首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate models predict a dramatic increase in the annual frequency and severity of extreme weather events during the next century. Here we show that increases in the annual frequency of severe storms lead to a decrease in the diversity and complexity of food webs of giant kelp forests, one of the most productive habitats on Earth. We demonstrate this by linking natural variation in storms with measured changes in kelp forest food web structure in the Santa Barbara Channel using structural equation modeling (SEM). We then match predictions from statistical models to results from a multiyear kelp removal experiment designed to simulate frequent large storms. Both SEM models and experiments agree: if large storms remain at their current annual frequency (roughly one major kelp‐removing storm every 3.5 years), periodic storms help maintain the complexity of kelp forest food webs. However, if large storms increase in annual frequency and begin to occur year after year, kelp forest food webs become less diverse and complex as species go locally extinct. The loss of complexity occurs primarily due to decreases in the diversity and complexity of higher trophic levels. Our findings demonstrate that shifts in climate‐driven disturbances that affect foundation species are likely to have impacts that cascade through entire ecosystems.  相似文献   

2.
SUMMARY 1. There is little information on the impacts of deforestation on the fish fauna in neotropical streams, and on parameters influencing species diversity and community structure of fish. We analysed these aspects in 12 stream sites in the Ecuadorian Amazon. The stream sites represented a large gradient in canopy cover and were located in an area of fragmented forest. While some streams had been deforested, they had not suffered gross degradation of the habitat.
2. The species richness of stream fish was not related to deforestation. Local fish diversity (Fisher's Alpha) was positively related to the surface area of stream pools (m2). Beta diversity was higher among forested than deforested sites, indicating greater heterogeneity in species composition among forested than deforested sites. The percentage of rare species was positively correlated with canopy cover.
3. Total fish density increased with deforestation, and the fish community changed from dominance by omnivorous and insectivorous Characiformes at forested sites to dominance of periphyton-feeding loricariids at deforested sites.
4. Multidimensional statistical analysis of fish community structure showed that six environmental variables (the area of stream bottom covered by leaves, relative pool area, particulate organic matter, mean depth, conductivity and suspended solids) were related to the ordination axes. The presence of leaves, which was strongly correlated to canopy cover, was the variable most closely related to fish community structure, while relative pool area was the second strongest variable. Thus, fish community structure was strongly affected by deforestation.  相似文献   

3.
Kelp forests worldwide are known as hotspots for macroscopic biodiversity and primary production, yet very little is known about the biodiversity and roles of microorganisms in these ecosystems. Secondary production by heterotrophic bacteria associated to kelp is important in the food web as a link between kelp primary production and kelp forest consumers. The aim of this study was to investigate the relationship between bacterial diversity and two important processes in this ecosystem; bacterial secondary production and primary succession on kelp surfaces. To address this, kelp, Laminaria hyperborea, from southwestern Norway was sampled at different geographical locations and during an annual cycle. Pyrosequencing (454-sequencing) of amplicons of the 16S rRNA gene of bacteria was used to study bacterial diversity. Incorporation of tritiated thymidine was used as a measure of bacterial production. Our data show that bacterial diversity (richness and evenness) increases with the age of the kelp surface, which corresponds to the primary succession of its bacterial communities. Higher evenness of bacterial operational taxonomical units (OTUs) is linked to higher bacterial production. Owing to the dominance of a few abundant OTUs, kelp surface biofilm communities may be characterized as low-diversity habitats. This is the first detailed study of kelp-associated bacterial communities using high-throughput sequencing and it extends current knowledge on microbial community assembly and dynamics on living surfaces.  相似文献   

