首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Partially purified phospholipid- and Ca2+-dependent protein kinase C from human placenta catalyzes the Mg-ATP-dependent phosphorylation of serine residues of purified rabbit muscle actin. Two tryptic [32P]-phosphopeptides were found on HPLC separation. Confirming the previous report by Machicao and Wieland [(1985) Curr. Top. Cell. Regul. 27, 95-105], actin is phosphorylated at serine residues by human placental membranes, and this is stimulated by insulin. In the absence of insulin trypsin treatment yielded eight [32P]phosphopeptides, two of which coincided with the ones due to protein kinase C. Insulin led to the appearance of three new [32P]phosphopeptides. These results suggest that insulin stimulates (a) serine protein kinase(s) which, like protein kinase C, is present in placental membranes.  相似文献   

2.
Addition of tumor-promoting phorbol diesters to [32P]phosphate-labeled A431 human epidermoid carcinoma cells caused an increase in the phosphorylation state of the transferrin receptor. The A431 cell transferrin receptor was also found to be a substrate for protein kinase C in vitro. Tryptic phosphopeptide mapping of the transferrin receptor resolved the same two phosphopeptides (X and Y) after either protein kinase C phosphorylation in vitro or treatment of labeled A431 cells with phorbol diesters. [32P]Phosphoserine was the only labeled phosphoamino acid detected. Phosphopeptide X was shown to be an incomplete tryptic digestion product which could be further digested with trypsin to generate the limit tryptic phosphopeptide (Y). Radiosequence analysis of [32P]phosphopeptide Y demonstrated that the [32P]phosphoserine was the second residue from amino terminus of the peptide. This receptor phosphopeptide was found to co-migrate with the synthetic peptide Phe-Ser(P)-Leu-Ala-Arg (where Ser(P) is phosphoserine) during reverse-phase high pressure liquid chromatography and two-dimensional thin layer electrophoresis and chromatography. The peptide Phe-Ser(P)-Leu-Ala-Arg is an expected tryptic fragment of the cytoplasmic domain of the transferrin receptor corresponding to residues 23-27. We conclude that the major site of protein kinase C phosphorylation of the transferrin receptor in vivo and in vitro is serine 24. This phosphorylation site is located within the intracellular domain of the transferrin receptor, 38 residues away from the predicted transmembrane domain.  相似文献   

3.
Insulin caused a rapid, dose-dependent increase in the binding of 125I-insulin-like growth factor-II (IGF-II) to the surface of cultured H-35 hepatoma cells. The [32P]phosphate content of the IGF-II receptors, immunoprecipitated from extracts of H-35 cell monolayers previously incubated with [32P]phosphate for 24 h, was decreased after brief exposure of the cells to insulin. Analysis of tryptic digests of labeled IGF-II receptors by bidimensional peptide mapping revealed that the decrease in the content of [32P]phosphate occurred to varying degrees on three tryptic phosphopeptides. Thin layer electrophoresis of an acid hydrolysate of isolated IGF-II receptors revealed the presence of [32P] phosphoserine and [32P]phosphothreonine. Insulin treatment of cells caused a decrease in the labeled phosphoserine and phosphothreonine content of IGF-II receptors. The ability of a number of highly purified protein kinases (cAMP-dependent protein kinase, protein kinase C, phosphorylase kinase, and casein kinase II) to catalyze the phosphorylation of purified IGF-II receptors was examined. Casein kinase II was the only kinase capable of catalyzing the phosphorylation of the IGF-II receptor on serine and threonine residues under the conditions of our assay. Bidimensional peptide mapping revealed that the kinase catalyzed phosphorylation of the IGF-II receptor on a tryptic phosphopeptide which comigrated with the main tryptic phosphopeptide found in receptors obtained from cells labeled in vivo with [32P]phosphate. IGF-II receptors isolated by immunoadsorption from insulin-treated H-35 cells were phosphorylated in vitro by casein kinase II to a greater extent than the receptors isolated from control cells. Similarly, IGF-II receptors from plasma membranes obtained from insulin-treated adipocytes were phosphorylated by casein kinase II to a greater extent than the receptors from control adipocyte plasma membranes. Thus, the insulin-regulated phosphorylation sites on the IGF-II receptor appear to serve as substrates in vivo for casein kinase II or an enzyme with similar substrate specificity.  相似文献   

