首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 977 毫秒
1.
Effects of N sources (ammonium, nitrate and ammonitrate) and VA mycorrhizae (Glomus intraradices) on rhizosphere soil characteristics (pH, exchangeable acidity, exchangeable cations, inorganic N concentrations) growth and nutrient acquisition of coffee seedlings (Coffea arabica L. cv guatemala) were investigated in a pot study with an acid soil (Red Bluff Loam) sterilized by autoclaving. Ammonium addition decreased rhizosphere pH while nitrate and ammonitrate additions both increased rhizosphere pH. Mycorrhizae induced a higher pH, a lower exchangeable acidity and higher values of exchangeable cations in the rhizosphere. Ammonium addition resulted in a lower mycorrhizal infection than the two other N sources. Mycorrhizal plants grew better and accumulated more N, Ca and Mg than non-mycorrhizal plants.  相似文献   

2.
Soils of the Appalachian region of the United States are acidic and deficient in P. North Carolina phosphate rock (PR), a highly substituted fluoroapatite, should be quite reactive in these soils, allowing it to serve both as a source of P and a potential ameliorant of soil acidity. An experiment was conducted to evaluate the influence of PR dissolution on soil chemical properties and wheat (Triticum aestivum cv. Hart) seedling root elongation. Ten treatments including nine rates of PR (0, 12.5, 25, 50, 100, 200, 400, 800, and 1600 mg P kg-1) and a CaCO3 (1000 mg kg-1) control were mixed with two acidic soils, moistened to a level corresponding to 33 kPa moisture tension and incubated for 30 days. Pregerminated wheat seedlings were grown for three days in the PR treated soils and the CaCO3 control. Root length was significantly (P<0.05) increased both by PR treatments and CaCO3, indicating that PR dissolution was ameliorating soil acidity. The PR treatments increased soil pH, exchangeable Ca, and soil solution Ca while lowering exchangeable Al and 0.01 M CaCl2 extractable soil Al. Root growth in PR treatments was best described by an exponential equation (P<0.01) containing 0.01 M CaCl2 extractable Al. The PR dissolution did not reduce total soil solution Al, but did release Al complexing anions into soil solution, which along with increased pH, shifted Al speciation from toxic to nontoxic forms. These results suggest that North Carolina PR should contribute to amelioration of soil acidity in acidic, low CEC soils of the Appalachian region.  相似文献   

3.
Amelioration of acid soil infertility by phosphogypsum   总被引:6,自引:0,他引:6  
Amelioration of subsoil acidity requires an increase in Ca status along with a decrease in Al status in subsoil. In this study, effects of phosphogypsum (PG) on the amelioration of subsoil acidity have been evaluated, using cultivated and woodland subsoils representing Cecil, Wedowee (both Typic Hapludult) and Bladen (Typic Albaquult) series. Subsoil (0.6–0.8 m) samples were collected and treated with either PG (approximately 2 Mg ha-1 rate), Ca(NO3)2 or Mg(NO3)2 along with an unamended control treatment. A fertile topsoil amended with NH4NO3 was placed on top of all treated subsoil. Top and root growth of alfalfa [Medicago sativa (L.) cv. Hunter River] and soybean [Glycine max (L.) Merr. cv. Lee] were significantly greater in PG-amended than in unamended pots of the Cecil and Wedowee soils, although most growth was observed with the Ca(NO3)2-amended treatment. In the Bladen soil, however, none of the amendments evoked a significant growth response in either alfalfa or soybean. The concentration of Ca in the displaced soil solution (in soils with no plants) as well as tissue levels of Ca suggest that the growth response was partly due to an improved Ca availability in both PG or Ca(NO3)2-treated soils. Exchangeable Al decreased in PG-amended soils. The self-liming effect of PG, which is a release of OH- due to ligand exchange between SO4 2- and OH-, as well as a decrease in exchangeable Al in PG-amended soil is greater in predominantly kaolinitic Cecil and Wedowee soils than in smectitic Bladen soil. As a result, significant growth response to PG amendment was observed in the Cecil and Wedowee soils, but not in the Bladen soil.  相似文献   