4.
Deforestation rates in insular Southeast Asia between 2000 and 2010   总被引:1,自引:0,他引:1  
Insular Southeast Asia experienced the highest level of deforestation among all humid tropical regions of the world during the 1990s. Owing to the exceptionally high biodiversity in Southeast Asian forest ecosystems and the immense amount of carbon stored in forested peatlands, deforestation in this region has the potential to cause serious global consequences. In this study, we analysed deforestation rates in insular Southeast Asia between 2000 and 2010 utilizing a pair of 250 m spatial resolution land cover maps produced with regional methodology and classification scheme. The results revealed an overall 1.0% yearly decline in forest cover in insular Southeast Asia (including the Indonesian part of New Guinea) with main change trajectories to plantations and secondary vegetation. Throughout the region, peat swamp forests experienced clearly the highest deforestation rates at an average annual rate of 2.2%, while lowland evergreen forests declined by 1.2%/yr. In addition, the analysis showed remarkable spatial variation in deforestation levels within the region and exposed two extreme concentration areas with over 5.0% annual forest loss: the eastern lowlands of Sumatra and the peatlands of Sarawak, Borneo. Both of these areas lost around half of their year 2000 peat swamp forest cover by 2010. As a whole this study has shown that deforestation has continued to take place on high level in insular Southeast Asia since the turn of the millennium. These on‐going changes not only endanger the existence of numerous forest species endemic to this region, but they further increase the elevated carbon emissions from deforested peatlands of insular Southeast Asia thereby directly contributing to the rising carbon dioxide concentration in the atmosphere.  相似文献   

5.
Throughout the Amazon region, the age of forests regenerating on previously deforested land is determined, in part, by the periods of active land use prior to abandonment and the frequency of reclearance of regrowth, both of which can be quantified by comparing time-series of Landsat sensor data. Using these time-series of near annual data from 1973–2011 for an area north of Manaus (in Amazonas state), from 1984–2010 for south of Santarém (Pará state) and 1984–2011 near Machadinho d’Oeste (Rondônia state), the changes in the area of primary forest, non-forest and secondary forest were documented from which the age of regenerating forests, periods of active land use and the frequency of forest reclearance were derived. At Manaus, and at the end of the time-series, over 50% of regenerating forests were older than 16 years, whilst at Santarém and Machadinho d’Oeste, 57% and 41% of forests respectively were aged 6–15 years, with the remainder being mostly younger forests. These differences were attributed to the time since deforestation commenced but also the greater frequencies of reclearance of forests at the latter two sites with short periods of use in the intervening periods. The majority of clearance for agriculture was also found outside of protected areas. The study suggested that a) the history of clearance and land use should be taken into account when protecting deforested land for the purpose of restoring both tree species diversity and biomass through natural regeneration and b) a greater proportion of the forested landscape should be placed under protection, including areas of regrowth.  相似文献   

6.
Kelp forest ecosystems dominate 150,000 km of global temperate coastline, rivalling the coastal occurrence of coral reefs. Despite the astounding biological diversity and productive ecological communities associated with kelp forests, patterns of species richness and composition are difficult to monitor and compare. Crustose coralline algae are a critically important substrate for propagule settlement for a range of kelp forest species. Coralline‐covered cobbles are home to hundreds of species of benthic animals and algae and form a replicable unit for ecological assays. Here, we use DNA metabarcoding of bulk DNA extracts sampled from cobbles to explore patterns of species diversity in kelp forests of the central California coast. The data from 97 cobbles within kelp forest ecosystems at three sites in Central California show the presence of 752 molecular operational taxonomic units (MOTUs) and 53 MOTUs assigned up to the species level with >95% similarity to current databases. We are able to detect spatial patterns of important management targets such as abalone recruits, and localized abundance of sea stars in 2012. Comparison of classic ecological surveys of these sites reveals large differences in species targets for these two approaches. In order to make such comparisons more quantitative, we use Presence/Absence Metabarcoding, using the fraction of replicate cobbles showing a species as a measure of its local abundance. This approach provides a fast and repeatable survey method that can be applied for biodiversity assessments across systems to shed light on the impact of different ecological disturbances and the role played by marine protected areas.  相似文献   