4.
Protein phosphorylation in intact S49 mouse lymphoma cells was studied by using high-resolution two-dimensional gel electrophoresis of proteins labelled with [35S]methionine or [32P]Pi. In wild-type cells substrates for cyclic AMP-stimulatable phosphorylation exhibited high basal phosphorylation; in mutant cells deficient in activities of either cyclic AMP-dependent protein kinase or adenylate cyclase, basal phosphorylation of most of these substrates was negligible. Analysis of tryptic phosphopeptides from proteins labelled with [32P]Pi in wild-type cells suggested that identical sites were phosphorylated under conditions of both basal and hormonally elevated concentrations of cyclic AMP. These results argue that most basal phosphorylation is a consequence of partial activation of cyclic AMP-dependent protein kinase and that this activation is attributable to basal concentrations of cyclic AMP. For the intermediate filament protein vimentin, basal phosphorylation was largely at a site distinct from that stimulated by increased cyclic AMP, and basal phosphorylation was not markedly different in mutant and wild-type cells. Vimentin phosphorylated at both sites was not observed. Cyclic AMP treatment resulted in enhanced phosphorylation at the cyclic AMP-specific site and decreased phosphorylation at the cyclic AMP-independent site.  相似文献   

5.
When a partially purified rat liver phospholipid methyltransferase is incubated with [gamma-32P]ATP and rat brain protein kinase C, phospholipid methyltransferase (Mr 50,000, pI 4.75) becomes phosphorylated. Phosphorylation of the enzyme showed Ca2+/lipid-dependency. Protein kinase C-dependent phosphorylation of phospholipid methyltransferase was accompanied by an approx. 2-fold activation of the enzyme activity. Activity changes and enzyme phosphorylation showed the same time course. Activation of the enzyme also showed Ca2+/lipid-dependency. Protein kinase C mediates phosphorylation of predominantly serine residues of the methyltransferase. One major peak of phosphorylation was identified by analysis of tryptic phosphopeptides by isoelectrofocusing. This peak (pI 5.2) differs from that phosphorylated by the cyclic AMP-dependent protein kinase (pI 7.2), demonstrating the specificity of phosphorylation of protein kinase C. Tryptic-peptide mapping by h.p.l.c. of the methyltransferase phosphorylated by protein kinase C revealed one major peak of radioactivity, which could be resolved into two labelled phosphopeptides by t.l.c. The significance of protein kinase C-mediated phosphorylation of phospholipid methyltransferase is discussed.  相似文献   

6.
Chromosomal high mobility group (HMG) proteins have been examined as substrates for cGMP-dependent and cAMP-dependent protein kinases. Of the four HMG proteins only HMG 14 contained a major high affinity site which could be phosphorylated by both enzymes, preferentially by cGMP-dependent protein kinase. One mol of 32P was incorporated/mol of HMG 14. Kinetic analysis revealed apparent Km and Vmax of 40.5 microM and 14.7 mumol/min/mg, respectively, for cGMP-dependent protein kinase, and 123 microM and 11.1 mumol/min/mg, respectively, for cAMP-dependent protein kinase. Tryptic maps of 32P-labeled phosphopeptides of HMG 14 demonstrated phosphorylation of the same site by both enzymes. The tryptic fragment containing the major phosphorylation site was identified by amino acid composition and sequence as HMG 14 (residues 4-13): H-Lys-Val-Ser(P)-Ser-Ala-Glu-Gly-Ala-Ala-Lys-OH. HMG 14 and HMG 17 also contained minor sites which could be phosphorylated by cGMP-dependent protein kinase. Tryptic phosphopeptides mapping suggested that the same minor site was phosphorylated on both HMG 14 and 17. On the basis of amino acid composition, the tryptic peptides carrying the minor phosphorylation sites were identified as H-Leu-Ser(P)-Ala-Lys representing residues 23-26 and 27-30 of HMG 14 and HMG 17, respectively.  相似文献   