4.
The effects of liming and Mg fertilization on growth, specific root length (root length per unit of root dry weight; SRL) and nutrient uptake of twelve sorghum genotypes (Sorghum bicolor (L.) Moench) were studied in two pot experiments. Liming increased the pH of the sandy loam from pH 4.3 (unlimed) to 4.7 (with 0.5 g Ca(OH)2 kg-1 soil) and to 6.1 (with 2.5 g Ca(OH)2 kg-1 soil). Liming increased the dry matter yield of the genotypes by factors of 1.2 to 6.0 (between pH 4.3 and 4.7) and by 1.1 to 2.4 (between pH 4.7 and 6.1). In absence of Mg at soil pH of 4.3 and 4.7, all genotypes suffered from Mg deficiency, as indicated by low Mg concentrations in the shoots (26–94 mmol Mg kg-1 DM) and visible Mg deficiency symptoms. At pH 4.7 several of the genotypes responded to Mg application and produced significantly more dry matter. At pH 4.3, however, none of the genotypes responded to Mg, even though the internal Mg concentrations were increased by applied Mg. The relative increase in dry matter yield between pH 4.3 and 4.7 was closely correlated to the relative change in specific root length in the same soil pH interval, especially when the soil was fertilized with Mg (r2=0.91**). The group of genotypes where SRL and dry matter yield were reduced by soil acidity was not the same as the group that responded positively to Mg application at pH 4.7.It is concluded that the growth of sorghum genotypes on acid soils is determined by two independent characteristics: the sensitivity of root development to soil acidity and the efficiency of the uptake and utilization of Mg. The first characteristic is predminant at high soil acidity whilst the latter is dominant at moderate soil acidity.  相似文献   

5.
Wang  Z. Y.  Kelly  J. M.  Kovar  J. L. 《Plant and Soil》2007,270(1-2):213-221
In situ sampling of rhizosphere solution chemistry is an important step in improving our understanding of soil solution nutrient dynamics. Improved understanding will enhance our ability to model nutrient dynamics and on a broader scale, to develop effective buffers to minimize nutrient movement to surface waters. However, only limited attention has been focused on the spatial heterogeneity and temporal dynamics of rhizosphere solution, and still less is known about how rhizosphere solution chemistry varies among plant species. Nutrients in rhizosphere soil solution and changes in root morphology of juvenile corn (Zea mays L. cv. Stine 2250), cottonwood (Populus deltoids L.), and switchgrass (Panicum virgatum L.) were monitored using mini-rhizotron technology. Plants were grown for 10 days in a fine-silty, mixed, superactive, mesic Cumulic Hapludoll (Kennebec series). Micro-samples (100–200 μL) of rhizosphere and bulk soil solution were collected at 24-h intervals at a tension of −100 kPa and analyzed for P, K, Ca, and Mg concentration using Capillary Electrophoresis techniques. Plants were harvested at the end of the 10-day period, and tissue digests analyzed for nutrient content by Inductively Coupled Plasma Spectroscopy. Corn plants produced roots that were 1.3 times longer than those of cottonwood, and 11.7 times longer than those of switchgrass. Similar trends were observed in number of root tips and root surface area. At the end of 10 days, rhizosphere solution P and K concentrations in the immediate vicinity of the roots (<1 mm) decreased by approximating 24 and 8% for corn, and 15 and 5% for cottonwood. A rhizosphere effect was not found for switchgrass. After correction for initial plant nutrient content, corn shoot P, K, and Mg were respectively 385, 132, and 163% higher than cottonwood and 66, 37, and 10% higher than switchgrass. Cottonwood shoot Ca concentration, however, was 68 to 133% higher than that of corn or switchgrass. There was no difference in root P concentration among the three species. Nutrient accumulation efficiency (μg nutrient mm−1 root length) of cottonwood was 26 to 242% higher for P, 25 to 325% higher for Ca, and 41 to 253% higher for Mg than those of corn and switchgrass. However, K accumulation efficiency of corn was four to five times higher than that of the cottonwood and switchgrass. Nutrient utilization efficiency (mg of dry weight produced per mg nutrient uptake) of P, K, and Mg was higher in cottonwood than in corn and switchgrass. These differences are element-specific and depend on root production and morphology as well as plant nutrient status. From a practical perspective, the results of this study indicate that potentially significant differences in rhizosphere solution chemistry can develop quickly. Results also indicate that cottonwood would be an effective species to slow the loss of nutrients in buffer settings. An erratum to this article can be found at  相似文献   

