNA of 3.8 x 10(4) M-1, a cooperativity factor omega of 300, and binding site size of 11 nucleotides per monomer. The protein lowers the melting point of poly(dA.dT).poly(dA-dT) by greater than 60 degrees C but cannot lower the melting transition or assist in the renaturation of natural DNA. N4 single-stranded DNA binding protein enhances the rate of DNA synthesis catalyzed by the N4 DNA polymerase by increasing the processivity of the N4 DNA polymerase and melting out hairpin structures that block polymerization.  相似文献   

19.
20.
Strand separation in promoter DNA induced by Escherichia coli RNA polymerase is likely initiated at a conserved A residue at position -11 of the nontemplate strand. Here we describe the use of fluorescence techniques to study the interaction of RNA polymerase with the -11 base. Forked DNA templates were employed, containing the fluorescent base, 2-aminopurine (2AP), substituted at the -11 position in a single-stranded tail comprising the nucleotides on the nontemplate strand at which base pairing is disrupted in an RNA polymerase-promoter complex. We demonstrate that the presence of 2AP instead of an A at position -11 has no major effect on the accessibility of DNA to DNase I or KMnO(4) in the presence or absence of RNA polymerase, thus justifying the use of templates containing the 2AP substitution in the fluorescence studies. A blue shift of the 2AP fluorescence emission maximum is observed in the presence of RNA polymerase. The results of fluorescence anisotropy decay studies indicate that about 60% of the 2AP residues at -11 are immobilized in an RNA polymerase complex. This value is in good agreement with the fraction of 2AP-substituted templates determined to be in a stable, heparin-resistant complex with RNA polymerase. These results are consistent with the residue at -11 being tightly bound in a hydrophobic pocket of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号