首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the circular dichroism induced in Cibacron Blue and Congo Red upon binding to several dehydrogenases to probe the conformation of the bound dyes. The circular dichroism spectra of Congo Red are quite similar when the dye is bound to lactic dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, and alcohol dehydrogenase but has bands of opposite sign when bound to cytoplasmic malic dehydrogenase. The circular dichroism spectra of Cibacron Blue bound to these same dehydrogenases are quite different from one another. Since circular dichroism is sensitive to the conformation of bound dye, these differences argue for at least local changes in dye conformation or environment when bound to different dehydrogenases. Congo Red appears to be less sensitive to these effects than Cibacron Blue.  相似文献   

2.
A model for the structure of dimethylamine dehydrogenase was generated using the crystal coordinates of trimethylamine dehydrogenase. Substrate is bound in trimethylamine dehydrogenase by cation-pi bonding, but modeling of dimethylamine dehydrogenase suggests that secondary amines are bound by a mixture of cation-pi and conventional hydrogen bonding. In dimethylamine dehydrogenase, binding is orientationally more specific and distinct from those proteins that bind tertiary and quaternary amine groups.  相似文献   

3.
Free and bound forms of hexokinase, pyruvate kinase, and lactate dehydrogenase were prepared from the brain of the sea scorpion (Scorpaena porcus) in a low ionic strength medium. Properties of the free and bound forms were compared to determine whether binding to particulate matter could influence enzyme function or stability in vivo. Changes in pH differently affected the activity of the free and bound forms of all three enzymes. Furthermore, bound forms of hexokinase and pyruvate kinase were more stable than the free enzymes to heating at 45 degrees C. Bound hexokinase showed higher affinity for substrates (ATP, glucose) than the free form and bound lactate dehydrogenase had greater affinity for pyruvate and NADH. Although the affinities of the two forms of pyruvate kinase for substrates were similar, Hill coefficients for phosphoenolpyruvate as well as inhibition by ATP differed between the two enzyme forms. Free and bound lactate dehydrogenase also showed differences in Hill coefficients and bound lactate dehydrogenase was less sensitive to substrate inhibition by high pyruvate concentrations. The possible physiological role of the binding of these glycolytic enzymes to subcellular structures is discussed.  相似文献   

4.
Binding of 8-anilinonaphthalene sulfonate (ANS) to glutamate dehydrogenase results in enzyme inhibition and a marked increase in the fluorescence of ANS. Perphenazine and GTP increase the fluorescence of ANS-glutamate dehydrogenase secondary to their known ability to alter the conformation of this enzyme. Aspartate aminotransferases, which form enzyme-enzyme complexes with glutamate dehydrogenase, produce a slight decrease in the fluorescence of ANS-glutamate dehydrogenase.While ANS and perphenazine are allosteric inhibitors of reactions catalyzed by free glutamate dehydrogenase, they do not inhibit reactions catalyzed by aminotransferaseglutamate dehydrogenase complexes. This is in spite of the fact that the aminotransferase does not prevent either ANS or perphenazine from being bound to glutamate dehydrogenase. Therefore, reactions catalyzed by the enzyme-enzyme complex are apparently not inhibited by ANS or perphenazine because binding of the aminotransferase to glutamate dehydrogenase prevents these ligands from altering the conformation of glutamate dehydrogenase. This is consistent with the fact that the aminotransferase also prevents perphenazine from enhancing the fluorescence of ANS-glutamate dehydrogenase.Reactions catalyzed by the enzyme-enzyme complex are inhibited by GTP and the aminotransferase does not prevent GTP from enhancing the fluorescence of ANS-glutamate dehydrogenase. Therefore, binding of the aminotransferase to glutamate dehydrogenase does not prevent GTP from altering the conformation of glutamate dehydrogenase.The fact that the aminotransferase completely prevents perphenazine from increasing the fluorescence of ANS-glutamate dehydrogenase suggests that in the enzymeenzyme complex each glutamate dehydrogenase polypeptide chain can be bound to an aminotransferase polypeptide chain. This would mean that three aminotransferase molecules can be bound to each monomeric unit (Mr 3 × 105) of glutamate dehydrogenase.  相似文献   