7.
1. In sub‐Saharan Africa, tropical forests are increasingly threatened by accelerating rates of forest conversion and degradation. In East Africa, the larger tracts of intact rainforest lie largely in protected areas surrounded by converted landscape. Thus, there is critical need to understand the functional links between large‐scale land use and changes in river conditions, and the implications of park boundaries on catchment integrity. 2. The objective of this study was to use the mosaic of heavily converted land and pristine forest created by the protection of the high‐altitude rainforest in Bwindi Impenetrable National Park, Uganda to explore effects of deforestation on aquatic systems and the value of forest in buffering effects of adjacent land conversion. A set of 16 sites was selected over four drainages to include four categories of deforestation: agricultural land, deforested upstream (of the park boundary), forest edge (park boundary) and forest. We predicted that forest buffer (downstream or on the edge) would moderate effects of deforestation. To address this prediction, we quantified relationships between disturbance level and both physicochemical characters and traits of the macroinvertebrate assemblages during six sampling periods (February 2003 and June 2004). 3. Results of both principal components analysis and cluster analyses indicated differences in limnological variables among deforestation categories. PC1 described a gradient from deforested sites with poor water quality to pristine forested sites with relatively good water quality. Agricultural sites and deforested upstream sites generally had the highest turbidity, total dissolved solids (TDS), and conductivity values and low transparency values. Forest sites and boundary site groups generally exhibited low turbidity, TDS, and conductivity values and high water transparency values. Sites also clustered according to deforestation categories; forest and forested edge sites formed a cluster independent of both agricultural land and deforested‐upstream. 4. Water transparency, water temperature, and pH were the most important factors predicting benthic macroinvertebrate assemblages. Sensitive invertebrate families of Trichoptera, Ephemeroptera, Plecoptera, and Odonata dominated forested sites with high water transparency, low water temperature, and low pH while the tolerant families of Ephemeroptera, Diptera, Hemiptera, and Coleoptera were abundant in agriculturally impacted sites with low water transparency, high water temperature, and high pH. 5. This study provides support for the importance of riparian buffers in moderating effects of deforestation. Forest and forested edge sites were more similar in both limnological and macroinvertebrate assemblage structure than sites within or downstream from agricultural lands. If the protected area cannot encompass the catchment, the use of rivers as park boundaries may help to maintain the biological integrity of the rivers by buffering one side of the watercourse.  相似文献   

8.
Climatic variables such as temperature and precipitation play an important role in controlling local and regional scale differences in population dynamics and species distributions, and large-scale climatic events such as El Niño southern oscillation (ENSO) have been shown to affect population dynamics of key species in many ecosystems, particularly in kelp forests. Few studies have been able to evaluate the consequences of climate variables on the structure and dynamics of biological communities, in large part because the lack of data at appropriate spatial and temporal scales has made it difficult to adequately address local-scale responses of species and communities to such events over relevant time scales. Here, we combined an unprecedented dataset of kelp forest species' abundances from the Channel Islands, California with data for several local, regional, and global scale climatic variables to evaluate the temporal and spatial scale at which one can detect community-wide effects of climate variables, in particular ENSO events. We found large and significant local-scale differences in community structure, but these differences were not related to differences in climatic variables. Moreover, giant kelp abundance, which has been shown to be highly sensitive to water temperature and storm disturbance, was a poor predictor of community differences, and all communities tended to decline in abundance over the 20-year sampling period, suggesting a press perturbation to the system such as PDO cycles or sustained fishing pressure. Although ENSO events can have dramatic impacts on the abundance and distribution of giant kelp itself across the range of the species, such events appear to have little effect on local-scale kelp forest community structure or dynamics.  相似文献   