6.
Nutrient imbalances of declining sugar maple (Acer saccharum Marsh.) stands in southeastern Quebec have been associated with high exchangeable Mg levels in soils relative to soil K and Ca. A greenhouse experiment was set up to test the hypothesis that the equilibrium between soil exchangeable K, Ca, and Mg ions influences the growth and nutrient status of sugar maple seedlings. Also tested was whether endomycorrhization can alter nutrient acquisition under various soil exchangeable basic cations ratios. Treatments consisted of seven ratios of soil exchangeable K, Ca, and Mg making up a total base saturation of 58%, and a soil inoculation treatment with the endomycorrhizal fungus Glomus versiforme (control and inoculated), in a complete factorial design. Sugar maple seedlings were grown for 3 months in the treated soils. Plant shoot elongation rate, dry biomass and nutrient concentrations in foliage were influenced by the various ratios of soil cations. The predicted plant biomass and foliar K concentration were highest at a soil Ca saturation of 38%, a soil K saturation of 12%, and a soil Mg saturation of 8%. Potassium concentration in foliage was dependent on the level of Ca and Mg saturation in the soil when soil K saturation was close to 12%. Foliar Ca and Mg levels were more dependent on their corresponding levels in soil than foliar K. Colonization by G. versiforme did not influence seedling growth and macronutrient uptake. The results confirm that growth and nutrition of sugar maple are negatively affected by imbalances in exchangeable basic cations in soils.  相似文献   

7.
Results are reported for tomato (Lycopersicon esculentum L. var. Ailsa craig) and wheat (Triticum aestivum L. cv. Mara) which demonstrate that increasing concentrations of Mg in the plant raises plant tolerance to Mn toxicity.Water culture experiments with tomato show that under conditions of high Mn supply (200 µM, Mn), not only does increasing Mg application (0.75 mM to 15 mM) depress Mn uptake, but the higher Mg concentrations in the shoot counteract the onset of Mn toxicity when the concentrations of Mn in the shoot are also high. The ratio of Mg: Mn in the tissues is a better indicator of the appearance of toxicity symptoms than Mn concentration alone. Toxicity symptoms were observed when the Mg:Mn ratio in the shoot tissue was from 1.13 to a value between 3.53 and 6.54. The corresponding Mg: Mn ratio in the older leaves was from 0.82 to between 2.27 and 3.51.For wheat grown in soil, analyses of leaves revealed that growth could be expressed by the following relationship: Y=A+B exp(-kX), where Y=growth, X=Mg:Mn ratio, A, B and k=constants. Growth was significantly reduced when the Mg:Mn ratio fell below 20:1. From a measurement of this ratio it is therefore possible to predict the appearance of Mn toxicity and its influence on growth.  相似文献   

8.
R. A. Carran 《Plant and Soil》1991,134(1):107-114
Three pot experiments, in which causes of negative yield responses to liming were investigated, are reported. The soil used, Waimumu silt loam (Fragiochrept), differed from others that have been reported to show negative yield response to liming, in that it is only moderately weathered and leached, only moderately acid and has previously shown positive yield responses to liming. Deficiencies of Zn and Mg were identified, but limed (pH 6.8) soils still showed a 40% yield depression even where all nutrients were supplied daily. Phosphorus availability was little affected by liming, and despite Mg and Zn addition, yields were depressed at high lime (pH 6.4) and high P while plants showed leaf symptoms of Mg deficiency. Neither plant nor soil analyses indicated low Mg levels but Ca: Mg ratios in soil were 22:1. When a pH range 5.2–6.1 was produced by liming with CaCO3 and MgCO3 at ratios between 100:0, and 50:50 on an equivalent basis, negative yield response was eliminated at Ca:Mg of 50:50. There was no evidence that Mg was fixed or rendered unavailable at the higher pH levels. A Ca induced Mg deficiency arising when exchangeable Ca:Mg>20 is suggested as the cause. The role of variable surface charge in converting soils that respond positively to lime to a negative response condition is discussed.  相似文献   