5.
Summary Ghosts of human erythrocytes prepared by hypotonic hemolysis were assayed for aldolase, triosephosphate isomerase, glyceraldehyde phosphate dehydrogenase, phosphoglycerate kinase, pyruvate kinase, lactate dehydrogenase, and glutathione peroxidase and reductase. Cryptic activity of the enzymes was demonstrated by an increase in activity on dilution with water, which caused fragmentation of the ghosts. Aldolase and glyceraldehyde phosphate dehydrogenase were classed as firmly bound; phosphoglycerate kinase was intermediate; the others were loosely bound. Triton X-100 increased the activities of aldolase, glyceraldehyde phosphate dehydrogenase, and phosphoglycerate kinase. The pH of the medium had little effect upon the firmly bound enzymes but it markedly affected the retention of hemoglobin and the activities of the loosely bound enzymes. The presence of Mg or Ca ions enhanced the retention of hemoglobin and the activity of lactate dehydrogenase and pyruvate kinase, with little effect on aldolase and glyceraldehyde phosphate dehydrogenase. Ghosts diluted in water disintegrated into fragments and tubules or vesicles; Mg or Ca at 1mm afforded protection against this. When ghosts were treated with Triton X-100 and adenosine triphosphate, they contracted to about one-seventh of their volume. The shrunken ghosts had lost a considerable proportion of their cholesterol and protein to the medium.  相似文献   

6.
Kinetic and Sephadex gel filtration epxeriments indicate that in the presence of palmitoyl-CoA, glutamate dehydrogenase forms a complex with mitochondrial malate dehydrogenase. In this complex, palmitoyl-CoA is bound to glutamate dehydrogenase but is not bound to malate dehydrogenase. Consequently, palmitoyl-CoA inhibits glutamate dehydrogenase while glutamate dehydrogenase completely protects malate dehydrogenase activity against palmitoyl-CoA inhibition. In the absence of palmitoyl-CoA, interaction between these two enzymes is quite weak. However, if the two enzymes are incubated with the bifunctional crosslinker dimethyl 3,3′-dithiobispropionimidate and chromatographed on Sephadex G-200, about 46% of the malate dehydrogenase is eluted with glutamate dehydrogenase in the void volume. If glutamate dehydrogenase or crosslinker is omitted, then malate dehydrogenase is not found in the void volume or other early fractions from the column. This indicates that in the absence of palmitoyl-CoA the crosslinker prevents dissociation of the weak complex by forming a covalent bond between the two enzymes. Furthermore, if the two enzymes are incubated in polyethylene glycol, there is a marked increase in the amount of both enzymes precipitated.  相似文献   

7.
Substrate inhibition of chicken lactate dehydrogenase (EC 1.1.1.27) isoenzyme 5, was studied with the enzyme in the soluble phase and bound to muscle subcellular particulate structures. Inhibition studies were performed by incubating bound or soluble enzyme with NAD+ prior to measuring the reaction with a stopped-flow technique at 40 °C and a concentration of enzyme of 10?7m. The value of V for soluble lactate dehydrogenase was 610 nmoles per sec, and for the bound enzyme it was 262. km (pyruvate) values were similar for both enzymes. Under our experimental conditions, up to 73% inhibition of the soluble enzyme was observed. On the other hand, there was no detectable inhibition of bound lactate dehydrogenase. It is suggested that the resistance to substrate inhibition of bound lactate dehydrogenase may possibly be due to the prevention of dissociation of the enzyme into monomeric or other subunits because of attachment to the particulate structures.  相似文献   

8.
We describe a procedure using immobilized nicotinamide as an affinity chromatographic ligand for the binding of NAD(P)+-dependent dehydrogenases. The procedure involves preparation of nicotinamide N1-(N-(6-aminohexyl)-acetamide)-agarose and modification of the immobilized nicotinamide by the addition of a ketone or an aldehyde to form an adduct. The nicotinamide, which has no affinity for dehydrogenase, becomes a very specific ligand of dehydrogenase, which binds the ketone or the aldehyde as substrate or inhibitor. In tests, the adduct prepared with immobilized nicotinamide and sodium pyruvate bound specifically to lactate dehydrogenase (EC 1.1.1.27), whereas the adduct prepared with alpha-ketoglutarate bound to glutamate dehydrogenase (EC 1.4.1.3). This technique enables the rapid isolation of a given dehydrogenase.  相似文献   

9.
胆碱脱氢酶(CDH)是线粒体电子传递酶系的一个重要组成,它位于线粒体内膜。膜固有的CDH与用去垢剂从线粒体上增溶下来的酶在性质上有一定差异,本文研究了温度、SDS对增溶CDH的失活作用,发现底物胆碱的存在有明显的保护作用,说明底物诱导CDH产主构象变化.  相似文献   

10.
Rabbit muscle troponin complex covalently bound to CNBr-activated Sepharose 4B was shown to interact with soluble lactate dehydrogenase with a stoichiometry of 2 mol lactate dehydrogenase/mol of troponin. The presence of Ca2+ influenced the strength of association (the KD values of 0.73 and 2.3 microM were determined in the presence of 200 microM EGTA or 100 microM Ca2+, respectively). In the absence of Ca2+, the affinity of lactate dehydrogenase to troponin was strongly pH-dependent, reaching a maximum in the region of pH 6.0-7.0. No change of catalytic activity was observed as a result of interaction between lactate dehydrogenase and troponin, the enzyme appeared capable of functioning in the bound form.  相似文献   