9.
Tropical forests have been facing high rates of deforestation driven by multiple anthropogenic disturbances, with severe consequences for biodiversity. However, the understanding of such effects on functional diversity is still limited in tropical regions, especially considering different ecological groups responses. Here, we evaluated the functional responses of birds to forest loss at the threatened Brazilian Atlantic forest, considering the complete assemblage, and both forest-dependent and non-forest-dependent species. Birds were surveyed in 40 forest sites with a forest cover gradient, located in two regions showing different land use types. We tested different models to assess the responses of functional diversity indices to forest loss in these sites. Although functional diversity did not differ between regions, forest and non-forest birds showed divergent responses to forest loss. Deforested landscapes presented an increase in functional richness (SESFRic) and evenness for forest species and an increase of functional dispersion for non-forest birds. Additionally, forested landscapes harbor birds presenting lower body mass and wing length, and non-forest species with lower tarsus length. The maintenance of some functional metrics through forest loss resulted from a compensatory dynamic between forest and non-forest birds, indicating that only evaluating the complete assemblage may mask important idiosyncratic patterns of different ecological groups. Although non-forest species are relatively capable to maintain bird functional diversity in deforested landscapes, forest birds are facing a drastic ongoing collapse in these sites, representing an alarming signal for the maintenance of forest ecosystem function.  相似文献   

10.
Species interactions can influence key ecological processes that support community assembly and composition. For example, coralline algae encompass extensive diversity and may play a major role in regime shifts from kelp forests to urchin-dominated barrens through their role in inducing invertebrate larval metamorphosis and influencing kelp spore settlement. In a series of laboratory experiments, we tested the hypothesis that different coralline communities facilitate the maintenance of either ecosystem state by either promoting or inhibiting early recruitment of kelps or urchins. Coralline algae significantly increased red urchin metamorphosis compared with a control, while they had varying effects on kelp settlement. Urchin metamorphosis and density of juvenile canopy kelps did not differ significantly across coralline species abundant in both kelp forests and urchin barrens, suggesting that recruitment of urchin and canopy kelps does not depend on specific corallines. Non-calcified fleshy red algal crusts promoted the highest mean urchin metamorphosis percentage and showed some of the lowest canopy kelp settlement. In contrast, settlement of one subcanopy kelp species was reduced on crustose corallines, but elevated on articulated corallines, suggesting that articulated corallines, typically absent in urchin barrens, may need to recover before this subcanopy kelp could return. Coralline species differed in surface bacterial microbiome composition; however, urchin metamorphosis was not significantly different when microbiomes were removed with antibiotics. Our results clarify the role played by coralline algal species in kelp forest community assembly and could have important implications for kelp forest recovery.  相似文献   

11.
Deforestation causes habitat loss, fragmentation, degradation, and can ultimately cause extinction of the remnant species. Tropical montane birds face these threats with the added natural vulnerability of narrower elevational ranges and higher specialization than lowland species. Recent studies assess the impact of present and future global climate change on species’ ranges, but only a few of these evaluate the potentially confounding effect of lowland deforestation on species elevational distributions. In the Western Andes of Colombia, an important biodiversity hotspot, we evaluated the effects of deforestation on the elevational ranges of montane birds along altitudinal transects. Using point counts and mist-nets, we surveyed six altitudinal transects spanning 2200 to 2800m. Three transects were forested from 2200 to 2800m, and three were partially deforested with forest cover only above 2400m. We compared abundance-weighted mean elevation, minimum elevation, and elevational range width. In addition to analysing the effect of deforestation on 134 species, we tested its impact within trophic guilds and habitat preference groups. Abundance-weighted mean and minimum elevations were not significantly different between forested and partially deforested transects. Range width was marginally different: as expected, ranges were larger in forested transects. Species in different trophic guilds and habitat preference categories showed different trends. These results suggest that deforestation may affect species’ elevational ranges, even within the forest that remains. Climate change will likely exacerbate harmful impacts of deforestation on species’ elevational distributions. Future conservation strategies need to account for this by protecting connected forest tracts across a wide range of elevations.  相似文献   