7.
Native acetyl CoA carboxylase was phosphorylated by catalytic subunit of cyclic AMP-dependent protein kinase and ATP-citrate lyase kinase to 1 and 0.5 mol/subunit respectively. Both protein kinases added together increased acetyl CoA carboxylase phosphorylation additively. Partial proteolysis of 32P-acetyl CoA carboxylase followed by electrophoretic analysis showed that the 32P-phosphopeptides generated from acetyl CoA carboxylase phosphorylated with lyase kinase were different from the peptides obtained from the enzyme phosphorylated by cyclic AMP-dependent protein kinase. Mapping of tryptic 32P-phosphopeptides by high performance liquid chromatography showed that the major phosphopeptides phosphorylated by ATP-citrate lyase kinase were different from the major phosphopeptides phosphorylated by cyclic AMP-dependent protein kinase. The results suggest that at least one different site on acetyl CoA carboxylase is preferentially phosphorylated by each protein kinase.  相似文献   

8.
R E Lewis  L Cao  D Perregaux  M P Czech 《Biochemistry》1990,29(7):1807-1813
The ability of tumor-promoting phorbol diesters to inhibit both insulin receptor tyrosine kinase activity and its intracellular signaling correlates with the phosphorylation of the insulin receptor beta subunit on serine and threonine residues. In the present studies, mouse 3T3 fibroblasts transfected with a human insulin receptor cDNA and expressing greater than one million of these receptors per cell were labeled with [32P]phosphate and treated with or without 100 nM 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA). Phosphorylated insulin receptors were immunoprecipitated and digested with trypsin. Alternatively, insulin receptors affinity purified from human term placenta were phosphorylated by protein kinase C prior to trypsin digestion of the 32P-labeled beta subunit. Analysis of the tryptic phosphopeptides from both the in vivo and in vitro labeled receptors by reversed-phase HPLC and two-dimensional thin-layer separation revealed that PMA and protein kinase C enhanced the phosphorylation of a peptide with identical chromatographic properties. Partial hydrolysis and radiosequence analysis of the phosphopeptide derived from insulin receptor phosphorylated by protein kinase C indicated that the phosphorylation of this tryptic peptide occurred specifically on a threonine, three amino acids from the amino terminus of the tryptic fragment. Comparison of these data with the known, deduced receptor sequence suggested that the receptor-derived tryptic phosphopeptide might be Ile-Leu-Thr(P)-Leu-Pro-Arg. Comigration of a phosphorylated synthetic peptide containing this sequence with the receptor-derived phosphopeptide confirmed the identity of the tryptic fragment. The phosphorylation site corresponds to threonine 1336 in the human insulin receptor beta subunit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Phosphorylation of a chromaffin granule-binding protein by protein kinase C   总被引:5,自引:0,他引:5  
Protein kinase C was detected in a group of Ca2+-dependent chromaffin granule membrane-binding proteins (chromobindins) on the basis of Ca2+-, phosphatidylserine-, 1,2-diolein-, and phorbol myristate acetate-stimulated histone kinase activity. When the chromobindins were incubated with [gamma-32P]ATP, Ca2+, and phosphatidylserine, 32P was incorporated predominantly into a protein of mass 37 +/- 1 kilodaltons (chromobindin 9, or CB9). Phosphorylation of this protein was also stimulated by diolein and phorbol myristate acetate, indicating that it is a substrate for the protein kinase C activity present in the chromobindins. Maximum phosphate incorporation into CB9 in the presence of 1 mM Ca2+, 75 micrograms/ml of phosphatidylserine, 2.5 micrograms/ml of diolein, and 12.5 micrograms/ml of dithiothreitol was 0.53 mol/mol of CB9 in 5 min. Eight 32P-labeled phosphopeptides were resolved in two-dimensional electrophoretic maps of trypsin digests of CB9. Phosphoamino acid analysis revealed that phosphorylation was exclusively on serine (94%) and threonine (6%) residues. Incubation of the chromobindins with chromaffin granule membranes in the presence of [gamma-32P]ATP resulted in the incorporation of 32P into eight additional proteins besides CB9 that could be separated from the membranes by centrifugation in the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. We suggest that phosphorylation of CB9 or these additional eight proteins may regulate events underlying exocytosis in the chromaffin cell.  相似文献   