11.
A complex of four proteins was previously isolated from Staphylococcus aureus. The complex had a strong interaction with membrane bound ribosomes, which suggested that it may be involved in protein secretion. However, the complex was identified as pyruvate dehydrogenase (PDH), which disproved the direct role of the complex in protein secretion. Here we report the nucleotide sequence of the last gene of the S. aureus pyruvate dehydrogenase operon, pdhD, which encodes lipoamide dehydrogenase (LPD). The pdhD gene encodes a protein of 468 amino acids, with a molecular mass of 49.5 kDa. The protein is closely related to other lipoamide dehydrogenases from bacteria and eukaryotes. The possible role of membrane bound lipoamide dehydrogenase is briefly discussed.  相似文献   

12.
1. alpha-Cyano-4-hydroxycinnamate was coupled to Sepharose CL-4B activated with 1,2:3,4-bisepoxybutane. 2. The low-Km rat liver mitochondrial aldehyde dehydrogenase was specifically bound to this affinity medium, and could subsequently be eluted with alpha-cyano-4-hydroxycinnamate. 3. The enzyme purified in this manner had a subunit molecular mass of 55 kDa and a pI of approx. 6.5. A minor component of approx. 57 kDa was also present and had a significantly higher pI value; this may be the precursor for aldehyde dehydrogenase. 4. alpha-Cyanocinnamate and some related compounds were found to be uncompetitive inhibitors of the enzyme. 5. No cytosolic aldehyde dehydrogenase was bound to the affinity column, but a protein from a rat liver post-mitochondrial supernatant with a molecular mass of approx. 25 kDa was bound, and could be eluted subsequently with alpha-cyano-4-hydroxycinnamate.  相似文献   

13.
Physical interaction between rabbit muscle glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase was detected by means of matrix immobilization technique. Glyceraldehyde-3-phosphate dehydrogenase covalently bound to CNBr-activated Sepharose 4B was capable of forming a complex with soluble lactate dehydrogenase with a stoichiometry of 0.8 mole of lactate dehydrogenase per mole of glyceraldehyde-3-phosphate dehydrogenase and KD of 0.385 microM at pH 6.5. The bienzyme association weakened when pH changed to 7.0 (the KD increased to 1.25 microM).  相似文献   

14.
Succinate dehydrogenase consists of two unequal subunits; Fp and Ip. An FAD group is covalently linked to a histidyl residue in the Fp subunit. The mechanism by which flavin is attached to protein is not known. Covalently bound flavin was studied in wild-type and succinate-dehydrogenase-negative Bacillus subtilis. The Fp subunit of succinate dehydrogenase was found to be the only (major) flavinylated protein in the cell. Mutants lacking covalently bound flavin and still containing the Fp polypeptide are described. It is shown that the flavin is not essential for assembly and membrane binding of succinate dehydrogenase in B. subtilis.  相似文献   

15.
11beta-hydroxysteroid dehydrogenase 1 regulates the tissue availability of cortisol by interconverting cortisone and cortisol. It is capable of functioning as both a reductase and a dehydrogenase depending upon the surrounding milieu. In this work, we have studied the reaction mechanism of a soluble form of human 11beta-hydroxysteroid dehydrogenase 1 and its mode of inhibition by potent and selective inhibitors belonging to three different structural classes. We found that catalysis follows an ordered addition with NADP(H) binding preceding the binding of the steroid. While all three inhibitors tested bound to the steroid binding pocket, they differed in their interactions with the cofactor NADP(H). Compound A, a pyridyl amide bound more efficiently to the NADPH-bound form of 11beta-hydroxysteroid dehydrogenase 1. Compound B, an adamantyl triazole, was unaffected by NADP(H) binding and the sulfonamide, Compound C, showed preferential binding to the NADP+ -bound form of 11beta-hydroxysteroid dehydrogenase 1. These differences were found to augment significant selectivity towards inhibition of the reductase reaction versus the dehydrogenase reaction. This selectivity may translate to differences in the in vivo effects of 11beta-hydroxysteroid dehydrogenase 1 inhibitors.  相似文献   

16.
Proline-dependent oxygen uptake in corn mitochondria (Zea mays L. B73 × Mo17 or Mo17 × B73) occurs through a proline dehydrogenase (pH optimum around 7.2) bound to the matrix side of the inner mitochondrial membrane. Sidedness was established by determining the sensitivity of substrate-dependent ferricyanide reduction to antimycin and FCCP (P-trifluoromethoxycarbonylcyanide phenylhydrazone). Proline dehydrogenase activity did not involve nicotinamide adenine dinucleotide reduction, and thus electrons and protons from proline enter the respiratory chain directly. Δ1-Pyrroline-5-carboxylate (P5C) derived from proline was oxidized by a P5C dehydrogenase (pH optimum approximately 6.4). This enzyme was found to be similar to proline dehydrogenase in that it was bound to the matrix side of the inner membrane and fed electrons and protons directly into the respiratory chain.