12.
ABSTRACT Large‐scale transformation of forested landscapes is a major factor in loss of biological diversity in the American tropics. Investigators examining the responses of species to deforestation rarely control for variation in the amount of forest relative to other habitats at the landscape‐level. Bellavista Reserve on the western slope of the Andes in Ecuador is located between similar‐sized areas of pristine, protected forest, and deforested landscapes. We used strip‐transect counts and mist netting to evaluate habitat use by passerine birds in a habitat mosaic consisting of abandoned pastures, forest edges, forest fragments, and large blocks of interior tropical montane cloud forest (TMCF). During 3600 net hours, we had 1476 captures, including 346 recaptures. Of 78 species captured in mist nets, 30 had sufficient counts for Poison Rate Regression (PRR) modeling (a statistical method for comparing counts). Twelve species (40%) had capture patterns indicative of an affinity for mature TMCF, and 6 species (20%) had significantly higher counts in degraded areas (forest edge, forest fragment, and regenerating pastures) than in interior TMCF. The remaining 40% showed no significant bias in detection among habitats. Combined with strip‐count data, our results suggest that about 38% of the 119 species sampled at the Bellavista Reserve occur primarily in mature TMCF, avoiding edges and early second‐growth forest. Populations of these species may be vulnerable to further loss, fragmentation, and degradation of TMCF and, as such, deserve additional study and a place on lists of species of conservation concern.  相似文献   

13.
Fire-driven deforestation is the major source of carbon emissions from Amazonia. Recent expansion of mechanized agriculture in forested regions of Amazonia has increased the average size of deforested areas, but related changes in fire dynamics remain poorly characterized. We estimated the contribution of fires from the deforestation process to total fire activity based on the local frequency of active fire detections from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. High-confidence fire detections at the same ground location on 2 or more days per year are most common in areas of active deforestation, where trunks, branches, and stumps can be piled and burned many times before woody fuels are depleted. Across Amazonia, high-frequency fires typical of deforestation accounted for more than 40% of the MODIS fire detections during 2003–2007. Active deforestation frontiers in Bolivia and the Brazilian states of Mato Grosso, Pará, and Rondônia contributed 84% of these high-frequency fires during this period. Among deforested areas, the frequency and timing of fire activity vary according to postclearing land use. Fire usage for expansion of mechanized crop production in Mato Grosso is more intense and more evenly distributed throughout the dry season than forest clearing for cattle ranching (4.6 vs. 1.7 fire days per deforested area, respectively), even for clearings >200 ha in size. Fires for deforestation may continue for several years, increasing the combustion completeness of cropland deforestation to nearly 100% and pasture deforestation to 50–90% over 1–3-year timescales typical of forest conversion. Our results demonstrate that there is no uniform relation between satellite-based fire detections and carbon emissions. Improved understanding of deforestation carbon losses in Amazonia will require models that capture interannual variation in the deforested area that contributes to fire activity and variable combustion completeness of individual clearings as a function of fire frequency or other evidence of postclearing land use.  相似文献   

14.
Summary The effect of giant kelp, Macrocystis pyrifera, on the population dynamics of two temperate reef fishes, striped surfperch (Embiotoca lateralis) and black surfperch (E. jacksoni), was examined. Based on an understanding of how particular reef resources influence abundances of the surfperch and of the effect of giant kelp on those resources, we anticipated that Macrocystis would adversely affect populations of striped surfperch but would enhance those of black surfperch. The natural establishment of giant kelp at sites at Santa Cruz Island, California, resulted in the predicted dynamical responses of surfperch. Abundances of striped surfperch declined rapidly when and where dense forests of giant kelp appeared, but showed little change where Macrocystis was continuously absent over the 8 y period of study. Abundances of adult black surperch, which increased following the appearance of giant kelp, were lagged by >1 y because the dynamical response involved enhanced local recruitment. No change in abundance of black surfperch populations was evident at areas without giant kelp.The mechanism by which giant kelp altered the dynamics of the surfperch involved modification of the assemblage of understory algae used by surfperch as foraging microhabitat. Foliose algae (including Gelidium robustum) were much reduced and turf was greatly enhanced following the appearance of Macrocystis; these two benthic substrata are the favored foraging microhabitat for striped surfperch and black surfperch respectively. Populations of both surfperch species tracked temporal changes in the local availability of their favored foraging microhabitat. Thus, while neither species used Macrocystis directly, temporal and spatial variation in giant kelp indirectly influenced the dynamics of these fishes by altering their foraging base. These results indicate that the dynamics of striped surfperch and black surfperch were governed to a large degree by density-dependent consumer-resource interactions. The present work underscores the predictive value that arises from a knowledge of the mechanisms by which processes operate.  相似文献   

