首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Olfactory neurons and gonadotropin-releasing hormone (GnRH) neurons share a common origin during organogenesis. Kallmann's syndrome, clinically characterized by anosmia and hypogonadotropic hypogonadism, is due to an abnormality in the migration of olfactory and GnRH neurons. We recently characterized the human FNC-B4 cell line, which retains properties present in vivo in both olfactory and GnRH neurons. In this study, we found that FNC-B4 neurons expressed GnRH receptor and responded to GnRH with time- and dose-dependent increases in GnRH gene expression and protein release (up to 5-fold). In addition, GnRH and its analogs stimulated cAMP production and calcium mobilization, although at different biological thresholds (nanomolar for cAMP and micromolar concentrations for calcium). We also observed that GnRH triggered axon growth, actin cytoskeleton remodeling, and a dose-dependent increase in migration (up to 3-4-fold), whereas it down-regulated nestin expression. All these effects were blocked by a specific GnRH receptor antagonist, cetrorelix. We suggest that GnRH, secreted by olfactory neuroblasts, acts in an autocrine pattern to promote differentiation and migration of those cells that diverge from the olfactory sensory lineage and are committed to becoming GnRH neurons.  相似文献   

2.
The effect of naloxone on GnRH-induced LH and FSH release was measured in buffaloes in luteal phase of estrous cycle. Animals were administered intravenously, naloxone/saline (50 mg/injection) every 15 min for 3 hr followed by GnRH (100 micrograms). Peripheral plasma LH and FSH concentrations were measured in blood samples collected at 15 min intervals from 1 hr prior to beginning of naloxone/saline treatment up to 3 hr post GnRH administration and every 30 min for the subsequent 3.5 hr. Between the animals of Group I administered naloxone and those of Group II given saline, GnRH-induced peak LH and FSH concentrations, the total LH and FSH released in response to GnRH, and the time to peak LH and FSH concentrations were not significantly different. The results of the present study suggest the absence of a direct effect of naloxone on pituitary responsiveness to GnRH.  相似文献   

3.
This experiment determined if the degree of stimulation of the pituitary gland by GnRH affects the suppressive actions of inhibin and testosterone on gonadotropin secretion in rams. Two groups (n = 5) of castrated adult rams underwent hypothalamopituitary disconnection and were given two i.v. injections of vehicle or 0.64 microg/kg of recombinant human inhibin A (rh-inhibin) 6 h apart when treated with i.m. injections of oil and testosterone propionate every 12 h for at least 7 days. Each treatment was administered when the rams were infused i.v. with 125 ng of GnRH every 4 h (i.e., slow-pulse frequency) and 125 ng of GnRH every hour (i.e., fast-pulse frequency). The FSH concentrations and LH pulse amplitude were lower and the LH concentrations higher during the fast GnRH pulse frequency. The GnRH pulse frequency did not influence the ability of rh-inhibin and testosterone to suppress FSH secretion. Testosterone did not affect LH secretion. Following rh-inhibin treatment, LH pulse amplitude decreased at the slow, but not at the fast, GnRH pulse frequency, and LH concentrations decreased at both GnRH pulse frequencies. We conclude that the degree of stimulation of the pituitary by GnRH does not influence the ability of inhibin or testosterone to suppress FSH secretion in rams. Inhibin may be capable of suppressing LH secretion under conditions of low GnRH.  相似文献   

4.
In Exp. 1, the effect of treatment with a GnRH agonist on basal concentrations of serum testosterone and peak values of serum testosterone after administration of hCG was determined. One group of adult male monkeys was treated with a low dose (5-10 micrograms/day) and a second group with a high dose (25 micrograms/day) of a GnRH agonist for 44 weeks. Basal and peak testosterone concentrations were both significantly reduced by GnRH agonist treatment in all groups compared to untreated control animals, but the % rise in serum testosterone above basal values in response to hCG administration was unchanged by agonist treatment. In Exp. 2, the GnRH agonist (100 or 400 ng) or a GnRH antagonist (4 micrograms) was infused into the testicular arteries of adult monkeys. The agonist did not alter testosterone concentrations in the testicular vein or testosterone and LH values in the femoral vein. In Exp. 3, testicular interstitial cells from monkeys were incubated with three concentrations (10(-9), 10(-7) and 10(-5)M) of the GnRH agonist or a GnRH antagonist with and without hCG. After 24 h, neither basal nor hCG-stimulated testosterone production was affected by the presence of the GnRH agonist or antagonist. The results from all 3 experiments clearly suggest that GnRH agonist treatment does not directly alter steroid production by the monkey testis.  相似文献   