10.
Thyrotropin (TSH) treatment of bovine thyroid slices increased 32P-labeling of chromosomal high mobility group 14 (HMG) protein approximately 2-fold. Analogs of cAMP, but not cGMP, also enhanced phosphorylation of HMG 14. The sites of phosphorylation were analyzed by partial acid hydrolysis and by two-dimensional mapping of tryptic digests of 32P-labeled HMG 14 which was purified from control and TSH-treated thyroid tissue. TSH treatment enhanced phosphorylation at serine residues in four prominent tryptic phosphopeptides which were identical with those derived from HMG 14 phosphorylated in vitro with cAMP- and cGMP-dependent protein kinases. The four tryptic phosphopeptides contain serine 6, the major site of in vitro phosphorylation catalyzed by cyclic nucleotide-dependent protein kinases (Walton, G. M., Spiess, J., and Gill, G. N. (1982) J. Biol. Chem. 257, 4661-4668). TSH did not affect phosphorylation of serine 24, a minor site of phosphorylation in vitro. These studies suggest that TSH-stimulated phosphorylation of HMG 14 is catalyzed by cAMP-dependent protein kinase.  相似文献   

11.
A potential casein kinase II (CK II) recognition site is located within the conserved carboxyl (COOH) terminus of the ribosomal P (phospho) proteins P0, P1, and P2. To determine whether the COOH termini of the P proteins are physiological substrates for CK II, we studied the phosphorylation of the P proteins in vitro and in intact cells. The results show that the addition of exogenous purified CK II and ATP to intact ribosomes in vitro resulted in the relatively selective phosphorylation of all three P proteins. A synthetic peptide corresponding to the COOH-terminal 22 amino acids of P2 (C-22) was also phosphorylated by CK II with a Km of 13.4 microM. An endogenous ribosome-associated, CK II-like enzyme also phosphorylated the P proteins relatively selectively in the presence of 10 mM Mg2+ and ATP. The endogenous kinase was inhibited by heparin, utilized either ATP or GTP as a phosphate donor, and phosphorylated casein. A CK II-specific peptide (Arg-Arg-Arg-Glu-Glu-Glu-Thr-Glu-Glu-Glu) and the C-22 peptide inhibited the phosphorylation of the P proteins by the endogenous kinase, providing further evidence for its CK II-like properties and for localization of the CK II phosphorylation site to the COOH termini of the P proteins. Tryptic phosphopeptide maps of P1 and P2 phosphorylated by exogenous CK II and the endogenous ribosome-bound kinase were virtually identical. These phosphopeptides comigrated with the tryptic digest of C-22 and with the tryptic phosphopeptides derived from P1 and P2 isolated from intact cells metabolically labeled with [32P]orthophosphate in vivo. These studies demonstrate that exogenous CK II and a ribosome-bound, CK II-like enzyme phosphorylate the ribosomal P proteins in vitro and localize the target site for phosphorylation to the COOH terminus. The incorporation of phosphate into the same target site in intact cells indicates that the P proteins are in vivo substrates of CK II.  相似文献   