15.
Riparian deforestation is a major threat to the ecological integrity of streams and aquatic biodiversity, influencing microhabitat availability and susceptibility to disturbances. Here we tested if riparian deforestation of tropical streams influenced beta diversity of macroinvertebrate assemblages, by comparing indices that weighted differentially rare and dominant taxa, and testing if nestedness in community composition increased in deforested streams. Within-stream beta diversity was higher in deforested than forested streams, mainly due to taxon loss and higher dominance. In disturbed streams, higher sedimentation in pool mesohabitats resulted in larger differences in community composition, whereas mesohabitats in forested streams were more stable.  相似文献   

16.
The rewilding of abandoned agricultural lands opens up opportunities for the recovery of forest ecosystem extent. Frugivorous animals not only take part in the regeneration of unaltered forests, but leave a visible footprint in restoring areas in the form of the number and spatial distribution of new trees recruited from dispersed seeds. Nevertheless, their contribution is conditioned by how environmental factors affect both the patterns of seed dispersal and the fate of post-dispersal regeneration stages throughout the whole ecosystem. Here, we evaluated the role of avian seed dispersers in tree regeneration in woodland pastures resulting from anthropic deforestation. Using an integrative approach, considering the different tree regeneration stages, we dissected the ways in which forest loss conditioned the contribution of frugivores. Habitat structure influenced bird activity, mainly restricting seed dispersal to forested areas. Tree recruitment was severely reduced during early regeneration stages, but maintained the initial forest-biased spatial distribution. However, the presence of scrub in deforested areas, which protect against grazing at late regeneration stages, drastically increased the relevance of tree recruitment outside the forest. Frugivorous birds made a significant contribution to tree regeneration in the woodland pastures under study. The interplay between seed dispersal by birds and the protective role of scrub was fundamental in facilitating the recolonization of deforested areas. If we wish to encourage this natural reforestation, we will need to preserve populations of frugivorous birds while favoring landscape configurations that encourage seed dispersal outside the forest and species that promote tree establishment (like nurse scrubs).  相似文献   

17.
Forests of giant kelp Macrocystis pyrifera (L.) C.A. Agardh are among the most productive communities on earth. Much of the annual production of kelp in central California is exported from the forests as large floating rafts. Since these rafts may float for days and perhaps weeks, they are capable of being transported long distances but the fate of this material remains largely unknown. Naturally occurring and artificially created M. pyrifera rafts were tagged with radiotransmitters near their point of origin along the shores of the Monterey Peninsula in Monterey County, California, on each of four seasonal tracking experiments. Their movements were followed by aircraft for 5–7 days and the transmitters were then recovered. 39 tagged kelp rafts were recovered within Monterey Bay and one transmitter was lost at sea. Most were recovered ashore. While surface currents in Monterey Bay flow to the north much of the year, the kelp rafts drifted before the prevailing northwest winds (i.e., to the southeast) in the spring, summer and autumn. Rafts tagged during the winter moved primarily toward the north. The regional deposition pattern of locally produced kelp rafts suggests that this material may be delivered to offshore benthic communities as large parcels which may play an important role as food and/or habitat.  相似文献   