9.
Soybeans [Glycine max (L.) Merr. cv. Essex] were grown in nonsterile acid (pH. 5.2) infertile Wynnville silt loam (Glossic Fragiudult) in a glasshouse. The effects of P fertilization and lime were determined by inoculation with two VAM-fungi (VAMF): Glomus fasciculatum (Gf) and Glomus etunicatum (Ge). An important factor affected by the interaction between applied lime (soil acidity), applied P, and VAMF inoculation was the soil Al. Five application rates of P as KH2PO4 and three rates of lime were tested. Potassium was equalized with KCl (muriate of potash). P-efficiency (g seed/mg P kg-1 soil) by vesicular-arbuscular mycorrhiza (VAM) was maximal at 20 mg P kg-1 soil at all lime and VAMF treatments. VAMF inoculation increased plant survival and protected the soybeans from leaf scorch, thereby substituting for the effects of lime and P. The Ge inoculum was superior in ameliorating leaf scorch in the nonlimed soil. The Gf inoculum required more lime and P than the Ge inoculum to increase seed yield relative to the noninoculated controls containing only native VAMF. Both inocula increased root Al uptake and extractable soil Al in the acid soil without apparent adverse effects on root or shoot. The ability of the VAMF inocula to enhance the efficiency of applied P and decrease seed Cl concentration was increased by lime. Seed yield (Y) was negatively related to seed Cl concentration (X) where Y=aX-b. Both VAMF inoculation and lime application reduced this negative relationship and may have increased the tolerance to both Cl and soil Al.  相似文献   

10.
In 1981 a two-year field plot experiment was established to assess the effects of quantities (0, 7.5, 15, 30, 60 and 120 t ha−1) of fresh kelp (Macrocystis integrifolia) on crop growth and nutritional response and chemical properties of a fine-textured soil. Soil was analyzed for NO3−N, NH4−N, electrical conductivity, pH, Cl and exchangeable cations (K, Mg, Ca, Mn and Na). The plots were planted to beans (Phaseolus vulgaris) in the first year and peas (Pisum sativum) in the second year. Marketable bean yields increased in the first year with kelp applications up to 60 t ha−1, with yields, emergence and flowering being reduced by the 120 t ha−1 application. Soluble salts (EC) and Cl concentrations in the soil eight days after application increased linearly and sharply with increasing quantities of kelp. Increased K concentration and moisture content, characteristics of plants growing in a salt-stressed soil environment, were measured. A subsequent companion greenhouse experiment confirmed that the reduced bean emergence and growth with 120 t ha−1 applications of kelp were primarily due to soluble salts. The only growth effects upon peas in the second year was a slight reduction in leaf plus stem yields with increasing applications of kelp.  相似文献   

11.
Considerable knowledge exists about the effect of aluminium (Al) on root vitality, but whether elevated levels of Al affect soil microorganisms is largely unknown. We thus compared soils from Al-treated and control plots of a field experiment with respect to microbial and chemical parameters, as well as root growth and vitality. The field experiment was established in a 50-year-old Norway spruce (Picea abies L.) stand where no Al or low concentrations of Al had been added every 7–10 days during the growth season for 7 years. Analysis of soil solutions collected using zero tension lysimeters and porous suction cups showed that Al treatment lead to increased concentrations of Al, Ca and Mg and lower pH and [Ca + Mg + K/Al] molar ratio. Corresponding soil analyses showed that soil pH remained unaffected (pH 3.8), that exchangeable Al increased, while exchangeable Ca and Mg decreased due to the Al treatment. Root in-growth into cores placed in the upper 20 cm of the soil during three growth seasons was not affected by Al additions, neither was nutrient concentration or mortality of these roots. The biomass of some taxonomic groups of soil microorganisms, analyzed using specific membrane components (phospholipid fatty acids; PLFAs), was clearly affected by the imposed Al treatment, both in the organic soil horizon and in the underlying mineral soil. Microbial community structure in both horizons was also clearly modified by the Al treatment. Shifts in PLFA trans/cis ratios indicative of short term physiological stress were not observed. Yet, aluminium stress was indicated both by changes in community structure and in ratios of single PLFAs for treated/untreated plots. Thus, soil microorganisms were more sensitive indicators of subtle chemical changes in soil than chemical composition and vitality of roots.  相似文献   