12.
DARPP-32 (dopamine- and cAMP-regulated phosphorprotein, Mr = 32,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) is an inhibitor of protein phosphatase-1 and is enriched in dopaminoceptive neurons possessing the D1 dopamine receptor. Purified bovine DARPP-32 was phosphorylated in vitro by casein kinase II to a stoichiometry greater than 2 mol of phosphate/mol of protein whereas two structurally and functionally related proteins, protein phosphatase inhibitor-1 and G-substrate, were poor substrates for this enzyme. Sequencing of chymotryptic and thermolytic phosphopeptides from bovine DARPP-32 phosphorylated by casein kinase II suggested that the main phosphorylated residues were Ser45 and Ser102. In the case of rat DARPP-32, the identification of these phosphorylation sites was confirmed by manual Edman degradation. The phosphorylated residues are located NH2-terminal to acidic amino acid residues, a characteristic of casein kinase II phosphorylation sites. Casein kinase II phosphorylated DARPP-32 with an apparent Km value of 3.4 microM and a kcat value of 0.32 s-1. The kcat value for phosphorylation of Ser102 was 5-6 times greater than that for Ser45. Studies employing synthetic peptides encompassing each phosphorylation site confirmed this difference between the kcat values for phosphorylation of the two sites. In slices of rat caudate-putamen prelabeled with [32P]phosphate, DARPP-32 was phosphorylated on seryl residues under basal conditions. Comparison of thermolytic phosphopeptide maps and determination of the phosphorylated residue by manual Edman degradation identified the main phosphorylation site in intact cells as Ser102. In vitro, DARPP-32 phosphorylated by casein kinase II was dephosphorylated by protein phosphatases-1 and -2A. Phosphorylation by casein kinase II did not affect the potency of DARPP-32 as an inhibitor of protein phosphatase-1, which depended only on phosphorylation of Thr34 by cAMP-dependent protein kinase. However, phosphorylation of DARPP-32 by casein kinase II facilitated phosphorylation of Thr34 by cAMP-dependent protein kinase with a 2.2-fold increase in the Vmax and a 1.4-fold increase in the apparent Km. Phosphorylation of DARPP-32 by casein kinase II in intact cells may therefore modulate its phosphorylation in response to increased levels of cAMP.  相似文献   

13.
Protein kinase A phosphorylates retinal phosducin on serine 73 in situ   总被引:4,自引:0,他引:4  
Photoreceptors of vertebrate retinas contain a 33,000-dalton phosphoprotein, phosducin, which complexes with the beta, gamma subunits of the photoreceptor G-protein (guanine nucleotide-binding protein), transducin. In situ, the retinal content of phosphorylated phosducin is modulated by light in conjunction with light-triggered changes in intracellular cyclic nucleotide concentration. In vitro, phosducin is phosphorylated by either exogenous or endogenous protein kinase A. 32P-Labeled rat retina phosducin was isolated by immunoprecipitation either after phosphorylation by protein kinase A in the presence of [gamma-32P]ATP or after incubation of retinas in darkness with 32Pi. In either case, phosphoamino acid analysis showed that greater than 98% of 32P was linked to serine, with less than 2% to threonine. Two-dimensional peptide mapping showed that [32P]phosphoserine was associated with the same characteristic set of tryptic peptides. Furthermore, Cleveland peptide analysis using four different proteases showed that either sample exhibited identical patterns of phosphopeptides which were characteristic of the protease used. Identical phosphopeptide maps were also obtained from 32P-labeled bovine retina phosducin, indicating that the serine phosphorylation site for protein kinase A is conserved between rat and bovine. Edman degradation of phosphopeptides derived from 32P-labeled bovine phosducin showed that radioactive phosphate was incorporated into serine residue 73 which is located within a consensus phosphorylation sequence for protein kinase A (-R-K-M-S73(P)-). These observations are uniformly in agreement with protein kinase A being the endogenous kinase that phosphorylates phosducin in vivo.  相似文献   

14.
The phosphorylation state of six cytoplasmic proteins is increased following treatment of isolated rat hepatocytes with hormones that elevate free intracellular Ca2+ levels (Garrison, J. C. and Wagner, J. D. (1982) J. Biol. Chem. 257, 13135-13143). Tryptic 32P-phosphopeptide maps of two of the substrates, pyruvate kinase and a 49,000-dalton protein, the major 32P-labeled protein in hepatocytes, were prepared following stimulation of cells with vasopressin, a Ca2+-linked hormone. Peptide maps of the 49,000-dalton protein phosphorylated in vitro with the recently identified multifunctional Ca2+/calmodulin-dependent protein kinase contained phosphopeptides identical to those observed in the intact cell, suggesting that this kinase is activated in response to Ca2+-mobilizing hormones. Similar in vitro phosphorylation experiments with pyruvate kinase suggested that the Ca2+/calmodulin-dependent protein kinase can phosphorylate not only the serine residues observed following vasopressin stimulation of the intact cell but also additional threonine residues. Both pyruvate kinase and the 49,000-dalton protein are also phosphorylated in the hepatocyte in response to glucagon and in vitro by the cAMP-dependent protein kinase. Both vasopressin and glucagon appear to stimulate the phosphorylation of identical serine residues in pyruvate kinase but only vasopressin enhances the phosphorylation of certain sites in the 49,000-dalton protein. Comparison of the tryptic phosphopeptide maps of these substrates phosphorylated in vitro with either the Ca2+/calmodulin-dependent protein kinase or the cAMP-dependent protein kinase suggests that the Ca2+-dependent kinase can phosphorylate unique sites in both substrates. It appears to share specificity at other sites with the cAMP-dependent protein kinase. Overall, the results suggest that the multifunctional Ca2+/calmodulin-dependent protein kinase plays an important role in the response of the hepatocyte to a Ca2+ signal.  相似文献   