5.
The feedback regulatory control mechanism exerted by activated Ca2+/phospholipid-dependent protein C kinase upon gonadotropin releasing hormone (GnRH) binding, stimulation of phosphoinositide turnover and gonadotropin secretion was investigated in cultured pituitary cells. Addition of the tumor promoter phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), at concentrations which activate pituitary protein C kinase, to cultured pituitary cells resulted in up-regulation of GnRH receptors (155% at 4 h). The stimulatory effect of GnRH on [3H]inositol phosphates (Ins-P) production in myo-[2-3H]inositol prelabeled pituitary cells was not inhibited by prior treatment of the cells with TPA (10(-9)-10(-7) M). Higher concentrations of TPA (10(-6)-10(-5) M) inhibited the effect of GnRH on [3H]Ins-P production. Increasing concentrations of TPA or the permeable analog of diacylglycerol 1-oleoyl-2-acetylglycerol (OAG) stimulated luteinizing hormone (LH) release from cultured pituitary cells with ED50 values of 5 x 10(-9) M and 10 micrograms/ml, respectively. No consistent inhibition or additivity of LH release was observed when increasing doses of TPA or OAG were added with a submaximal dose of GnRH. These results suggest that protein C kinase might mediate the known homologous up-regulation of GnRH receptors during the reproductive cycle. Protein C kinase is positively involved in mediating the process of gonadotropin secretion. Unlike many other systems, activation of protein C kinase in pituitary gonadotrophs is not involved in negative feed-back regulation of stimulus-secretion-coupling mechanisms in GnRH-stimulated gonadotrophs.  相似文献   

6.
In mares, the amount of gonadotrophin-releasing hormone (GnRH) is low in the hypothalamus during seasonal anoestrus, but by early spring, concentrations of GnRH are high. The timing of this response was characterized more precisely by determining concentrations of GnRH in hypothalamic tissue collected immediately before and at various times after the winter solstice (22 December 1986). Ovaries, pituitary gland, hypothalamus and a blood sample were collected from six groups of mares (6-12 mares per group) at death, 1 week before day of the winter solstice and 1, 2, 3 and 12 weeks afterwards. No significant changes in weight of the anterior pituitary gland or concentrations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were observed in the anterior pituitary gland (P > 0.1). Mean diameter of the largest follicle, number of follicles > or = 20 mm in diameter and concentrations of LH and FSH in serum remained unchanged for weeks -1 to +3 (P < 0.05), then increased significantly by week 12 (P < 0.001). Content and concentration of GnRH in the median eminence was low at -1 week, increased gradually (P < 0.05) to a maximum by +1 week, then decreased gradually (P < 0.05) to low values at 12 weeks. Means (+/- SEM) for -1, +1 and +12 weeks were 33.5 +/- 5.5, 117.7 +/- 18.6 and 29.8 +/- 3.7 ng GnRH, respectively. Mean content of GnRH in the preoptic area of the hypothalamus showed a reciprocal pattern.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The objective of this work was to investigate the effect of progesterone (P) and gonadotropin-releasing hormone (GnRH) treatment on estrogen receptor (ER) and P receptor (PR) concentrations in the pituitary gland and uterus of anestrous ewes. Ewes were either not treated (group C, n = 4); were treated with 0.33 g P-controlled internal drug release (P-CIDR) for 10 days (group P, n = 4), with GnRH, 6.7 ng i.v. injections every 2 h for 18 h followed by a 4 microg bolus administration of Receptal at 20 h (group GnRH, n = 4), or with a combination of the P and GnRH treatment (group P + GnRH, n = 3). Ewes were humanely killed either at the beginning of the experiment (group C), when the CIDR was removed (group P), or 24 h after the GnRH bolus treatment (groups GnRH and P + GnRH). Progesterone treatment increased serum P concentrations, indicating that the treatment was effective. All GnRH treated ewes had similar luteinizing hormone (LH) surges, which lasted 8 h. At slaughter, estradiol (E2) concentrations in the GnRH group were higher than in groups C, P, and P + GnRH. Treatment with GnRH increased more than 10-fold the content of ER and PR in the pituitary gland without altering steroid receptor concentrations in the uterus. When GnRH was combined with P the uterine receptor contents were higher than with P treatment alone. The treatment with P decreased ER and PR content in the uterus, but had no effect on the pituitary gland. The results show that regulation by P and GnRH of ER and PR content in anestrous ewes is tissue-specific.  相似文献   