12.
An experiment to study the effects of Mg nutrition on root and shoot development of the Al-sensitive sorghum (Sorghum bicolor (L.) Moench) genotype CV323 grown in pots of sandy loam under different acid soil stress is reported. This experiment had a factorial design: four rates of liming were combined with four rates of Mg fertilization. When no Mg was added, the pH of the soil solutions (collected in ceramic cups) increased from 4.0 (unlimed) to 4.2, 4.7 and 5.9 at the increasing rates of liming. After 30 days of growth dry matter yields of the limed treatments were 40%, 115% and 199% higher than that of the unlimed treatment. Without liming and at the highest liming rate, adding Mg did not affect plant biomass significantly. At the two intermediate levels of liming, however, 11.3 mg extra Mg per kg soil increased dry matter yield to the same levels as found at the highest liming rate. Concentrations of Mg in the soil solution rose after Mg was added and fell when lime was added, but adding both Mg and lime increased Mg concentrations in the plant shoots. In plants of the limed treatments, dry matter yield was correlated closely with the Mg concentration in the shoot. This was not so in the unlimed treatment. Furthermore, in the unlimed treatments root development was inhibited, but reduced Mg uptake by the plants resulted mainly from the direct effect of Al- (or H-) ions in the soil solution rather than from impaired root development. It is concluded that Mg fertilization counteracted the interfering effects of Al- and H ions on Mg uptake.  相似文献   

13.
One-year-old Prunus avium L. were grown under greenhouse conditions in a Countesswells soil in all combinations of 2 pH and 2 P levels. The soil, obtained from a long-term liming and fertilizer experiment, provided pH values throughout the experiment of 3.75–3.99 (pH 1) and 4.81–5.41 (pH 2). The P treatments had 0.43% acetic acid extractable P of 31–44 g g-1 (P1) and 145–173 g g-1 (P2). The trees were harvested 92 (H1), 134 (H2), and 168 (H3) days after initiation of growth.Top (leaf+new stem) dry weight was significantly increased for pH 2 and P2 at H2 and H3. P2 also increased leaf weight (H1), the weight of the original stem-root (H2 and H3), and root length but decreased root diameter at both soil pHs (H2 and H3). Total tree uptake of N, P, K, Ca, and Mg was also increased by pH-P combinations which had significantly greater dry matter production and root length. Total Mn uptake decreased at pH2. Root nutrient inflows (uM m-1 day-1) were increased for Ca at pH2 and for P at P2. Mn inflow decreased at pH2 and at pH1 P2 although the increased root length associated with the latter treatmen resulted in increased total tree Mn uptake. In general, high nutrient inflows occurred in all trees at H1 and in severely stunted trees at pH1 P1; both had larger than average root diameters.  相似文献   