18.
Tropical forests are diminishing in extent due primarily to the rapid expansion of agriculture, but the future magnitude and geographical distribution of future tropical deforestation is uncertain. Here, we introduce a dynamic and spatially-explicit model of deforestation that predicts the potential magnitude and spatial pattern of Amazon deforestation. Our model differs from previous models in three ways: (1) it is probabilistic and quantifies uncertainty around predictions and parameters; (2) the overall deforestation rate emerges “bottom up”, as the sum of local-scale deforestation driven by local processes; and (3) deforestation is contagious, such that local deforestation rate increases through time if adjacent locations are deforested. For the scenarios evaluated–pre- and post-PPCDAM (“Plano de Ação para Proteção e Controle do Desmatamento na Amazônia”)–the parameter estimates confirmed that forests near roads and already deforested areas are significantly more likely to be deforested in the near future and less likely in protected areas. Validation tests showed that our model correctly predicted the magnitude and spatial pattern of deforestation that accumulates over time, but that there is very high uncertainty surrounding the exact sequence in which pixels are deforested. The model predicts that under pre-PPCDAM (assuming no change in parameter values due to, for example, changes in government policy), annual deforestation rates would halve between 2050 compared to 2002, although this partly reflects reliance on a static map of the road network. Consistent with other models, under the pre-PPCDAM scenario, states in the south and east of the Brazilian Amazon have a high predicted probability of losing nearly all forest outside of protected areas by 2050. This pattern is less strong in the post-PPCDAM scenario. Contagious spread along roads and through areas lacking formal protection could allow deforestation to reach the core, which is currently experiencing low deforestation rates due to its isolation.  相似文献   

19.
1. Few studies have evaluated the effectiveness of riparian buffers in the tropics, despite their potential to reduce the impacts of deforestation on stream communities. We examined macroinvertebrate assemblages and stream habitat characteristics in small lowland streams in southeastern Costa Rica to assess the impacts of deforestation on benthic communities and the influence of riparian forest buffers on these effects. Three different stream reach types were compared in the study: (i) forested reference reaches, (ii) stream reaches adjacent to pasture with a riparian forest buffer at least 15 m in width on both banks and (iii) stream reaches adjacent to pasture without a riparian forest buffer. 2. Comparisons between forest and pasture reaches suggest that deforestation, even at a very local scale, can alter the taxonomic composition of benthic macroinvertebrate assemblages, reduce macroinvertebrate diversity and eliminate the most sensitive taxa. The presence of a riparian forest buffer appeared to significantly reduce the effects of deforestation on benthic communities, as macroinvertebrate diversity and assemblage structure in forest buffer reaches were generally very similar to those in forested reference reaches. One forest buffer reach was clearly an exception to this pattern, despite the presence of a wide riparian buffer. 3. The taxonomic structure of macroinvertebrate assemblages differed between pool and riffle habitats, but contrasts among the three reach types in our study were consistent across the two habitats. Differences among reach types also persisted across three sampling periods during our 15‐month study. 4. Among the environmental variables we measured, only stream water temperature varied significantly among reach types, but trends in periphyton abundance and stream sedimentation may have contributed to observed differences in macroinvertebrate assemblage structure. 5. Forest cover was high in all of our study catchments, and more research is needed to determine whether riparian forest buffers will sustain similar functions in more extensively deforested landscapes. Nevertheless, our results provide support for Costa Rican regulations protecting riparian forests and suggest that proper riparian management could significantly reduce the impacts of deforestation on benthic communities in tropical streams.  相似文献   

20.
Although human-mediated extinctions disproportionately affect higher trophic levels, the ecosystem consequences of declining diversity are best known for plants and herbivores. We combined field surveys and experimental manipulations to examine the consequences of changing predator diversity for trophic cascades in kelp forests. In field surveys we found that predator diversity was negatively correlated with herbivore abundance and positively correlated with kelp abundance. To assess whether this relationship was causal, we manipulated predator richness in kelp mesocosms, and found that decreasing predator richness increased herbivore grazing, leading to a decrease in the biomass of the giant kelp Macrocystis. The presence of different predators caused different herbivores to alter their behaviour by reducing grazing, such that total grazing was lowest at highest predator diversity. Our results suggest that declining predator diversity can have cascading effects on community structure by reducing the abundance of key habitat-providing species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号