8.
Concentrations of pituitary receptors for gonadotropin-releasing hormone (GnRH) are affected by GnRH and gonadal steroids. To test the hypothesis that estradiol-17 beta (E2) directly affects the number of GnRH receptors in the pituitary, independent of GnRH secretion, ovariectomized ewes with hypothalamic-pituitary disconnections (HPD) were given 25 micrograms (i.m.) of E2 (HPD + E2, n = 5) or oil (HPD + OIL, n = 5). Ovariectomized control ewes, with intact hypothalamic-pituitary axes (INT), also received either E2 or oil (INT + E2, n = 6; INT + OIL, n = 6). Blood samples were taken hourly for analysis of serum concentrations of luteinizing hormone (LH) from 4 h prior to until 16 h after treatment. Pituitaries were collected 16 h after treatment for analysis of GnRH receptors. Treatment with E2 increased concentrations of LH in serum beginning 12.7 +/- 0.6 h after injection in INT ewes but not in HPD ewes. Compared to INT + OIL ewes, E2 treatment increased (p less than 0.001) the number of GnRH receptors by 2.5-fold in INT ewes and by 2.0-fold in HPD ewes. These results suggest that although GnRH is necessary for secretion of gonadotropins, E2 alone can directly increase the number of GnRH receptors in the pituitary.  相似文献   

9.
10.
Thirty-two ovariectomized cows were used to determine the time course for the negative feedback effect of estradiol-17beta (E) on secretion of the luteinizing hormone (LH). The cows were injected with gonadotropin releasing hormone (GnRH; 40 mug) 2.5 or 5 h after pretreatment with E (1 mug/kg body weight) or with a vehicle for control (C). Pretreatment with E resulted in lower serum concentrations of LH at 2.5 h (0.27 vs 0.90 ng/ml; P < 0.01) and at 5 h (0.27 vs 0.67 ng/ml; P < 0.01); less LH was released in response to GnRH at 2.5 h after treatment compared to cows treated with C (10 +/- 4.9 vs 27 +/- 3.8 ng/ml; P < 0.001). However, when GnRH was administered 5 h after E or C, there was no difference in the total amount of LH released (34 +/- 1.8 vs 26 +/- 4.4 ng/ml; P > 0.2). Time to half area (estimate of decay for the induced surge of LH) was longer for cows treated with E when compared to those treated with C (1.3 vs 0.9 h, P < 0.001; 1.5 vs 0.8 h, P < 0.001). Time to half area was not affected by the time of administration of GnRH after E (P > 0.4). These results suggest that E acts in the pituitary to cause the initial decrease in concentrations of LH. Pituitaries in animals pretreated with E regained the capacity to release as much LH at 5 h after treatment as those treated with C at a time when LH concentrations were still suppressed by E. Thus, the hypothalamus or an extra-hypothalamic area may be involved in maintaining the suppression of LH secretion after the initial effect on the pituitary has declined.  相似文献   

11.
The objective of this study was to determine the effect of clomiphene citrate (clomid) on pituitary responsiveness to gonadotropin releasing hormone (GnRH) in rams and wethers. Doses of 200 mg clomid per ram and 1 mug GnRH per 50 kg body weight were used in studies on 12 rams and 4 wethers. The experimental design involved bleeding each animal at 15-minute intervals for 6.5 hours. At the end of the first hour, GnRH was injected IV. The second GnRH challenge was administered 0.5 hours after an injection of clomid or vehicle (4.5% sorbitol solution) which was given on the third hour. The relative response to clomid or vehicle was calculated as the mean increase in concentration of LH during the two-hour period after the second GnRH injection. Each treatment (clomid and vehicle) was given to all animals with a 14-day recovery period between treatment days. The relative response for the rams receiving vehicle (1.80 +/- 0.65) was greater (P < 0.05) than the response during clomid treatment (0.34 +/- 0.22). This suppression of LH response by clomid was observed in 10 of the 12 rams. In contrast to the rams, the concentrations of LH in wethers after the second GnRH injection were lower than those observed after the first GnRH injection. Similar to the rams, the relative response following clomid treatment of wethers (0.04 +/- 0.04) was less than the relative response (P > 0.05) following vehicle (0.40 +/- 0.16). The results suggest that clomid at this dosage inhibits GnRH-induced release of LH from the pituitary of rams but not of wethers.  相似文献   