14.
Ruan  Jianyun  Zhang  Fusuo  Wong  Ming H. 《Plant and Soil》2000,223(1-2):65-73
The effects of nitrogen form and phosphorus source on the growth, nutrient uptake and rhizosphere soil property of tea (Camellia sinensis L.) were investigated in a pot experiment. The experiment was performed with a compartmental cropping device, which enables the collection of rhizosphere soil at defined distances from the root of tea plant. Nitrogen was supplied as nitrate or ammonium in combination with soluble phosphorus as Ca(H2PO4)2 or insoluble P as rock phosphate. The leaf dry matter production of tea was significantly greater in the treatments with NH4 + than NO3 -, whereas dry matter production of root and stem was not significantly affected. Addition of phosphorus as either source did not influence the dry matter production. The concentrations of K in root, Mg and Ca in both the shoot and root supplied with NO3 - were significantly higher than in NH4 + and influence of P sources was minor. On the contrary, Al and Mn concentrations were significantly larger in NH4 --fed plants which could be attributed to remarkably increased availability of Al and Mn caused by acidification of the rhizosphere soil (the first 1-mm soil section from the root surface) with NH4–N nutrition. The concentration of N in shoot was also significantly higher in NH4- than in NO3-fed plants, indicating higher use efficiency of NH4–N. Whatever the phosphate source, rhizosphere pH declined in ammonium compared to in nitrate treatment. The pH decrease was much larger when no P or soluble P were applied and reached 0.85–1.30 units which extended to 3–5 mm away from the root surface. Exchangeable acidity, content of exchangeable Al and Mn were also considerably higher in the rhizosphere soils of NH4 + fed tea plants. Significant amounts of P dissolved from rock phosphate accumulated in rhizosphere of NH4 +, not NO3 -, suggesting that the dissolution of rock phosphate was induced by the proton excreted by tea root fed with ammonium. With soluble P addition, shoot and root P concentrations were greater in NH4 + than in NO3 - treatment and it appeared that this difference could not be sufficiently explained by the available P content in soil which was only slightly higher in NH4 + treatment. With rock phosphate addition, the shoot and root P concentrations were hardly affected by nitrogen form, although the available P content was much higher and accumulated in the rhizosphere soil supplied with ammonium. The reason for this was discussed with regard to the inter-relationship of Al with P uptake. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Bakker  M.R.  Kerisit  R.  Verbist  K.  Nys  C. 《Plant and Soil》1999,217(1-2):243-255
Soil acidification can be detrimental to root growth and nutrient uptake, and liming may alleviate such acidification. In the following study, seedlings of sessile oak (Quercus petraea Liebl. M.) were grown in rhizotrons and subjected to liming (L) or gypsum (G) treatments and compared with the control (C). In order to study and interpret the impact of these calcium rich treatments on fine root development and tree growth, the following parameters were assessed: fine root biomass, fine root length, seedling development (height, diameter, leaves), seedling biomass, nutrient content of roots and seedlings, bulk soil and soil solution chemistry and rhizosphere soil chemistry. The results show that liming increased bulk soil pH, exchangeable Mg, Ca and the Ca/Al molar ratio, and decreased exchangeable Al, mainly in the A-horizon. Gypsum had a similar but smaller impact on exchangeable Al, Ca, H+ and the Ca/Al molar ratio in the A-horizon, but reacted with depth, so that exchangeable Mn, Mg and Ca were increased in the B-horizon. In the rhizosphere, the general pattern was determined by the treatment effects of the bulk soil. Most elements were more concentrated in the rhizosphere than in bulk soil, except for Ca which was less concentrated after liming or gypsum application. In the B-horizon rhizosphere pH was increased by the treatments (L > G,C) close to the root tips. Furthermore, the length of the zone with a positive root-induced pH increase was greater for the limed roots as compared with both the other treatments. Fine root growth was stimulated by liming (L > G,C) both in terms of biomass and length, whereas specific root length was not obviously affected apart from the indication of some stimulation after liming at the beginning. The live:dead ratio of fine roots was significantly higher in the limed rhizotrons as compared to the control (G not assessed), indicating lower mortality (higher longevity). Shoot growth showed greater lime-induced stimulation (L > G,C) as compared to root growth. As a result the shoot:root ratio was higher in the limed rhizotrons than in the control (L > G,C). Liming induced a higher allocation of P, S, Mg, Ca and K to the leaves, stem and twigs. Gypsum showed similar effects, but was only significant for S. Liming increased the foliar Ca/Al ratio by both increasing foliar Ca and decreasing foliar Al, whereas gypsum did not clearly improve foliar nutrition. This study suggests that a moderate application of lime can be successful in stimulating seedling growth, but that gypsum had no effect on seedling growth. It can be concluded that this lime-induced growth stimulation is directly related to the improved soil fertility status, and the alleviation of Al toxicity and acid stress, resulting in better foliar nutrition. The impact of liming on fine roots, as a consequence, was not limited to a stimulation of the total amount of fine roots, but also improved the root uptake performance. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Summary In order to study the reasons for poor peanut (Arachis hypogaea L.) performance on an Avalon medium sandy loam, a three year field study was undertaken to investigate the effects of lime and gypsum applications on growth, yield and quality. Rates of up to 2,400 kg agricultural lime/ha/annum significantly increased soil pH (1N KCl) and exch. Ca and decreased levels of exch. Al and Al saturation in the soil (0–150 mm). The effect of the same rates of gypsum was much less marked, only exch. Ca increasing and Al saturation decreasing to any substantial extent. In the absence of lime (i.e. even where gypsum was applied). nodulation was poor and the plants developed a general chlorosisc. 90 days after planting. Liming markedly improved nodulation whereas annual applications of gypsum had the opposite effect. Liming significantly increased the hay, pod and kernel yields by up to 73, 105 and 117%, respectively. On average, gypsum applications had no significant effects. Liming increased shelling percentage, the percentage mature pods, 100-kernel mass and protein concentration in the kernel, and decreased the incidence of pops and kernels with black plumule. Applications of gypsum had little effect on quality except for a decreased incidence of black plumule. It appeared that the improved crop performance with liming resulted from a reduction in Al toxicity which improved nodulation. Calcium deficiency did not appear to be a major cause of poor peanut growth and quality in the unameliorated soil.  相似文献   