Ornithine-dependent oxygen uptake was measurable in corn mitochondria and resulted from an ornithine transaminase coupled with a P5C dehydrogenase. These enzymes existed as a complex bound to the matrix side of the inner membrane. P5C formed by ornithine transaminase was utilized directly by the associated P5C dehydrogenase and was not released into solution. Activity of this dehydrogenase involved the reduction of nicotinamide adenine dinucleotide.

  相似文献   

17.
Yeast glyceraldehyde-3-phosphate dehydrogenase (GPDH) covalently attached to CNBr-activated Sepharose 4B was shown to be capable of binding soluble yeast phosphoglycerate kinase (PGK) in the course of incubation in the presence of an excess of 1,3-diphosphoglycerate. The association of the matrix-bound and soluble enzymes also occurred if the kinase was added to a reaction mixture in which the immobilized glyceraldehyde-3-phosphate dehydrogenase, NAD, glyceraldehyde-3-phosphate and Pi had been preincubated. Three kinase molecules were bound per a tetramer of the immobilized dehydrogenase and one molecule per a dimer. An immobilized monomer of glyceraldehyde-3-phosphate dehydrogenase was incapable of binding phosphoglycerate kinase. The matrix-bound bienzyme complexes were stable enough to survive extensive washings with a buffer and could be used repeatedly for activity determinations. Experimental evidence is presented to support the conclusion that 1,3-diphosphoglycerate produced by the kinase bound in a complex can dissociate into solution and be utilized by the dehydrogenase free of phosphoglycerate kinase.  相似文献   

18.
Rabbit liver mitochondrial fraction shows lactate dehydrogenase activity. The kinetic behaviour of mitochondrial bound enzyme fits a bibi sequential type mechanism as well as the cytosolic rabbit liver lactate dehydrogenase. The bound enzyme has greater values of Km(NADH) and Km(pyruvate) than the soluble one, suggesting that binding induces a decrease in the affinity of both substrates. The behaviour of the free and the mitochondrial-bound enzyme is of the Michaelis-Menten type, but the kinetics of a mixture of rabbit liver cytosolic and mitochondrial-bound lactate dehydrogenase is sigmoidal, suggesting that a cooperative phenomenon takes place.  相似文献   

19.
Fatigue of isolated gastrocnemius muscles from R. pipiens leads to a marked increase in the proportion of phosphofructokinase bound to the particulate fraction and a decrease in the binding of lactate dehydrogenase, pyruvate kinase, creatine phosphokinase and glyceraldehyde-3-phosphate dehydrogenase. Only the proportion of aldolase bound to the particulate fraction was unaffected by fatigue. This pattern was unchanged when fatigued muscles were extracted at pH 6.5 rather than 7.5. Thus, muscle fatigue leads to opposite changes in the binding of the glycolytic enzymes.  相似文献   

20.
p-Hydroxyacetophenone was coupled to epoxy-activated Sepharose 6B to generate an affinity chromatographic matrix to purify aldehyde dehydrogenase. Purified beef liver mitochondrial aldehyde dehydrogenase specifically bound to the support and could be eluted with p-hydroxyacetophenone. A post-ammonium sulfate (30-55%) fraction of bovine liver was applied to the affinity gel column and aldehyde dehydrogenase was effectively purified, although not to complete homogeneity, indicating the potential selectivity of the matrix. Both beef liver cytosolic and mitochondrial aldehyde dehydrogenase bound to the column. A post-Cibacron blue Sepharose Cl-6B affinity-fractionated liver mitochondrial aldehyde dehydrogenase was purified to complete homogeneity by p-hydroxyacetophenone-Sepharose, thus eliminating the need for the isoelectric focusing step often employed. p-Hydroxyacetophenone was found to be a competitive inhibitor against propionaldehyde and noncompetitive against NAD. Escherichia coli lysates of recombinantly expressed aldehyde dehydrogenase were purified from E. coli lysates with one major 25-kDa protein contaminant also binding to the column, as detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The 25-kDa contaminant was found to be chloramphenicol acetyl transferase from sequence analysis and binding studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号