12.
Madgwick S  Evans AC  Beard AP 《Theriogenology》2005,63(8):2323-2333
In heifer calves, an early transient increase in circulating concentrations of LH is associated with early follicular development and is thought to regulate the timing of puberty. In an attempt to hasten the onset of sexual maturity, the early rise in LH concentration was advanced by injecting heifer calves with 120 ng/kg of GnRH (n=6) twice daily from 4 to 8 weeks of age; control calves received saline (n=6). Blood samples were collected every 15 min for 10h at 4, 8, 14, 20, 26, 32, 38, 44 and 50 weeks of age. Treatment with GnRH increased mean circulating concentrations of LH at 8 weeks of age (P<0.05), LH pulse frequency at 4 and 8 weeks of age (P<0.05), and reduced the mean age at puberty by 6 weeks (56.8+/-1.7 versus 62.8+/-2.4 weeks of age, for GnRH treated and control calves, respectively; P=0.04). Body weight gain was greater in GnRH-treated calves than control calves (P<0.05), and the rate of weight gain was shown to be a significant covariate within age at puberty. In conclusion, we suggest that the timing of the early rise in LH concentrations is a critical signal involved in the timing of puberty in heifers.  相似文献   

13.
The purpose of this experiment was to determine if pituitary stores of LH could be replenished by administration of GnRH when circulating concentrations of both progesterone and estradiol-17 beta (estradiol) were present at levels observed during late gestation. Ten ovariectomized (OVX) ewes were administered estradiol and progesterone via Silastic implants for 69 days. One group of 5 steroid-treated OVX ewes was given GnRH for an additional 42 days (250 ng once every 4 h). Steroid treatment alone reduced (p less than 0.01) the amount of LH in the anterior pituitary gland by 77%. Pulsatile administration of GnRH to steroid-treated ewes resulted in a further decrease (p less than 0.01) in pituitary content of LH. Compared to the OVX ewes, concentrations of mRNAs for alpha- and LH beta-subunits were depressed (p less than 0.01) in all steroid-treated ewes, whether or not they received GnRH. The ability of the dosage of GnRH used to induce release of LH was examined by collecting blood samples for analysis of LH at 15 days and 42 days after GnRH treatment was initiated. Two of 5 and 3 of 5 steroid-treated ewes that received pulses of GnRH responded with increased serum concentrations of LH after GnRH administration during the first and second bleedings, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The release of alpha-human chorionic gonadotropin (alpha hCG), gonadotropin human chorionic gonadotropin (hCG) and human chorionic somatomammotropin (hCS) in vitro from placentas of different gestational ages was studied. In addition, the effect of gonadotropin-releasing hormone (GnRH) on these hormonal releases, as related to the gestational age of the placenta cultured and the dose of GnRH, was determined. The basal release of alpha hCG and hCG was greatest at 9-13 wk of gestation (1000-1500 ng/mg and 250-350 ng/mg, respectively). Lowest release rates were at term (28 ng/mg and 20 ng/mg, respectively). Hormonal release declined with extended culture, except from the cultures of 13- and 15-wk placentas, in which the initially high release continued throughout the 8 days of culture. The initial release of hCS was low at 6 wk, increased to maximum rates by 15 wk, and was similar to the initial rate of release at term. Gonadotropin-releasing hormone stimulated the release of alpha hCG and hCG most dramatically in cultures of 16-wk and 17-wk placentas, where as much as a 400- and 250-fold increase, respectively, on Day 6 of culture was observed (p less than 0.0001). In term placenta cultures after 6 days in vitro, a 20-fold stimulation of alpha hCG and a 10-fold increase of hCG was effected by GnRH (p less than 0.001). The largest responses of alpha hCG and hCG to GnRH were observed when estrogen levels were low. Dose-related responses were observed in some placentas, yet in some instances, maximal effects were attained with all doses utilized in these studies (0.2 to 50 micrograms/ml). These data demonstrate that human placentas of different gestational ages have varying hormonogenic capabilities in vitro. The data also establish that synthetic GnRH is capable of stimulating alpha hCG and hCG production, but the degree and pattern of response to GnRH stimulation are related to the gestational age of the placental tissue and its time in culture. The most responsive period to exogenous GnRH stimulation of alpha hCG and hCG release was on Days 5 and 6 of culture, when basal estrogen release was very low. These data support the hypothesis that hCG release might be controlled by a chorionic GnRH stimulation and suggest that local steroid levels may modulate the hCG response to GnRH stimulation.  相似文献   