17.
An experiment was conducted from 1997 to 2000 on an acid soil in Cameroon to assess the effectiveness of cultivating acid tolerant maize (Zea mays L.) cultivar and the use of organic and inorganic fertilizers as options for the management of soil acidity. The factors investigated were: phosphorus (0 and 60 kg ha?1), dolomitic lime (0 and 2 t ha?1), organic manure (no manure, 4 t ha?1 poultry manure, and 4 t ha?1 of leaves of Senna spectabilis), and maize cultivars (ATP-SR-Y – an acid soil-tolerant, and Tuxpeño sequia – an acid susceptible). On acid soil, maize grain yield of ATP-SR-Y was 61% higher than the grain yield of Tuxpeño sequia. Continuous maize cultivation on acid soil further increased soil acidity, which was manifested by a decrease in pH (0.23 unit), exchangeable Ca (31%) and Mg (36%) and by an increase in exchangeable Al (20%). Yearly application of 60 kg ha?1 of P for 3 years increased soil acidity through increases in exchangeable Al (8%) and H (16%) and a decrease in exchangeable Ca (30%), Mg (11%) and pH (0.07 unit). Lime application increased grain yield of the tolerant (82%) and susceptible (208%) cultivars. The grain yield increases were associated with a mean decrease of 43% in exchangeable Al, and 51% in H, a mean increase of 0.27 unit in pH, 5% in CEC, 154% in exchangeable Ca, and 481% in Mg contents of the soil. Poultry manure was more efficient than leaves of Senna producing 38% higher grain yield. This yield was associated with increases in pH, Ca, Mg and P, and a decrease in Al. The highest mean grain yields were obtained with lime added to poultry manure (4.70 t ha?1) or leaves of Senna (4.72 t ha?1). Grain yield increase was more related to the decrease in exchangeable Al (r = ?0.86 to ?0.95, P<0.01) and increase in Ca (r = 0.78–0.94, P<0.01), than to pH (r = ?0.57 (non-significant) to ?0.58 (P<0.05)). Exchangeable Al was the main factor determining pH (r = ?0.88 to ?0.92, P<0.01). The yield advantage of the acid tolerant cultivar was evident even after correcting for soil acidity. Acid soil-tolerant cultivars are capable of bringing unproductive acid soils into cultivation on the short run. The integration of soil amendments together with acid soil-tolerant cultivar offers a sustainable and comprehensive strategy for the management of acid soils in the tropics.  相似文献   