15.
The phosphorylation of DNA topoisomerase I in quiescent murine 3T3-L1 fibroblasts treated with the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) was characterized by in vivo labeling with [32P] orthophosphate and immunoprecipitation with a scleroderma anti-DNA topoisomerase I autoantibody. DNA topoisomerase I phosphorylation was stimulated 4-fold by 2 h of TPA treatment (TPA at 100 ng/ml maximally enhanced phosphorylation). Purified DNA topoisomerase I was phosphorylated in vitro in a Ca2+ and phospholipid-dependent fashion by types I, II, and III protein kinase C. The phosphorylation reaction was stimulated by TPA and had an apparent K(m) of 0.4 microM. DNA topoisomerase I was phosphorylated in vivo and in vitro predominantly at serine. The major tryptic phosphopeptides from DNA topoisomerase I in TPA-treated fibroblasts and phosphorylated by protein kinase C comigrated in thin-layer electrophoresis. The half-life of incorporated phosphate on DNA topoisomerase I was 40 min in both TPA-treated and control cells. These results suggest that phosphorylation is a mechanism for activating DNA topoisomerase I in fibroblasts treated with TPA and that protein kinase C functions in the phosphorylation.  相似文献   

16.
Hepatic carnitine palmitoyltransferase-I (CPT-IL) isolated from mitochondrial outer membranes obtained in the presence of protein phosphatase inhibitors is readily recognized by phosphoamino acid antibodies. Mass spectrometric analysis of CPT-IL tryptic digests revealed the presence of three phosphopeptides including one with a protein kinase CKII (CKII) consensus site. Incubation of dephosphorylated outer membranes with protein kinases and [gamma-32P]ATP resulted in radiolabeling of CPT-I only by CKII. Using mass spectrometry, only one region of phosphorylation was detected in CPT-I isolated from CKII-treated mitochondria. The sequence of the peptide and position of phosphorylated amino acids have been determined unequivocally as FpSSPETDpSHRFGK (residues 740-752). Furthermore, incubation of dephosphorylated outer membranes with CKII and unlabeled ATP led to increased catalytic activity and rendered malonyl-CoA inhibition of CPT-I from competitive to uncompetitive. These observations identify a new mechanism for regulation of hepatic CPT-I by phosphorylation.  相似文献   

17.
Viral and cellular fos proteins: a comparative analysis   总被引:46,自引:0,他引:46  
T Curran  A D Miller  L Zokas  I M Verma 《Cell》1984,36(2):259-268
The FBJ murine osteosarcoma virus (FBJ-MuSV) induces osteosarcomas in mice and transforms fibroblasts in vitro. It contains an oncogene termed v-fos derived from a normal cellular gene by recombination with an associated helper virus. The product of the v-fos gene is a 55,000 dalton protein, p55v-fos. This protein was found in the nuclei of cells containing amplified levels of the v-fos gene, and also in the nuclei of virus-transformed cells. The c-fos protein was localized in the nuclei of normal mouse amnion cells and in the nuclei of cells transformed by a recombinant plasmid that expresses the c-fos gene product. However, p55c-fos undergoes more extensive post-translational modification in the nucleus than p55v-fos. Immunofluorescence data indicate that the level of p55c-fos in normal mouse amnion cells is similar to that found in fibroblasts transformed by the v-fos or c-fos proteins.  相似文献   