15.
The pituitary response to exogenous GnRH was studied in 8 colts of Quarter Horse phenotype from 32 to 96 weeks of age. Colts were from dams treated daily from Day 20 to 325 of gestation with (1) 2 ml neobee oil per 50 kg body weight (controls); or (2) 2 ml altrenogest per 50 kg body weight. GnRH challenges (5 micrograms/kg body weight) were administered every 8 weeks from 32 to 96 weeks of age to estimate pituitary content of LH. Blood samples were collected every 20 min for 4 h before GnRH and 15, 30, 45, 60, 90, 120, 180, 240 and 360 min after GnRH. Serum concentrations of LH and FSH were determined for the 2 pre-GnRH and all post-GnRH samples. Baseline concentrations (mean of 2 pre-GnRH samples) of LH and FSH were not affected by treatment (P greater than 0.05). Serum concentrations of LH declined from 40 to 56 weeks and rose again between 72 and 80 weeks. Basal concentrations of FSH declined from 32 to 56 weeks, and varied widely after 56 weeks. The maximum LH response to GnRH (highest concentration after GnRH minus baseline) declined steadily in both groups for 48 to 64 weeks but remained relatively constant in both groups after 64 weeks. The maximum FSH response to GnRH declined from 32 to 64 weeks then remained relatively constant in both groups. The GnRH-induced gonadotrophin release remained low with a transient increase at 72 weeks for both hormones.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
High-fertility (control cows) and low-fertility (cows and heifers not pregnant after two consecutive breeding seasons — twice-open) cyclic bovine females were treated with a single injection of 1000 IU of human chrionic gonadotropin (HCG) or 100 μg of gonadotropin releasing hormone (GnRH) to enhance and/or hasten corpus luteum formation and progesterone secretion, and improve conception rate in the low-fertility females. Hormone treatments were administered to 38 parous control cows, 34 twice-open parous cows, and 27 twice-open nonparous heifers immediately after natural mating by a fertile bull. Blood samples were collected on Days 3, 6, 9, 12, and 18 after mating for determination of systemic progesterone concentrations. Pregnancy rate at necrospy approximately 33 days after mating (range 31–37) was higher in control cows (73.0%) than in twice-open cows (48.4%; P<0.05) or twice-open heifers (34.6%; P<0.01). Pregnancy rate was not affected by the HCG or GnRH treatment. The HCG treatment increased plasma progesterone concentrations in twice-open heifers but not in control or twice-open cows. Progesterone was unaffected by the GnRH treatment. Systemic progesterone concentrations were higher in control than in twice-open females but did not differ between pregnant and nonpregnant females of Days 3, 6, 9 and 12 after mating. Enhanced gonadotropin stimulation at estrus by injection of either HCG or GnRH did not increase pregnancy rate or systemic progesterone concentrations (except in HCG-treated twice-open heifers) in low- or high-fertility females. Lower pregnancy rates in twice-open females were not associated directly with the lower systemic progesterone concentrations.  相似文献   

17.
A single injection of estradiol valerate (EV) induces, after a lag period of 4-6 wk, a chronic anovulatory polycystic ovarian (PCO) condition in adult rats. This condition is associated with a selective compromise of luteinizing hormone (LH) release and/or synthesis reflected in low basal serum LH concentrations, decreased pituitary content of LH, and decreased gonadotropin-releasing hormone (GnRH)-stimulated LH secretion. The present study was undertaken to determine to what extent the aberrant LH release in rats with PCO could be related to alterations in pituitary content of GnRH receptors. Pituitary GnRH-receptor content was assessed by the evaluation of saturation binding of a GnRH analog, [125I]-D-Ala6-des-Gly10-GnRH, to pituitary membrane preparations. The receptor content of pituitaries from rats with PCO was compared to that obtained from intact animals at estrus and diestrus. Receptor levels in ovariectomized normal rats and rats with PCO were also assessed. The pituitary GnRH receptor content in PCO rats was similar to that observed in normal controls at estrus and was significantly lower than that for rats at diestrus. Although a twofold increase in pituitary GnRH receptor content was observed at 28 days following the castration of control rats, GnRH receptor content in the pituitaries of PCO rats, at 28 days following ovariectomy, remained unchanged. Although, castration-induced elevations in mean serum LH and follicle-stimulating hormone (FSH) concentrations were observed in both the PCO and control animals, the rise in both gonadotropins was significantly attenuated in the PCO-castrates when compared to the ovariectomized controls. Since GnRH is a major factor in the regulation of pituitary GnRH receptor content, these findings suggest that hypothalamic GnRH release is impaired in rats with PCO and that this impairment is independent of any influences from the polycystic ovaries.  相似文献   