18.
We examine the effect of mulches on the soil volumetric water content (SVWC), pH, carbon (C), total and mineral (NH4 and NO3) nitrogen (N), total and bicarbonate phosphorus (P), and on the survival and relative growth rate of three species, Ipomea wolcottiana Rose, Lonchocarpus eriocarinalis Micheli and Caesalpinia eriostachys Benth, in a degraded seasonally dry tropical forest (SDTF) area. Our study year was unusually dry, with only half of the mean annual rainfall. Sixteen plots (5 × 6 m) for each of our four treatments, mulches with alfalfa (Medicago sativa L.) straw, forest litter (SDTF litter), polyethylene and bare soil (control), were used. In each plot, 20 tree saplings were planted of each species. The SVWC was higher in plots mulched with polyethylene than in bare soil plots. The soil pH did not change with mulching, and there were no differences between treatments in the concentrations of soil organic C, total N, NO3 and total P. However, soil concentrations of NH4 were highest in plots with alfalfa straw and of bicarbonate P in plots with polyethylene. Sapling survival was higher in polyethylene mulch plots than in other mulching treatments, in the order I.␣wolcottiana > C. eriostachys > L. eriocarinalis. Sapling survival under organic mulches, alfalfa straw and forest litter were similar, and lowest in bare soil. The relative growth rate followed the order L. eriocarinalis < C. eriostachys < I. wolcotiana, and the growth rate of all species was greatest under polyethylene mulch. We conclude that a combination of polyethylene mulch with species of high growth rate is best for restoring seasonally dry tropical areas.  相似文献   

19.
刘合霞  李博  胡兴华  邓涛  黄仕训  邹玲俐 《广西植物》2017,37(10):1261-1269
为探讨苦苣苔科植物对其岩溶生境的适应性,该研究选取黄花牛耳朵(Primulina lutea)、紫花报春苣苔(Pri.purpurea)和桂林蛛毛苣苔(Paraboea guilinensis)三种苦苣苔科植物,将其栽种在石灰土及红壤两种不同类型的土壤中,观测记录其生长性状并对其叶片元素含量进行测定和比较。植株采集过程中,同时采集自然生境中三种苦苣苔科植物叶片及取样植物基部土壤,并对叶片及土壤元素的含量进行测定,作为今后苗圃试验的参照。结果表明:三种苦苣苔科植物在两种土壤上的生长状况及适应性具有差异,其在石灰土上生长良好,在红壤上生长较差;在两种不同土壤中,除N外,桂林蛛毛苣苔的叶片其他元素(P、K、Mn、Mg、Ca、Zn、Cu)差异极显著(P0.01);除P外,紫花报春苣苔的叶片其他元素(N、K、Mn、Mg、Ca、Zn、Cu)差异极显著(P0.01);除N、Cu、Ca外,黄花牛耳朵的叶片元素(P、K、Mn、Mg、Zn)差异极显著(P0.01);三种植物的叶片元素比值,除少数值没有差异外,大部分指标差异都极显著;对叶片元素与栽培土壤元素的相关性分析,发现植物叶片Mn元素与土壤中N、Ca、Mg、Zn、Mn、有机质含量等呈正相关,土壤P元素与叶片中N、P元素呈正相关,而与叶片中Zn元素呈负相关关系。在其他栽培条件一致的条件下,土壤因素及物种差别是造成黄花牛耳朵、紫花报春苣苔和桂林蛛毛苣苔适应性产生差异的主要原因。  相似文献   

20.
Losses of soil base cations due to acid rain have been implicated in declines of red spruce and sugar maple in the northeastern USA. We studied fine root and aboveground biomass and production in five northern hardwood and three conifer stands differing in soil Ca status at Sleepers River, VT; Hubbard Brook, NH; and Cone Pond, NH. Neither aboveground biomass and production nor belowground biomass were related to soil Ca or Ca:Al ratios across this gradient. Hardwood stands had 37% higher aboveground biomass (P = 0.03) and 44% higher leaf litter production (P < 0.01) than the conifer stands, on average. Fine root biomass (<2 mm in diameter) in the upper 35 cm of the soil, including the forest floor, was very similar in hardwoods and conifers (5.92 and 5.93 Mg ha−1). The turnover coefficient (TC) of fine roots smaller than 1 mm ranged from 0.62 to 1.86 y−1 and increased significantly with soil exchangeable Ca (P = 0.03). As a result, calculated fine root production was clearly higher in sites with higher soil Ca (P = 0.02). Fine root production (biomass times turnover) ranged from 1.2 to 3.7 Mg ha−1 y−1 for hardwood stands and from 0.9 to 2.3 Mg ha−1 y−1 for conifer stands. The relationship we observed between soil Ca availability and root production suggests that cation depletion might lead to reduced carbon allocation to roots in these ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号