18.
Electrical stimulation of the preganglionic cervical sympathetic trunk increases the phosphorylation of tyrosine hydroxylase in the superior cervical ganglion of the rat by a nicotinic mechanism and by a noncholinergic mechanism. We have measured the incorporation of [32P]Pi into specific tryptic phosphopeptides in tyrosine hydroxylase in order to identify the protein kinases that phosphorylate this enzyme in electrically stimulated ganglia. 32P-labeled tyrosine hydroxylase was isolated from the ganglion by immunoprecipitation and polyacrylamide gel electrophoresis and was subjected to tryptic hydrolysis. Seven tryptic peptides were resolved from these hydrolysates by two-dimensional thin-layer electrophoresis and chromatography. Preganglionic stimulation (20 Hz, 5 min) increased the incorporation of 32P into four of these peptides. In the presence of cholinergic antagonists, however, electrical stimulation increased the labeling of only one phosphopeptide. From a comparison of the effects of preganglionic stimulation with the effects of agonists that activate specific protein kinases, we conclude that electrical stimulation increases the phosphorylation of tyrosine hydroxylase by both a cAMP-dependent protein kinase and a Ca2+/calmodulin-dependent protein kinase. The nicotinic component of preganglionic stimulation appears to be mediated by a Ca2+/calmodulin-dependent protein kinase, while the noncholinergic component appears to be mediated by cAMP-dependent protein kinase. Although protein kinase C can phosphorylate tyrosine hydroxylase, this kinase does not appear to participate in the stimulation-induced phosphorylation of tyrosine hydroxylase in the superior cervical ganglion.  相似文献   

19.
20.
Tyr(P)-containing proteins were purified from extracts of insulin-treated rat hepatoma cells (H4-II-E-C3) by antiphosphotyrosine immunoaffinity chromatography. Two major insulin-stimulated, Tyr(P) proteins were recovered: an Mr 95,000 protein (identified as the insulin receptor beta subunit by its immunoprecipitation by a patient-derived anti-insulin receptor serum and several anti-insulin receptor (peptide) antisera) and an Mr 180,000 protein (which was unreactive with all anti-insulin receptor antibodies). After purification and tryptic digestion of the Mr 95,000 protein, tryptic peptides containing Tyr(P) were purified by sequential antiphosphotyrosine immunoaffinity, reversed-phase, anion-exchange chromatography. The partial amino acid sequence obtained by gas- and solid-phase Edman degradation was compared to the amino acid sequence of the intracellular extension of the rat insulin receptor deduced from the genomic sequence. Approximately 80% of all beta subunit [32P]Tyr(P) resides on two tryptic peptides: 50-60% of [32P]Tyr(P) is found on the tryptic peptide Asp-Ile-Tyr-Glu-Thr-Asp-Tyr-Tyr-Arg from the tyrosine kinase domain, which is recovered mainly as the double phosphorylated species (predominantly in the form with Tyr(P) at residues 3 and 7 from the amino terminus; the remainder with Tyr(P) at residues 3 and 8), with 10-15% as the triple phosphorylated species. A second tryptic peptide is located near the carboxyl terminus, contains 2 tyrosines, and has the sequence, Thr-Tyr-Asp-Glu-His-Ile-Pro-Tyr-Thr-; this contains 20-30% of beta subunit [32P]Tyr(P) and is identified primarily in a double phosphorylated form. Approximately 10% of beta subunit [32P]Tyr(P) resides on an unidentified tryptic peptide of Mr 4,000-5,000. The insulin-stimulated tyrosine phosphorylation of the insulin receptor in intact rat hepatoma cells thus involves at least 6 of the 13 tyrosine residues located on the beta subunit intracellular extension. These tyrosines are clustered in several domains in a distribution virtually identical to that previously found for partially purified human insulin receptor autophosphorylated in vitro in the presence of insulin. This multisite regulatory tyrosine phosphorylation is the initial intracellular event in insulin action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号