18.
Primary cultures of ovine pituitary cells were used to characterize the effects of inhibin and activin on the secretion of gonadotropins and on the regulation of number of GnRH receptors in the presence or absence of estradiol. Number of GnRH receptors was determined by the specific binding of a saturating dose of [125I]des-Gly10-D-Trp6-GnRH-ethylamide (GnRH-A). Recombinant human inhibin-A (rh-inhibin-A) or inhibin in porcine and bovine follicular fluid (pFF and bFF, respectively) decreased secretion of FSH in a dose-dependent manner, with maximum inhibition at an inhibin concentration of approximately 0.1 nM. Neither pFF or bFF affected secretion of LH, although rh-inhibin-A caused a modest decrease (p less than 0.05) in secretion of LH. Treatment of cells with rh-inhibin-A, bFF, or pFF approximately doubled the number of GnRH receptors. Scatchard analysis indicated that increases in GnRH-A binding were due to an increase in receptor number rather than a change in affinity. Additionally, rh-inhibin-A, at a dose that doubled numbers of GnRH receptors, increased GnRH-induced LH release above that caused by GnRH alone, indicating that the increase in receptor number leads to increased responsiveness to GnRH. Recombinant human activin-A (rh-activin-A) increased secretion of FSH but did not affect secretion of LH. Number of GnRH receptors was not affected by lower concentrations of rh-activin-A but was decreased (p less than 0.05) by 3.0 nM activin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Twelve 5-month-old Hereford X Friesian heifers were injected i.v. with 2.0 micrograms GnRH at 2-h intervals for 72 h. Blood samples were collected at 15-min intervals from 24 h before the start until 8 h after the end of the GnRH treatment period. Over the 24-h pretreatment period, mean LH concentrations ranged from 0.4 to 2.2 ng/ml and FSH concentrations from 14.1 to 157.4 ng/ml; LH episodes (2-6 episodes/24 h) were evident in all animals. Each injection of GnRH resulted in a distinct episode-like response in LH, but not FSH. Mean LH, but not FSH, concentrations were significantly increased by GnRH treatment. The GnRH-induced LH episodes were of greater magnitude than naturally-occurring episodes (mean maximum concentration 6.7 +/- 0.5 and 4.9 +/- 0.6 ng/ml respectively). Preovulatory LH surges occurred between 17.0 and 58.8 h after the start of treatment in 9/12 heifers, with a coincident FSH surge in 8 of these animals. This was not followed by normal luteal function. There were no apparent correlations between pretreatment hormone concentrations, and either the pituitary response to GnRH or the occurrence of preovulatory gonadotrophin release.  相似文献   

20.
The response of serum luteinizing hormone (LH) to morphine, naloxone and gonadotropin-releasing hormone (GnRH) in ovariectomized, suckled (n=4) and nonsuckled (n=3) cows was investigated. Six months after ovariectomy and calf removal, the cows were challenged with 1mg, i.v. naloxone/kg body weight and 1 mg i.v. morphine/kg body weight in a crossover design; blood was collected at 15-minute intervals for 7 hours over a 3-day period. To evaluate LH secretion and pituitary responsiveness, 5 mug of GnRH were administered at Hour 6 on Day 1. On Days 2 and 3, naloxone or morphine was administered at Hour 3, followed by GnRH (5 mug/animal) at Hour 6. Mean preinjection LH concentrations (3.6 +/- 0.2 and 4.7 +/- 0.2 ng/ml), LH pulse frequency (0.6 +/- 0.1 and 0.8 +/- 0.1 pulses/hour) and LH pulse amplitude (2.9 +/- 0.5 and 2.9 +/- 0.6 ng/ml) were similar for suckled and nonsuckled cows, respectively. Morphine decreased (P < 0.01) mean serum LH concentrations (pretreatment 4.2 +/- 0.2 vs post-treatment 2.2 +/- 0.2 ng/ml) in both suckled and nonsuckled cows; however, mean serum LH concentrations remained unchanged after naloxone. Nonsuckled cows had a greater (P < 0.001) LH response to GnRH than did suckled cows (area of response curve: 1004 +/- 92 vs 434 +/- 75 arbitrary units). We suggest that opioid receptors are functionally linked to the GnRH secretory system in suckled and nonsuckled cows that had been ovariectomized for a long period of time. However, gonadotropin secretion appears not to be regulated by opioid mechanisms, and suckling inhibits pituitary responsiveness to GnRH in this model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号